Skip to main content
. Author manuscript; available in PMC: 2022 Mar 14.
Published in final edited form as: Proc ACM Interact Mob Wearable Ubiquitous Technol. 2021 Sep 14;5(3):102. doi: 10.1145/3478107

Table 3.

Performance of opioid administration detection model trained with different feature subsets and models from Leave-One-Subject-Out (LOSO) crossvalidation experiments. Performance was measured in terms of F1-score (weighted), specificity, sensitivity, and Area Under Curve (AUC). Channel-Temporal Attention TCN outperformed all the models.

Features Model F1-score specificity sensitivity AUC
Demographical+ Time of the day Baseline-Logistic 0.44 ± 0.26 0.50 ± 0.46 0.50 ± 0.45 0.48 ± 0.07
[53] 1 Decision-Tree 0.57 ±0.14 0.70 ± 0.12 0.41 ±0.21 0.51 ±0.17
Physiological Statistical (PSTAT) Logistic 0.64 ± 0.13 0.65± 0.14 0.48 ± 0.25 0.55± 0.17
Physiological Statistical (PSTAT) BiLSTM 0.70 ±0.1 0.71 ± 0.2 0.57 ±0.3 0.7 ±0.14
Input signal BiLSTM 0.66 ±0.1 0.63 ±0.15 0.63 ±0.20 0.62 ±0.09
Input signal TCN 0.73 ±0.11 0.72 ± 0.14 0.74 ±0.18 0.74 ±0.11
Input signal CTA-TCN 0.80 ±0.1 0.77 ± 0.14 0.80 ±0.17 0.77 ±0.1
Input signal CNN-LSTM 0.72±0.11 0.65±0.17 0.82 ± 0.12 0.76±0.12
Input signal LSTM-FCN 0.70±0.08 0.71±0.16 0.69 ± 0.14 0.72±0.15