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Abstract

Opioid use disorder is a medical condition with major social and economic consequences. While 

ubiquitous physiological sensing technologies have been widely adopted and extensively used to 

monitor day-to-day activities and deliver targeted interventions to improve human health, the use 

of these technologies to detect drug use in natural environments has been largely underexplored. 

The long-term goal of our work is to develop a mobile technology system that can identify 

high-risk opioid-related events (i.e., development of tolerance in the setting of prescription opioid 

use, return-to-use events in the setting of opioid use disorder) and deploy just-in-time interventions 

to mitigate the risk of overdose morbidity and mortality. In the current paper, we take an initial 

step by asking a crucial question: Can opioid use be detected using physiological signals obtained 

from a wrist-mounted sensor? Thirty-six individuals who were admitted to the hospital for an 

acute painful condition and received opioid analgesics as part of their clinical care were enrolled. 

Subjects wore a noninvasive wrist sensor during this time (1–14 days) that continuously measured 

physiological signals (heart rate, skin temperature, accelerometry, electrodermal activity, and 

interbeat interval). We collected a total of 2070 hours (≈ 86 days) of physiological data and 

observed a total of 339 opioid administrations. Our results are encouraging and show that using a 

Channel-Temporal Attention TCN (CTA-TCN) model, we can detect an opioid administration in 

a time-window with an F1-score of 0.80, a specificity of 0.77, sensitivity of 0.80, and an AUC of 
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0.77. We also predict the exact moment of administration in this time-window with a normalized 

mean absolute error of 8.6% and R2 coefficient of 0.85.
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1 INTRODUCTION

Opioids are a class of drugs that bind to receptors in the brain and body to produce a 

variety of physiologic effects [66]. They include prescription opioids (i.e., morphine and 

oxycodone) as well as illicit drugs, such as heroin. When taken into the body, opioids 

attach to receptors located in the brain, spinal cord, and other parts responsible for the 

feeling of pain [70]. As a result, they block pain signals sent from the brain to other 

parts of the body and vice versa, leading to pain relief (analgesia). Other short-term effects 

include feeling relaxed and drowsy (sedation), shallow breathing (respiratory depression), 

and euphoria. Intake of opioids also causes large amounts of dopamine release, stimulating 

reward pathways involved in addiction. Repeated use of opioids can lead to an individual 

developing uncomfortable symptoms of withdrawal when the drug is discontinued (physical 

dependence) and requiring increasingly large amounts to experience the same effect 

(tolerance). So while opioids can be used therapeutically to treat moderate-to-severe pain, 

they also carry the risk of long-term consequences such as misuse, dependence, tolerance, 

and addiction [5]. For this reason, opioid misuse is often preceded by legitimate use for 

medical purposes. This can make healthcare providers reluctant to treat pain and cause 

patient suffering. In the year 2018, roughly 70% of drug overdose deaths in the United States 

(US) involved an opioid [96]. A growing number of these deaths are related to opioid use 

disorder (OUD), commonly referred to as “opioid addiction.”

The current standard of care for monitoring opioid use includes patient self-report and 

testing for opioid metabolites in biological specimens (typically urine); both methods 

suffer from significant limitations [46, 60]. Self-report is subject to underreporting due 

to recall bias or intentional concealment of use. Urine drug screens are retrospective, have 

limited windows of detection (24–48 hours for many opioids), can be manipulated and 

tampered with, and do not provide a detailed timeline of use patterns [29, 36]. Currently, 

no objective measure exists to monitor opioid use (or misuse) in real-time. Provided with 

such a technology, we could prevent opioid-related deaths and increase the safety of opioid 

prescribing.

Wearable sensors present a particularly attractive possibility given their unobtrusive nature 

and increasing acceptability in the general population. In recent years, there has been 

increasing interest in leveraging commercially available wearable and mobile sensing 

devices for both detecting substance use in real-time and enabling just-in-time interventions 

[15, 33, 63, 65]. However, much of the prior work has focused on detecting tobacco, alcohol, 

and cocaine use [15, 33, 65] as opposed to opioids. A recent effort studied opioid overdose 

detection [63], but opioid overdose is very different from broader opioid use. The prior 
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existing work on detecting opioid use with wearables is based on a small amount of data that 

centered around pre-opioid exposure [53].

In this paper, we comprehensively explore the possibility of using a wrist-mounted 

sensor that captures physiological signals continuously and passively to detect opioid 

administrations in subjects admitted to the hospital for an acute painful condition. Our work 

has several key contributions:

• We collect a unique large dataset of opioid administrations. We collected 

a series of longitudinal datasets (observing multiple opioid events in the same 

subjects over a period of 1–14 days) from a total of 36 subjects. In total, 

our data consisted of 2070 hours of wearable sensor data containing a total 

of 339 intravenous opioid administrations. To our knowledge, a dataset of this 

magnitude and size has never been collected in the context of opioid use before.

• We detect changes occurring in physiological signals during an opioid 
administration. We find features from the previously reported signals to be 

significant during opioid administration, reproducing the results from prior 

works. Along with these changes, we also observed the features of electrodermal 

activity and heart rate variability derived from interbeat interval to demonstrate 

significant changes during opioid use.

• The physiologic changes occurring during opioid use are distinct from 
changes noted with other routine daily activities. Although the study 

environment was controlled (in-hospital), subjects were free to perform limited 

activities of daily living throughout the data collection period (i.e., get out of 

bed to a chair, walk in the hall, interact with other people). The results from 

our current work support the notion that detection of opioid use can occur 

unobtrusively and with high accuracy despite this background noise. These 

findings are encouraging as we move toward systems that can detect opioid use 

in real-time in natural environments beyond clinical settings.

• We propose a novel Channel-Temporal Attention TCN (CTA-TCN) 
architecture, which jointly predicts whether and when an opioid 
administration occurred. To handle time-sequences of large size, we used a 

TCN architecture, and to aid the model in attending to only the important time 

points, a temporal-based self-attention block was used. To better handle the 

inter-modality differences and to weigh their contributions, we used Depthwise 

convolutions and Channel attention block. We also devised a hybrid loss 

function consisting of weighted cross-entropy and weighted kappa, specific to 

our problem.

• We systematically analyze the performance of our model across different 
demographic sub-groups. We observed slightly improved performance of the 

model in males and in individuals who were opioid-naive compared to those with 

a history of chronic use. The performance of the model was found to be uniform 

across all the body mass index (BMI) subgroups. Lastly, an attribution-based 
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explainable AI technique has been used to get further insight into the proposed 

temporal convolutional networks.

To our knowledge, this is the first work to demonstrate that by attending to unique opioid-

related changes in multimodal physiological signals from a wrist-mounted sensor, opioid 

administration moments can be accurately detected and precisely labeled in a longitudinal 

dataset collected from a clinical population. This work provides new opportunities to create 

technologies for real-time opioid use (or misuse) monitoring and just-in-time interventions 

for opioid addiction mitigation.

2 RELATED WORK

In the context of health and wellness, wearable devices have already made a significant 

impact in detecting and monitoring various health conditions. For example, researchers have 

studied activity recognition [4, 43] and stress detection [18, 76] over the past decade using 

smartwatches, chest bands, and mobile devices embedded with location, electrocardiogram 

(ECG), and inertial sensors. A significant challenge in these studies has involved gathering 

high-quality labeled data. However, with recent machine learning advancements, research 

has shifted toward using self-supervised [74, 75] and unsupervised [48, 97] based methods 

to optimize the use of unlabeled data. In regards to monitoring health conditions, [50, 68] 

have used multimodal wearable technologies for early diagnosis of Parkinson’s disease and 

[44, 77, 92] developed cardiac monitoring systems that notify the user or their physician 

of cardiac abnormalities such as hypertension or arrhythmia. Various other works have also 

looked into the applicability of wearable devices for the early detection of migraine attacks 

[47] and Alzheimer’s disease [93]. In regards to behavioral health and wellbeing, [35, 72] 

used physiological signals from wearable sensors to detect different emotion states, and [3, 

10] were able to classify different stages of sleep for sleep quality assessments. In parallel, 

the impact of wearable devices has diversified and grown. Our current work focuses on 

using a wrist-mounted sensor to detect opioid administrations in a clinical setting using 

an architecture based on temporal convolution network (TCN) with channel-and-temporal 

attention. Usage of TCN’s in wearable devices is an active ongoing research area, and it 

is already used in the contexts of activity recognition detection [61] and hand movement 

classification via surface electromyographic signal [100]. Unlike these past works, in our 

case, we consider a multi-modality-based signal captured from different sensors of the 

wearable device. We use channel-and-temporal based attention modules to help the model in 

attending to the different modalities and different time-steps based on their importance [6, 

94, 98]. This section reviews and summarizes the existing literature available on detecting 

substance use with wearable sensors.

Opioid Use:

The current literature surrounding the detection of opioid use is largely focused on 

return-to-use events (“relapse”) during treatment for opioid use disorder and monitoring 

adherence during chronic opioid therapy. Both utilize self-reporting, and laboratory testing 

methodologies, which are subject to recall bias and limited by imprecision [27, 42]. Recent 

work by Nandakumar et al.[63] described detection of opioid toxicity and overdose using 

a contactless sensor system. Their study converted a smartphone into an active sonar 
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monitoring system to detect opioid-induced respiratory depression among hospitalized 

surgical patients and individuals using drugs in a supervised injection facility. To our 

knowledge, the only existing work using wearable sensors to detect opioid use was 

previously conducted on 30 emergency department (ED) patients who received opioid 

analgesics as part of their clinical care [53]. The authors used a wristband sensor (Q sensor, 

Affectiva, Waltham, MA) to collect physiological data before and after a single dose of 

an opioid analgesic was administered. A decision tree classifier was applied to identify 

physiologic patterns associated with opioid use. While promising, the generalizability of 

these results was limited due to a low number of opioid administrations captured (one per 

subject) and a small amount of data recorded that centered only around pre-opioid exposure. 

On the contrary, in our current work, we collect multiple days of continuous physiological 

data from each subject, containing numerous opioid administrations. This provides a more 

robust dataset to study the physiological signals associated with opioid use.

Tobacco Use:

The detection of tobacco use has previously been achieved using wearable sensors 

containing inertial measurement units (IMUs) and Respiratory Inductive Plethysmograph 

(RIP) bands. Many of these works use features associated with the act of smoking (i.e., 

hand-to-mouth gestures, chest wall contraction and expansion) as opposed to biomarkers 

or physiologic changes associated with nicotine use [1, 69, 73, 80, 83, 89]. While two of 

the works reported promising results using RIP bands in a laboratory-based setting, their 

models performed poorly once tested in the natural environment [1, 80]. This was attributed 

to a high susceptibility to noise when subjects were performing concurrent activities. Later 

works attempted to address these shortcomings by incorporating IMUs, RIP bands, and a 

“smart cigarette lighter” [40, 81]. They also used deep learning methods to extract features 

and better combine multimodal information automatically. Significant improvement was 

observed in cigarette smoking detection both in and out of the lab. Unlike opioids, the effect 

smoking cigarettes has on the human body (change in respiration) is immediate and well-

studied [25, 57, 90], which motivated many works to develop models based on hand-crafted 

features. Cigarette smoking sessions also have a hand-to-mouth gesture associated with it, 

making tobacco use easier to detect than opioids.

Alcohol Use:

Electrochemical detection strategies seem to be at the forefront when it comes to sensor-

based methods for alcohol use. These transdermal sensors work to detect target analytes 

in sampled biofluids (i.e., sweat, interstitial fluid) for passive, non-invasive monitoring of 

alcohol use and intoxication. While the concentration of analytes in interstitial fluid and 

sweat have been closely correlated to concurrent blood alcohol levels, detection is delayed 

due to the time it takes for alcohol to be expelled in the biofluids measured [12]. While both 

alcohol and opioids affect the physiology of the body when taken, strong biomarkers exist in 

alcohol, making its detection immediate and easier compared to opioids.

Cocaine Use:

Cocaine is a common drug of abuse that is mainly sought out for its stimulant and 

euphoric effects. When used, it acts on the central nervous system to inhibit the reuptake 
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of catecholamines resulting in supra-physiologic potentiation of sympathetic nervous system 

(SNS) activity [28]. Physiologic effects include vasoconstriction (narrowing of the blood 

vessels), mydriasis (dilated pupils), increased heart rate, and increased blood pressure [95]. 

Prior literature has demonstrated the ease and effectiveness of measuring several of these 

physiologic changes using wearable sensors. Hossain et al. [38] used a device that included 

ECG and accelerometry sensors to develop a physiologically-informed computational model 

for automated detection of cocaine use in controlled and natural environments. Natarajan et 

al. [64] later expanded on this work to strengthen the lab-to-field generalization performance 

of models. Carreiro et al. [13] used a wearable sensor that measured skin temperature, 

electrodermal activity, and locomotion to detect physiologic markers of SNS arousal. In their 

study of 15 subjects, they used sensor data to identify distinct episodes of cocaine use that 

were missed by both self-report and urine drug screening.

3 USER STUDY AND PRELIMINARY ANALYSIS

3.1 General Study Protocol

This was an observational study approved by the Institutional Review Board of the 

University of Massachusetts Medical school. A convenience sample of 36 adults admitted 

to the University of Massachusetts Medical center was utilized. Subjects were identified 

while receiving care in the emergency department, prior to hospital admission, and screened 

for inclusion/exclusion criteria. Once a potential subject was deemed eligible, a research 

assistant approached them, and informed consent was obtained.

Inclusion criteria were: 18 years of age or older, admission to the hospital for pancreatitis 

(inflammation of the pancreas), clinical plan of care including opioid analgesics for pain 

management, able to speak English, and capable of providing informed consent. Exclusion 

criteria were: physical inability to wear a wrist-mounted sensor (i.e., upper extremity 

amputation or fracture), being under police custody, or currently being pregnant.

This study focused only on adult subjects as pediatric subjects may have physiologic 

differences in drug response and should be studied separately. Pancreatitis is a common 

medical condition characterized by severe pain and is routinely treated in the hospital with 

opioid analgesics, thus represented an excellent target population for the study. Adults 

lacking capacity, pregnant women, and prisoners are considered vulnerable populations and 

are routinely excluded from such studies. Overall details of the subjects recruited for the 

study are shown in the below table,

3.2 Hardware

The Empatica E4 (Empatica, Milan, Italy) [31] is a commercially available, noninvasive, 

research-grade device worn on the wrist. It continuously measures and records various 

physiologic parameters using the following four sensors at pre-defined sampling 

frequencies: 1) a photoplethysmogram (PPG) sensor sampled at 64 Hz (instantaneous heart 

rate sampling frequency of 1 Hz); 2) an electrodermal activity (EDA) sensor sampled at 4 

Hz; 3) a 3-axis accelerometer (ACC) sampled at 32 Hz; and, 4) an infrared (IR) thermophile 

sampled at 4 Hz. The PPG sensor measures Blood Volume Pulse (BVP), from which 
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Emptaica E4 derives interbeat interval (IBI) using a standard tacogram, this subsequently is 

used to compute heart rate variability (HRV). The EDA sensor is used to capture electrical 

conductance across the skin and is characterized by the skin conductance level (EDA tonic) 

and skin conductance response (EDA phasic). A 3-axis accelerometer detects body motion, 

and an IR thermopile measures peripheral skin temperature. These raw signals captured 

from the E4 wristband have been validated in different research settings and are shown to 

have a performance comparable to the clinically used devices [55, 58, 78]. All data collected 

from the E4 was initially stored in the sensor’s on-board integrated memory until connected 

to a computer via USB and transmitted to Empatica’s HIPAA-compliant cloud-based server 

(Empatica Connect). All the data files were downloaded in comma-separated values (CSV) 

format for analysis.

3.3 Data Collection

Subjects were enrolled for the duration of their hospital stay, during which time they 

wore the E4 on their non-dominant wrist at all times. Daily in-person check-ins were 

completed by the research assistant who would exchange the sensor for a fully charged one, 

troubleshoot any technical issues, and download data collected in the previous 24 hours. 

Demographic and historical information (including medical history, current medications, 

opioid use history, and substance use history) were collected upon enrollment. Electronic 

medical records (EMRs) were queried throughout the study period to obtain information 

about the timing, dose, and route of all medication administrations, and subjects were 

instructed to press the E4’s event marker button to “tag” and event whenever they 

received an opioid pain medication. Thus for every opioid administration, we created two 

opportunities to obtain ground truth data- one as the subject annotates the event and the 

second when the nurse documents the medication administration in the EMR.

Thirty-six subjects were enrolled over the course of three years. A total of 2070 hours of 

sensor data were collected, during which time 339 intravenous (IV) opioid administrations 

were captured. Five subjects were not administered any IV opioids during the study period 

despite having them ordered. The majority of administrations were morphine (68%), and the 

remaining were hydromorphone. The type of opioid administered was based upon clinician 

preference/judgment. The amount of opioid administered (dose) was converted to morphine 

milligram equivalents (MME), which is a standardized way to compare the relative potency 

of different types of opioids [88]. The timeline of different opioid administration events over 

the study period for all the participants is shown in figure1b.

Subjects’ opioid use history was classified by a medical toxicologist as either naive (no 

provider-prescribed opioid use within the past six months and no lifetime history of opioid 

misuse), chronic (currently taking provider-prescribed opioids, ongoing opioid misuse, or 

less than five years of recovery from an opioid use disorder), or occasional (not meeting 

criteria for naive or chronic). All opioid administrations that occurred during the study 

were coded as either “confirmed” or “EMR-based.” Confirmed administrations were defined 

by the subject annotation (tag on the sensor) within ten minutes of the EMR-documented 

time of administration. The sensor tag time was used as the opioid administration time. 

EMR-based administrations did not have an associated sensor tag from the subject, and the 
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EMR-documented time was used as the opioid administration time. All study data collected 

were managed using the Research Electronic Data Capture (REDCap) [34] web application 

and entered into a biometric data repository.

3.4 Preliminary Statistical Analysis of Changes in Wearable Signals Due to Opioid

Before attempting to model opioid use events with the wearable sensor data, we ran a 

preliminary analysis on the cleaned sensor data (explained in 4.1) to: 1) determine whether 

our wrist-worn sensor is sufficiently sensitive to register physiological changes associated 

with opioid administration; and 2) whether these changes in the sensor data are statistically 

significant. While the physiologic effects of opioid use have been previously described 

in the medical domain, the application of wearable sensors to identify and measure these 

changes has not been extensively studied. To this end, we performed a paired t-test between 

physiological signals by applying different statistical functions (listed in Table 2) on a 

15-minute time window of a pre- and post-opioid administration. A list of time-domain and 

frequency-domain-based statistical functions for different signals, including accelerometry, 

electrodermal activity, skin temperature, heart rate, and interbeat interval, are considered 

for this statistical analysis. Throughout the paper, the accelerometry signal refers to the 

magnitude of net acceleration computed from the 3-axis accelerometer signal. The choice 

of statistical functions for this analysis was based on prior knowledge. Some functions were 

previously utilized in measuring physiologic effects associated with opioid use [14], while 

others have been employed in other well-known problem domains (e.g., activity recognition, 

stress detection, etc.) [11, 18, 30, 56, 76]. All signals were standardized for this analysis.

We observed that several heart rate functions (mean, maximum) decreased in the post-opioid 

administration period, which is consistent with the medical literature [16]. The changes 

in skin temperature and accelerometer like increase in skin temperature max and drop-in 

motion after the opioid intake are consistent with recent work by Carreiro et al. [14]. In the 

context of opioid use detection, the heart rate variability (HRV) has not been extensively 

studied by prior work. Several of the statistical functions that we have extracted from IBI 

can capture HRV information. In our data, we found that the difference between pre- and 

post-opioid administration values of several time- and frequency-domain functions of IBI to 

be statistically significant. All the functions that are statistically significant from the paired 

t-test experiment are presented in table 10 of Appendix A.

Of note, several of the functions that showed significant differences had not been previously 

reported in the literature. Overall, these results validate that the physiological signals 

captured by the wristband sensor are sensitive to physiological changes due to opioid 

administration. While encouraging, this result does not directly guarantee a robust and high 

fidelity opioid use tracking system with the wearable sensor. Such a system must learn to 

recognize the opioid use-related physiological changes from the non-opioid events while 

being resilient to inter-individual differences. In the next section, we will present a temporal 

convolutional network with a channel-temporal attention mechanism that can combine the 

multimodal sensor data and uniquely recognize the opioid-related physiological changes to 

detect opioid administration events.
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4 METHODOLOGY

In this section, we describe how the data collected from our study is pre-processed, how the 

features were extracted. Finally, we present our model architecture for detecting opioid use 

or administration.

4.1 Data Cleaning

The first step of the data cleaning process involved detecting and removing data recorded 

when the subject was loosely/not wearing the sensor. This step was accomplished by 

removing portions of data consisting of values that would be considered incompatible with 

human life (i.e., skin temperature at or below 20°C, zero EDA signal, and brief spikes 

(150–200 beats per minute) in heart rate). ≈ 6.5% of the sensor data was removed in this 

process.

The data still contained a low signal-to-noise ratio, so pre-processing of the data was 

required to remove outliers, noise artifacts, etc. We used a Butterworth low-pass filter 

of order 5 and 1 Hz cut-off frequency to filter EDA, accelerometry, heart rate, and skin 

temperature signals. For filtering noise in IBI, we used a threshold-based artifact correction 

algorithm [91]. We first computed a local average in this algorithm by taking a median filter 

on the IBI time-series. We looked at the difference between the IBI value and the local 

average value for each timestep. If the absolute difference was greater than a threshold (0.35 

seconds), we marked it as an artifact. The identified artifacts were replaced by interpolated 

values using cubic spline interpolation.

4.2 Model Architecture

As mentioned previously, we collected multiple days of physiological data from each 

subject. To create the dataset for our OpiTrack system, we partitioned this continuous 

sensor data into time-windows of fixed size and considered a sliding window. The choice of 

time-window size and sliding-window size was a hyperparameter, and the optimal values for 

these are discussed in the next section. Given physiological signal information of multiple 

modalities from a time-window, our model detects if an opioid administration occurred in 

this time-window or not. If an administration is detected, it then predicts the exact moment 

(time-minute) of administration in the time-window.

Our model consists of four main components: 1) Depthwise block; 2) Residual blocks based 

on Temporal convolutional networks (TCN) architecture; 3) Channel-Attention block; and, 

4) Temporal-Attention block. An overview of the model architecture is shown in figure 2 

and descriptions of each component can be found below.

Depthwise Block: The input to the model is a time-windowed multimodal physiological 

signal. All these signals have been denoised as mentioned in section 4.1. In section 3.4, 

we discussed how different features from different modalities show different trends due 

to opioid administration (e.g., heart rate decreases due to opioid while skin temperature 

tends to increase). To capture these unique modality-specific trends, our model at first uses 

Depthwise convolution to extract features from each modality separately. No parameters is 

shared between the convolutions used for different modalities. An overview of the depthwise 
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block architecture is shown in figure 4a. Since depthwise convolution extracts features from 

each modality separately and does not capture cross-modality interaction, we introduce TCN 

residual block that performs convolutions across modalities.

TCN-Residual Block: A relatively large time-sequences as input is required for opioid 

use modeling due to the inherent time delay for the opioid to impact physiology (i.e., opioid 

metabolism). It can take approximately 60–90 minutes for an IV opioid administration to 

have an effect on the human body [8]. Commonly used temporal models like Recurrent 

Neural Networks (RNNs), which include Long-Short Term Memory networks (LSTM) and 

Gated Recurrent Units (GRUs), may not be optimal for our application as they are known to 

suffer from exploding and vanishing gradients for long input time series[37]. We approached 

this problem by constructing our model based on Temporal convolutional networks (TCNs) 

[49, 67].

TCNs, a type of convolution network that convolve over time-domain, combine various 

aspects of RNNs and CNNs architecture while overcoming exploding and vanishing 

gradients by avoiding the backpropagation path defined by the input sequence. TCNs are 

also shown to outperform RNNs on different standard benchmark time-series datasets, and 

tasks [7]. There are two key characteristics of TCN. First, like RNNs, the model can take 

an input sequence of any length and produce the same length output sequence during 

any model stage. This is accomplished by using a 1D fully-convolutional network (FCN) 

and zero-padding input layers based on the kernel size. Second, while CNNs use standard 

convolutions, the convolutions used in TCNs are causal dilated. Causal convolutions allow 

no leakage of information from the future to the past while predicting for the present. 

Dilated convolutions in TCN will enable the model’s receptive field (the size in history the 

model can look at while predicting the present) to be exponential of the network’s depth. 

Figure 3 shows the differences between various convolutions. For a 1-D input sequence 

x ∈ ℝn and filter f: 0, 1, ..k − 1 ℝ, the result of causal dilated convolution on any element 

s of the output sequence can be defined as.

F(s) = ∑
i = 0

k − 1
f(i) ⋅ xs − d . i

Here, d is the dilation factor, k is the filter size and the term xs−d.i reflects the causal 

convolution and the receptive field. To ensure we can handle larger input sequences and 

deeper networks with high dilation factors, residual connections are added to the TCN. 

These connections help to skip the TCN if it negatively impacted the model’s performance. 

We observed a 3% drop in F1-score with the removal of residual connection. The TCN-

Residual block architecture we used in our model is shown in figure 4b.

Channel-attention Block: The input to the model is time-series data captured by the E4 

sensor. This data includes time-series information of heart rate, Skin temperature, EDA, and 

IBI. We view each of these physiological signals as a channel to the model. This input is 

passed through several convolution blocks, and the filters in each block generate subsequent 
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feature maps that learn different information associated with the input. The feature maps 

generated are different from one another and will have varying levels of importance for 

predicting the target class. Therefore, providing the model a way to prioritize the feature 

maps/channels that are important can improve our system’s performance.

In section 3.4, when we performed statistical analysis on various functions of physiological 

signals during an opioid administration, we observed different signals vary at different 

rates and magnitudes (Table 10 from Appendix A). So, keeping channel attention in our 

architecture seemed a natural choice to consider. We addressed channel-attention using a 

squeeze-excitation (SE) module [39]. The main reasons for using SE are: 1) the number of 

learnable parameters is very low; and 2) they have very little overhead, making them easily 

pluggable into any of the architectures. In general, SE networks are used with 2D data which 

include images and videos [17, 23, 51]. Here, we modified it slightly and used it on 1D 

time-series data. The architecture of our channel-attention is shown in figure 5a.

Channel-attention (SE) block consists of two main components-Squeeze, and Excitation. 

The Channel-attention’s block input is a TxC vector where T is the length of the time-

sequence, and C is the number of channels. This input is first passed through the Squeeze 
module. Ideally, for each channel to attend to other channels, it requires looking at all the 

information present in the channels, which would necessitate a total of TxC parameters. 

As we go deeper into the network and consider longer time-sequences, the number of 

parameters will be a large overhead for the model. These issues are addressed in the Squeeze 
module where the input of TxC is squeezed along the temporal-direction using a global 

average pooling function to generate a 1xC vector. For a input x ∈ ℝTxC, the squeeze 

operation along a channel c would be

Sc =
∑i = 0

T − 1xi, c
T

where xi,c is the input along the cth channel. This vector is then passed through the 

Excitation module. In this module, we learn the non-linear interaction between channels, 

which is achieved by first compressing the 1xC vector into 1xC
r  and then expanding it 

back to 1xC vector using two fully-connected (FC) layers. r is the reduction factor and is a 

hyperparameter which controls the capacity and computational cost of the SE block. We use 

a value of 2 for r in our model. The Excitation operation can be defined by the equation

E = σ W 2δ W 1S

where S is the output after the Squeeze module, W 1 ∈ ℝ
C
r xC and W 2 ∈ ℝCxC

r  are the weight 

matrices of the FC layers, δ is the non-linear operation which in our case is ReLU[62] 

function and σ is the sigmoid operation. The output from the Excitation module is passed 

through a sigmoid activation to keep all the channel scores in the 0–1 range. Finally, the 

output after sigmoid activation is broadcasted back to the original input using an element-

wise multiplication.
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Temporal-attention Block: Since the physiological changes due to opioid use are 

temporally localized (as discussed in section 3.4 and take place over a specific time period 

after administration, we use self-attention based mechanism to attend to the values from the 

informative time regions within a window. The self-attention block in our architecture is 

based on several recent works [20, 94] and is shown in figure 5b. The Temporal-attention 

block takes the input X processed by Channel-attention block. The first step of attention 

includes generating Query, Key, and Value from X, where Query= WQX, Key= WKX, 

and Value= WQX.W Q ∈ ℝCxC
5 , W K ∈ ℝCxC

5  and W V ∈ ℝCxC are the corresponding weight 

matrices. We then multiply Query and Key to generate a compatibility score between 

different temporal moments. The compatibility scores are normalized by a softmax function 

to have a total sum of one. In the next step, we multiply normalized compatibility scores 

with Value to generate a temporal attention-weighted vector A. Finally, we add back the 

input vector X to A to generate output O. γ is a learnable parameter,

O = γA + X

4.3 Loss Function

Given a time-window consisting of physiological signals from a wearable wrist-borne 

sensor, our model detects if an opioid has been administered in this time-window or not, 

and the moment of administration, if it occurred.

To jointly solve both of these tasks, we use a hybrid loss function. The equation below 

describes the hybrid loss function used.

L = λLW CE + (1 − λ)LKAPPA (1)

LWCE is the standard binary-weighted cross-entropy loss between actual administration 

class and predicted administration. For every time-window, the actual administration value 

is 0/1 depending on whether an opioid administration occurred in it or not. Predicted 

administration is the output of the ‘opioid binary detection’ block of figure 2. To account 

for the class imbalance, we used weighted cross-entropy loss (WCE) instead of a standard 

cross-entropy.

LKAPPA is the weighted kappa index [19] used as a loss function. While LWCE term helps 

detect an opioid use event in a time-window, LKAPPA is used for detecting the exact moment 

of administration in the time-window. The actual administration moment is specified as a 

one-hot encoding vector with a size same as the time-window length. A ‘1’ value indicates 

the exact time of administration in the window and ‘0’ values represent all other minutes 

in the time-window. The predicted moment from the “opioid moment prediction” block of 

figure 2 has the same size as the actual administration moment vector while containing 

softmax probabilities for the moment of administration. Weighted kappa as loss function is 

explained in detail in the Appendix B. For time windows with no opioid administration, the 

weighted kappa loss term will be absent. λ is a hyperparameter to control the importance 

given to both the loss terms. We use a value of 0.4 in our model.
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5 RESULTS

Using the model architecture described in section 4.2, we model opioid administration, 

which includes detecting opioid use and predicting the exact moment of administration. 

Along with the Channel-Temporal attention TCN (CTA-TCN) model, we explored models 

of varying degrees of complexity. These include logistic regression, bidirectional LSTM 

(BiLSTM) [32], CNN-LSTM [24], and LSTM with Fully Convolutional Network (LSTM-

FCN) [45]. In the CNN-LSTM model, CNN is used to extract the features from 

physiological signals, and LSTM uses these features to make a time-series prediction. 

LSTM-FCN consists of two blocks: an LSTM and an FCN block. The outputs from these 

two blocks are merged, and prediction is made based on that.

Along with using denoised physiological signals as input to the deep learning models and 

letting them do the feature extraction, we also explored the usage of hand-crafted features 

from physiological signals, which included extracting time- and frequency-domain features 

(PSTAT) discussed in section 3.4. We also considered the features Mahmud et al. [53] 

described in the only known prior similar work and used the same model considered there. 

These approaches are compared against a baseline model whose predictions are not based 

on physiological signals and require only subject information and time of the day. All the 

results reported are with a Leave-One-Subject-Out Cross-Validation (LOSOXV) experiment.

To account for the class imbalance, a weighted F1-score is used to measure the performance 

of the binary classification of opioid administration at the window level. In addition, we 

report specificity, sensitivity, and AUC scores. For predicting the opioid administration 

moment or time, the performance is measured in terms of mean-absolute error (MAE) and 

R2 coefficient between actual and predicted administration time points. We also estimated 

normalized mean-absolute error (NMAE) by normalizing the MAE with respect to the 

window length. Since the MAE depends on the window length, NMAE allows us to get a 

measure that is invariant to the choice of window length.

A 100-minute long sliding time-window with window shift of 30 minutes was used in our 

model as it provided optimal performance with respect to opioid use detection sensitivity 

and exact moment prediction NMAE. We observed that using a smaller time-window (than 

80 mins) resulted in low sensitivity for opioid use event detection as most of the inputs do 

not contain any opioid administration, and the windowed sensor time series fails to capture 

the full physiological signal dynamics due to opioid. Similarly, a very large time-window 

leads to an increase of mean absolute error for the opioid moment prediction since the model 

now has to solve a significantly more challenging task of picking an accurate opioid use 

moment from more candidate moments available in a larger time-window. Figure 6 shows 

how the model’s performance varies across different window lengths.

All signals have been downsampled to have five samples per minute and the input data 

is standardized for each modality. The exact specifications of our model, which includes 

the dilation factors, number of channels for each layer, kernel size, and hidden layer sizes, 

are provided in Appendix D. Table 3 and 4 shows the performance of the models in 

opioid administration detection and opioid moment prediction. All the models that used 
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physiological signals outperformed the baseline model, which used no sensor information, 

by a significant margin. The Channel-Temporal attention TCN (CTA-TCN) outperformed all 

other models in both tasks.

For opioid administration detection after LOSOXV, CTA-TCN attains an overall mean 

F1-score of 0.80, specificity of 0.77, sensitivity of 0.80, and AUC score of 0.77. For opioid 

moment prediction, it attained a R2 coefficient of 0.85 and a mean MAE score of 8.6 (mins). 

As we considered a 100-minute input, the normalized mean absolute error (NMAE) is 8.6%. 

Our next best model after CTA-TCN in terms of all performance metrics is a TCN model 

similar to CTA-TCN but with no channel and temporal-attention blocks. Attention blocks 

increased the F1-score by ≈9.5% and decreased the NMAE by 1.5% over TCN with no 

attention blocks.

Figure 7a shows a scatter plot between the actual administration moment and predicted 

administration moment of our CTA-TCN model. If our model made perfect predictions, all 

the points would lie along the diagonal red-dashed line. While the predicted administration 

moment generally follows the actual administration moment, we see that predictions are far 

off from the ground-truth (points inside the blue-dashed rectangle) when the administration 

occurs during the start/end of the time-window. This observation motivated us to make a 

barplot showing MAE of opioid moment prediction task and sensitivity of opioid detection 

task for every 10-minute time range shown in figure 7b. In this figure, we can see that the 

lowest MAE and highest sensitivity are achieved when an opioid administration occurs in 

the middle of the time-window. This result illustrates that the model works most accurately 

when the windowed sensor data adequately captures information from both pre- and post-

phase of an opioid administration. Consequently, the characteristic physiological changes of 

opioid use can be observed by the model.

5.1 Ablation Study for CTA-TCN Architecture

In this section, we validate the choices we made while designing our model architecture. 

We do this using an ablation-based study where we remove/modify certain blocks of the 

architecture while the rest is untouched to see how it impacted the model’s performance. 

The following are the set of experiments carried out:

• Replacing depthwise convolutions with standard convolutions. This experiment 

aims to see if using convolution filters specific to a modality provides any benefit 

over convolution filters shared by all the modalities.

• Removing the TCN architecture by replacing all causal dilated convolutions 

with standard convolutions-This experiment aims to see how the model would 

perform when its receptive field is decreased from exponential, when using 

causal dilated convolutions, to linear, when using standard convolutions.

• Removing channel-attention blocks. This experiment aims to validate how 

weighing channels based on their importance for target prediction impacts the 

performance of our model.

• Removing temporal-attention blocks. This experiment aims to validate how our 

model’s performance is impacted by attending over the temporal direction.
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The results of these experiments are shown in table 5. Removing the Channel-attention/ 

Depthwise convolutions negatively impacted the performance of our model the most. This 

explains the importance of letting the model extract features specific to each modality in 

the network’s initial layer and helping the model attend to the feature maps based on 

their importance rather than treating them equally. Removing temporal attention caused 

the least change among all the experiments. We believe this is due to how efficient the 

TCN-Residual blocks are already in handing the temporal information. The change in the 

opioid moment prediction performance was not significant compared to opioid detection for 

all the experiments.

5.2 Performance Breakdown Across Different Demographic/Opioid-type Subgroups

As part of the study protocol, demographic and historical information was collected for each 

subject. Variables of particular interest include gender, age, body mass index (BMI), and 

opioid use history. The demographic factors and their distribution are listed in table 1.

In this section, we discuss the performance of our model when stratified by demographic 

variables of interest. Our goal here was to understand if our model performance is 

uniform across different sub-groups or skewed towards a particular population group. If 

the performance is skewed, what might have caused this?

Peformance Based on Gender: Our CTA-TCN model’s performance based on gender is 

shown in table 6. While the model generally performed well in detecting opioid use across 
both genders, the performance in males (as reflected in the F1-score) was marginally better. 
However, we interpret these results with caution, as this difference may be attributable to 

females having more opioid administrations (62%) than males but a smaller sized dataset 

(43%). As a result, specificity was much lower in females than males. Our model achieved 

equal sensitivity and predicted the opioid moment with similar NMAE in both gender 

groups. Previous works have cited no gender differences in opioid metabolism for morphine 

or hydromorphone [85, 86].

Peformance Based on BMI Categories: Our CTA-TCN model’s performance on 

various BMI categories is shown in table 7. We can see the model performed opioid 
detection/opioid moment prediction uniformly across all BMI categories from the table. 
While there are previous works discussing the effect of opioid in altering the subject’s BMI 

over time [26, 59, 87], there is less work on the opposite relationship (the effect of BMI 

on opioid pharmacokinetics and pharmacodynamics). Obesity and resultant health problems 

create complex interactions with opioid metabolism that are expected to create differences in 

obese individuals compared to those with normal BMI [52]; some studies indicate relatively 

similar pharmacokinetic parameters despite obesity [21], but obesity had been shown to be 

an independent risk factor for opioid-induced respiratory arrest [41]. Our data suggest that in 

this cohort, the accuracy of detection was not changed by BMI.

Peformance Based on Opioid Use History: Repeated opioid exposure over time leads 

to opioid tolerance, or the requirement of higher doses of the drug to achieve the same 

clinical effect. Because of this well-established phenomenon, the impact of subjects’ opioid 

use history is of particular clinical interest when considering our ability to detect opioid use. 
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Our CTA-TCN model’s performance on various population groups based on their opioid use 

history is shown in table 8. The model performed better in opioid-naive subjects and those 
with occasional use (those without a significant history of opioid use) compared to those 
with a history of chronic use, which is expected.

Peformance Based on Type of Opioid Administered: We also considered the 

impact of opioid type on model performance. The two types of opioids captured in our 

dataset (morphine and hydromorphone) are both commonly prescribed full opioid agonists, 

although hydromorphone is approximately eight times more potent than morphine. Our 

CTA-TCN model’s performance on the two types of opioids considered in this study is 

shown in table 9. Performance was similar between the two categories indicating that, 
despite the differences in potency, the physiologic effects are similar enough for the opioid 
type not to imact the model’s performance.

5.3 Feature Relevance and Explainability

In order to evaluate the relevance of each modality and to identify which one contains 

the most information for opioid use detection, we drop a certain modality from full set 

multimodal input signal and train the CTA-TCN model with the remaining modalities. The 

decrease in F1-score for opioid administration detection and increase in NMAE for opioid 

moment prediction reflects the importance of that modality.

As shown in figure 8, the heart rate and interbeat interval (IBI) signals are the two most 

important modalities for opioid administration detection. Recent studies have documented 

the effect of opioids on the cardiovascular system [9, 16] which point towards the 

informativeness of cardiac-related physiological biomarkers. While both HR and IBI will 

capture heart rate information, IBI can extract complementary information, including heart 

rate variability. Both EDA and ACC yield a moderate level of F1-score drop, which shows 

that they contain some complementary information. For opioid moment prediction, HR, 

EDA, and ACC contribute the most.

Skin-temperature was the least important of all the modalities for both opioid detection 

and moment prediction. We hypothesize that this is due to the several competing ways in 

which opioids affect skin temperature; for example, opioids are known to cause hypothemia 

[101], but are also assocaited with variable degrees of histamine release, causing peripheral 

vasodialtion and thus a temporary increase in skin temperature. The degree to which an 

individual subejct experiences either of these effects is idosyncratic, making temperature 

changes inconsistnet and less reliable for predicition.

While the feature relevance analysis was able to show the overall importance of different 

modalities, now we want to investigate how the proposed model placed importance 

on different modalities and time instances for individual predictions. In recent times, 

explainable AI has received significant attention and it has been used to interpret the 

prediction/output of deep neural networks (DNNs) for a certain instance/data [2, 79, 102]. 

Among different explainable AI techniques, attribution-based methods are computationally 

less expensive, and model agnostic, which means if the model is differentiable from end-to-

end, they can easily be added to the architecture, which makes them very popular. Here 
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we apply a backpropagation based attribution method called Gradient*input [84] in which 

we compute the importance of the input features by taking the partial derivatives of output 

with respect to the input and multiplying this by the input itself. The gradient ∂Y
∂X  gives 

us an estimate of each input feature’s impact on the prediction class, and the intuition for 

multiplying this to the input can be better understood if we assume the model to be linear. 

While the derivative in a linear model gives us only the coefficient, multiplying this with the 

input gives us the total contribution of each input’s features.

Figure 9a and 9b illustrate two example 100-min long sensor time series with opioid 

administration event and shows which part of the time series for different modalities was 

important for the opioid detection model as it successfully detected the opioid events. For 

this experiment, we consider the output Y to be from the opioid detection model. Both 

examples had an opioid administration event within the 100-minute time window. For each 

example, we made three plots. The topmost plot shows the input X which is denoised 

time-series data from different modalities. The middle plot shows the output of X * ∂Y
∂X , and 

the bottom plot shows sum of the magnitude of all the features of X * ∂Y
∂X  along the channel 

direction. While the middle plot gives information about which modalities are important 

and when they are important. The bottom plot shows the aggregated importance across 

modalities and tells which time-periods were critical across all modalities.

In figure 9a, the information from EDA, HR, and IBI contributed the most for detecting 

opioid administration. On the other hand, the second example shown in figure 9b shows 

that the information within the HR and ACC modalities were more critical for the model. 

This highlights that the proposed temporal convolutional networks with attention mechanism 

could dynamically distribute its attention to the richer modalities containing more critical 

information for opioid use detection. By jointly looking at the topmost and middle subplots 

of both examples, we observe that any time a modality is showing substantial change or 

activities, our model is putting more importance on it. In particular, for figure 9a, near 

the administration time, changes in the EDA signal are the most dominant, and our model 

attended the highest to this signal. Similarly, in figure 9b, the model attended HR modality 

the highest at times when its changes were the most dominant. From both these examples, 

we can also confirm that our model does not attend to a particular modality that shows 

little or no changes. This shows that our channel-attention was able to only attend to the 

modalities whose changes were significant for prediction. It should also be noted that the 

TEMP signal is the least important in both the examples and this aligns with the previous 

observation we made in section 5.3 where we observed the TEMP signal to contain the 

least information for opioid detection/moment prediction among all the modalities. Looking 

at the bottom plot of both the examples, we can see that model considered information 

from only a few time-points to be necessary while paying less attention to the rest of the 

input. This shows that our temporal attention block was able to attend to only the key 

time-points in the input. While it is not possible to completely understand how predictions 

were made in a black-box style architecture like ours, this experiment shows and gives us a 

brief understanding of how the model had made a certain prediction.
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6 DISCUSSION

In this section, we discuss the implications of our work across different application 

scenarios, limitations, and future directions.

6.1 Implications for Clinical Monitoring of Opioid Use

The current gold standards for opioid detection (patient self-report and/or urine drug screen) 

are fraught with limitations, resulting in subpar data to make clinical decisions. The ability 

to objectively detect opioid use with an 0.8 F1-score in a passive and nonobtrusive way 

presents an unprecedented opportunity for healthcare providers. It would improve care for 

patients who use opioids therapeutically (to treat pain) and those who misuse them.

In the context of therapeutic opioid use, where opioids are typically prescribed to be taken 

as needed for pain, data from a detection system can allow a clinician to see how much 

opioid medication a patient is taking and how often. Such data can easily be transformed 

into visualizations for clinicians to identify escalating use patterns that put patients at 

risk for overdose and addiction, and alternative treatments can be initiated to prevent/

mitigate the development of opioid tolerance or dependance. In patients who use opioids 

chronically, concern for misuse and/or diversion (i.e., the practice of selling or giving away 

opioids) often arises. In this scenario, confirmation of opioid use as prescribed improves the 

therapeutic relationship and builds trust; conversely, confirmation that a patient is not taking 

opioids as prescribed can prompt further query and reduce the diversion of prescription 

opioids for unintended use.

In patients who have opioid use disorder and are in treatment, such a system can be useful to 

detect relapse (return to drug use) or can be further developed to identify not only opioid use 
but opioid toxicity (overdose) as a trigger for intervention. Once mature, this technology can 

also be used to monitor adherence to medications used to treat opioid use disorder, such as 

buprenorphine and methadone. These medications (which are opioids themselves) have the 

potential to save lives and reduce overdose deaths, but only if taken as prescribed.

6.2 Generalizability in Non-clinical Settings

As part of the inclusion criteria, all participants enrolled in this study were receiving opioids 

to treat pain and not take them for recreational use. Individuals who use opioids chronically 

(whether for medical or non-medical purposes) commonly experience pain in the form 

of two phenomena- opioid-induced hyperalgesia and opioid withdrawal. Opioid-induced 

hyperalgesia is characterized by a paradoxical (increased) sensitization to painful stimuli 

due to prolonged opioid exposure [54, 99]. Opioid withdrawal is a group of physiologic 

symptoms people experience when they develop opioid dependence and then stop using 

opioids. These symptoms range in severity and include nausea, vomiting, and severe bone 

or joint pain [82]. In fact, many people who abuse opioids describe a phenomenon, whereas, 

at some point, the drive to use opioids changes from a desire to achieve euphoria (“to get 

high”) to a desire to prevent the pain of withdrawal [71]. Given this cycle of pain and pain 

relief, our findings are expected to mimic real-world opioid use scenarios from a physiologic 

standpoint.
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6.3 Limitations and Future Directions

Our work has several limitations that impact generalizability and highlight the need for 

ongoing research on this topic. First, our analysis considered intravenous opioids taken 

for prescription purposes only. However, orally taken opioids are commonly used in this 

population as well. Because of differences in absorption and onset/duration of action, these 

types of ingestion events will need to be evaluated in a separate study. Second, so that 

we could ensure the accuracy of our ground truth, we used a sample of patients who 

were in the hospital and had opioid administrations documented in an EMR (in addition to 

documentation via self-report). This resulted in a more controlled environment than a natural 

setting (i.e., outpatient) and may somewhat limit the generalizability of our findings.

When selecting this population for this study, one of our primary considerations was 

collecting a reliable ground-truth dataset. In general, individuals using opioids for non-

medical purposes in the natural environment would not have been an optimal population to 

study in this respect due to lack of directly observed administrations, poor follow-up rates 

for individuals with this disease, and fear of reporting illicit use due to legal implications. 

We intend to expand our work into this population in the future but started with a well-

labeled data set as an initial step to demonstrate the feasibility of detection.

Finally, future research needs to hone the accuracy of opioid detection, potentially by 

combining additional sensor modalities, user characteristics, and situational factors into 

the model. We explored the impact of several user characteristics in this dataset (e.g., 

BMI, opioid use history, etc.), but to understand the contribution of these (and other 

important factors such as age, race, and ethnicity), larger datasets are needed. An additional 

important area for exploration will be the quantification of opioid effect via sensor-based 

data (i.e., differentiating an analgesic dose of an opioid from an overdose). This capability 

would transform this application into an immediate, life-saving tool. Finally, research is 

needed on how to translate wearable-based opioid detection into actionable insight for 

healthcare providers who are already overwhelmed with data. Data visualization strategies, 

EMR integration, and just-in-time intervention strategies are required to fully leverage the 

potential of this technology.

7 CONCLUSION

This work supports that we can detect the use of opioids and the time they are administered 

using physiological signals from a wearable sensor. While prior work examined the 

physiologic changes pre-and post-administration, this work goes a step further and identifies 

opioid use in the context of a larger set of data using a machine learning model. It also lays 

the groundwork for an unobtrusive, objective system to identify opioid use for clinicians 

that can enhance the safety of opioid use in the context of pain management by preventing 

overdose and misuse.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

Appendix

A STATISTICAL ANALYSIS RESULTS

Table 10 shows the results of paired t-test experiments performed on statistical functions 

extracted from physiological signals.

Table 10.

List of functions extracted from physiological signals that showed statistical significance in 

paired t-test analysis.

Modality Statistical function F value

Maximum 2.72

Heart-rate Mean 2.56

Standard deviation 2.4

Maximum −3.04

Skin-Temperature Standard deviation −3.9

Inter-quartile-range −3.15

Minimum 3.26

Electrodermal activity Skewness −4.9

Kurtosis −5.50

Minimum 3.4

Accelerometer Mean 3

Mean frequency −3.5

Standard deviation frequency −3.06

nn50 2.17

Interbeat interval pnn50 2.17

sdnn 2.18

VLF −2.15

LF −2.66

LF (nu) −2.5

• nn50: The number of successive NN interval that differ by more than 50ms in the time-window (pre/post).

• pnn50: The percentage of successive NN interval that differ by more than 50ms in the time-window. Obtained by dividing 
nn50 by total number of NN intervals.

• rmssd: root mean square of successive differences between heartbeats in the time-window.

• sdnn: Standard deviation of NN intervals obtained from the time-window
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• sdsd: Standard deviation of differences between consecutive NN intervals. All the NN intervals from the time-window are 
considered.

• VLF: Logarithmic of absolute power of very low frequency band (0–0.04 hz)

• LF: Logarithmic of absolute power of low frequency band (0.04–0.15 hz)

• HF: Logarithmic of absolute power of high frequency band (0.15–0.40 hz)

• LF/HF: LF power to HF power ratio

• LF(nu): Normalized absoluted power of low frequency band given by equation 
LF

IF + HF + V LF

• HF(nu): Normalized absoluted power of High frequency band given by equation 
HF

IF + HF + V LF

B WEIGHTED KAPPA AS LOSS FUNCTION:

Traditional loss functions for classifications such as cross-entropy loss, hinge loss, etc., 

weigh the disagreement between different classes equally. But in our case, where we predict 

the moment of administration in a time-window as a multi-class classification, we want to 

weigh the disagreements differently, based on how far they are from the ground truth. For 

example, if the administration occurred at the tth minute in the time-window, the classifier 

which predicted administration at t + 5th minute should be preferred over the one which 

predicted administration at t + 20th minute. While both classifiers mislabeled the input, the 

former classifier is closer to ground truth compared to the latter.

We use weighted kappa statistic as our loss function to address this issue, which incorporates 

ratio-scaled degrees of disagreement (or agreement) between classes. Weighted kappa 

statistic has recently been used as loss functions in deep learning and general problems 

where the classes can be ordered using some intrinsic information [22]. In our case, it is the 

time of administration in the time-window.

Weighted kappa statistic is represented using three matrices, a matrix of observed scores O, 

a matrix of expected scores E, and weight matrix W. It is defined using equation

κ = 1 −
∑i, jW i, jPOi, j
∑i, jW i, jPEi, j

(2)

K= Number of classes

i,j ∈ 1,2,...K

N= Total number of samples

Ni = Number of samples belonging to ith class

Pj (Xk)= predicted probability that sample Xk belongs to jth class.

W : Weight matrix to show the degree of disaggrement between classes where 

wi, j = i − j n

K − 1 n , n=1 representns linear penalization, n=2 quadractic, and so on. For our 

experiments n=2 worked the best.
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PO: Observation matrix where POi,j, is the observed proportion of samples classified as jth 

class while their ground truth is jth category.

PE: Expected matrix obtained by doing an outer product between normalized ground truth 

count matrix (G) and expected count matrix obtained by chance (C).PEi, j = GiCj, here 

Gi =
Ni
N , Cj = ∑k = 1

N Pj Xk

The weighted kappa statistic κ ∈ [−1,1], with κ =1 indicating a strong agreement between 

predictions and ground truth, −1 indicating a strong disagreement and 0 indicating a random 

predictions. Therefore, we use log(1 − κ) as our loss function for opioid moment prediction.

C CTA-TCN ARCHITECTURE SETUP

In this section, we explain the architectural details of our CTA-TCN model. This includes 

the choice of all the hyperparameters, input/output sizes, etc. As mentioned previously, the 

CTA-TCN models take physiological information of Heart rate, Accelerometer, EDA, Skin 

temperature, and Interbeat interval from a time-window of size 100 minutes as input. All 

the signals are downsampled to a frequency of 5 samples per minute. Therefore the input to 

our model is 500×5. We standardize the input along each modality before passing it to the 

CTA-TCN model. We used a dropout value of 0.2 and a leaky ReLU with a negative slope of 

0.1. We optimized the loss function using Adam optimizer with a weight decay of 0.001. We 

used a high learning rate (lr) of 0.01 for the initial 25 epochs and used lr=0.0001 later on. 

We used a batch size of 32 and trained our model for 300 epochs by using an early stopping 

approach. If we do not see improvements over validation loss for 20 continuous epochs, we 

stop training our model.

D CTA-TCN PERFORMANCE WITHOUT WEIGHTED KAPPA LOSS

In this section we show the peformance of opioid moment prediction by using different type 

of loss functions instead of weighted kappa.

Table 11.

CTA-TCN model architecture details

Architectural block Input size Output size Additional hyper-parameters

Depthwise 500×5 500×10
Stride (s)=1, Dilation factor (d)=1, Padding (p)=4, Kernel 
size(k)=5

Channel-Attention1 500×10 500×10 reduction factor(r)=2

Temporal-Attention1 500×10 500×10 -

TCN-Residual1 500×10 500×20 s=1, d=2, p=8, k=5

Channel-Attention2 500×20 500×20 r=2

Temporal-Attention2 500×20 500×20 -

TCN-Residual2 500×20 500×30 s=1, d=8, p=35, k=5

Channel-Attention3 500×30 500×30 r=2
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Architectural block Input size Output size Additional hyper-parameters

Temporal-Attention3 500×30 500×30 -

Flatten 500×30 15000×1 -

Opioid moment prediction 15000×1 100×1 -

Opioid binary detection 15000×1 1×1 -

Table 12.

CTA-TCN model performance with different choices of loss function for opioid moment 

prediction

Loss function NMAE (%) R 2

Weighted Kappa 8.6±2.4 0.85

RMSE 14.8±2.9 0.72

Multi-class cross entropy 18.2± 3.1 0.63
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Fig. 1. 
(a) Picture of E4 sensor. (b) Plot showing the distribution and timeline of opioid 

administration events per subject (hourly-basis). If a subject was enrolled for more than 

6 days (subjects 5 and 12), we used multiple rows. The Green horizontal bar indicates the 

start, end, and total duration of sensing data collected.
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Fig. 2. 
Channel-Temporal Attention TCN (CTA-TCN) model architeture used for jointly predicting 

opioid administration and opioid moment prediction.
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Fig. 3. 
(a) Causal dilated convolutions with dilation factors d=1,4 and filter size k=2. (b) Standard 

convolutions with filter size k=2. (c) Causal convolutions with filter size k=2. This figure 

also shows the input information (grey) used to predict a certain output time-step (orange). 

We can see how dilation increases the model’s receptive field.
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Fig. 4. 
(a) Depthwise block used in our model. Each channel (modality) is convolved independent 

of other channels. (b) TCN-Residual block consisting of dilated convolutions to ensure the 

input and output size stay the same while gradually increasing the receptive field of the 

model.
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Fig. 5. 
(a) Channel-attention (SE) block of our model. ⊙ represents element-wise matrix 

multiplication. (b) Temporal-attention block used in our model. ⊗ represents a matrix 

product and ⊕ requires matrix sum.
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Fig. 6. 
Barplot showing the performance of our model with different input time-window sizes. We 

can see time-window size of 100 is the optimal in terms of High Senstivity and Low NMAE 

score.
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Fig. 7. 
(a) Scatter plot of actual administration moment and predicted administration moment by 

the CTA-TCN model. Small Gaussian noise is added to the predicted times to enhance 

visualization. (b) Barplot showing the model’s MAE and sensitivity performance across 

different time ranges of ground truth administration moment.
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Fig. 8. 
Barplot showing the importance of different modalities. The F1-score decrease and NMAE 

increase due to the removal of a modality shows its importance for opioid detection/moment 

prediction.
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Fig. 9. 
Example plot showing the output from Gradient*input to demonstrate importance of 

modality and temporal information for prediction. The topmost plot shows the input X 

considered for this experiment, the middle plot shows the Gradient*input for this input, and 

in the bottom plot, we take the magnitude of all the features of Gradient*input along the 

temporal direction. For the sake of visualization, we used unstandardized data to plot X.
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Table 1.

Demographic factors and statistics of 36 subjects. The statistics is presented either in the form of mean and 

standard deviation (SD) values or count (n) and percentage values (%).

Factors Statistics

Gender, n (%) Male 21 (58)

Female 15 (42)

Other 0 (0)

Age, mean (SD) 50.6 (14.6)

BMI, n (%) Normal 12 (34)

Overweight 11 (32)

Obese 12 (34)

Opioid use classification, n (%) Naive 14 (39)

Occasional 7 (19)

Chronic 15 (42)
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Table 2.

List of functions applied on physiological signals for preliminary statistical analysis.

Feature Type Physiological Signal Statistical function

Accelerometry (ACC),
Electrodermal Activity (EDA),

Skin temperature (TEMP),
Heart rate (HR)

Minimum

Time-Domain Maximum

Mean

Median

Standard Deviation

Skewness

Kurtosis

Inter-quartile-range

MeanNN

Time-Domain Interbeat interval (IBI) SDNN

RMSSD

SDSD

NN50

pNN50

Dominant frequency

Frequency-Domain ACC Spectral Entropy

Spectral Energy

Minimum

Maximum

Mean

Standard Deviation

VLF

Frequency-Domain IBI LF

HF

’LF/HF ratio’

LF (nu)

HF (nu)’
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Table 3.

Performance of opioid administration detection model trained with different feature subsets and models 

from Leave-One-Subject-Out (LOSO) crossvalidation experiments. Performance was measured in terms of 

F1-score (weighted), specificity, sensitivity, and Area Under Curve (AUC). Channel-Temporal Attention TCN 

outperformed all the models.

Features Model F1-score specificity sensitivity AUC

Demographical+ Time of the day Baseline-Logistic 0.44 ± 0.26 0.50 ± 0.46 0.50 ± 0.45 0.48 ± 0.07

[53] 1 Decision-Tree 0.57 ±0.14 0.70 ± 0.12 0.41 ±0.21 0.51 ±0.17

Physiological Statistical (PSTAT) Logistic 0.64 ± 0.13 0.65± 0.14 0.48 ± 0.25 0.55± 0.17

Physiological Statistical (PSTAT) BiLSTM 0.70 ±0.1 0.71 ± 0.2 0.57 ±0.3 0.7 ±0.14

Input signal BiLSTM 0.66 ±0.1 0.63 ±0.15 0.63 ±0.20 0.62 ±0.09

Input signal TCN 0.73 ±0.11 0.72 ± 0.14 0.74 ±0.18 0.74 ±0.11

Input signal CTA-TCN 0.80 ±0.1 0.77 ± 0.14 0.80 ±0.17 0.77 ±0.1 

Input signal CNN-LSTM 0.72±0.11 0.65±0.17 0.82 ± 0.12 0.76±0.12

Input signal LSTM-FCN 0.70±0.08 0.71±0.16 0.69 ± 0.14 0.72±0.15
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Table 4.

Performance of opioid moment prediction model trained with different feature subsets and models from 

Leave-One-Subject-Out (LOSO) crossvalidation experiments. Performance was measured ín terms of Mean 

Absolute Error (MAE) and R2 coeffícíent. Channel-Temporal Attention TCN (CTA-TCN) outperformed all 

the models.

Features Model MAE (mins) NMAE (%) R2

Demographical + Time of the day Baseline-Logistic 18.5 ± 2.11 18.5 ± 2.11 0.37

[53] Decision-Tree 22.7 ± 3.2 22.7 ± 3.2 0.22

Physiological Statistical (PSTAT) Logistic 18.1±4.41 18.1±4.41 0.34

Physiological Statistical (PSTAT) BiLSTM 17.8 ±5.8 17.8 ±5.8 0.31

Input signal BiLSTM 23.1 ± 6.1 23.1 ± 6.1 −0.36

Input signal TCN 10.1 ± 2.8 10.1 ± 2.8 0.84

Input signal CTA-TCN 8.6 ±2.4 8.6 ±2.4 0.85 

Input signal CNN-LSTM 25.7±6 25.7±6 −0.54

Input signal FCN-LSTM 14.4±5.6 14.4±5.6 0.62
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Table 5.

The change in CTA-TCN performance after replacing/removing certrain blocks of the architecture while 

keeping rest of model as-is.

From To Change in F1-score Change in NMAE score

Depthwise convolutions Standard-convolutions −12.6% +4.1%

Causal-dilated convolutions Standard-convolutions −10.15% +2.2%

Channel-attention Removed −13% +3.1%

Temporal-attention Removed −5.5% +1.7%
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Table 6.

Performance of our CTA-TCN model based on gender

Gender NMAE F1-score Specificity Sensitivity

Female 8.63 0.75 0.70 0.77

Male 8.67 0.82 0.79 0.78
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Table 7.

Performance of our CTA-TCN model across dífferent BMI categories.

BMI category NMAE F1-score Specificity Sensitivity

Normal 9.31 0.79 0.76 0.78

Overweight 8.07 0.80 0.77 0.80

Obese 7.73 0.81 0.79 0.79
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Table 8.

Performance of our CTA-TCN model based on opioid use history.

Opioid history NMAE F1-score Specificity Sensitivity

Naive 7.97 0.82 0.79 0.79

Occasional 9.23 0.82 0.78 0.78

Chronic 9.02 0.76 0.72 0.78
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Table 9.

Performance of our CTA-TCN model across based on opioid type.

Opioid Type NMAE F1-score Specificity Sensitivity

Morphine 8.70 0.785 0.77 0.77

Hydromorphone 8.66 0.79 0.77 0.79
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