
RESEARCH PAPER

Cell-free DNA methylome profiling by MBD-seq with ultra-low input
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ABSTRACT
Methylation signatures in cell-free DNA (cfDNA) have shown great sensitivity and specificity in the 
characterization of tumour status and classification of tumour types, as well as the response to 
therapy and recurrence. Currently, most cfDNA methylation studies are based on bisulphite 
conversion, especially targeted bisulphite sequencing, while enrichment-based methods such as 
cfMeDIP-seq are beginning to show potential. Here, we report an enrichment-based ultra-low 
input cfDNA methylation profiling method using methyl-CpG binding proteins capture, termed 
cfMBD-seq. We optimized the conditions for cfMBD capture by adjusting the amount of 
MethylCap protein along with using methylated filler DNA. Our data show high correlation 
between low input cfMBD-seq and standard MBD-seq (>1000 ng input). When compared to 
cfMEDIP-seq, cfMBD-seq demonstrates higher sequencing data quality with more sequenced 
reads passed filter and less duplicate rate. cfMBD-seq also outperforms cfMeDIP-seq in the 
enrichment of CpG islands. This new bisulphite-free ultra-low input methylation profiling technol
ogy has great potential in non-invasive and cost-effective cancer detection and classification.
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Introduction

Liquid biopsies are the analyses of circulating 
components in blood or other body fluids. This 
technology is rapidly becoming prominent for 
cancer detection and management due to three 
overarching advantages. First, the collection of 
blood is minimally invasive. Second, the short 
half-life of circulating nucleic acids in the blood 
allows liquid biopsies to be a real-time and 
dynamic monitoring tool for tumour burden esti
mation. Third, since circulating nucleic acids ori
ginate from different tissues, liquid biopsies may 
capture a whole picture of a patient’s malignancy 
and solve the problem of tumour heterogeneity 
[1–3]. Currently, circulating cell-free DNA 
(cfDNA) has been widely applied to the detection 
of cancer-associated hotspot mutations. However, 
these genetic mutations can only be detected in 
a subset of patients at advanced stages. Also, given 
the limited number of recurrent mutations avail
able for discriminating tumour-derived cfDNA 
from normal cfDNA in early-stage cancer, the 
sensitivity of these mutation-based detections is 
relatively low [4,5]. By contrast, aberrant DNA 

methylation occurs early during tumorigenesis 
and is abundantly present in the entire cancer 
process [6]. Moreover, the DNA methylation pro
file is highly tissue-specific and consistent in 
a certain tissue types among different individuals 
[7]. Detection of tumour-specific cfDNA methyla
tion signatures is believed to be a more robust and 
sensitive approach for cancer detection [8,9].

DNA methylation is a common epigenetic mod
ification that occurs most frequently in cytosine 
residues in the sequence context of CpG [10]. 
Generally, the majority of all CpGs are methylated 
in mammalian genomes, except short unmethy
lated CpG-rich regions called CpG islands [11]. 
In comparison, the cancer genome is characterized 
by DNA methylation alteration with global hypo
methylation and CpG islands-specific hypermethy
lation, resulting in genomic instability and gene 
silencing, respectively [12]. CpG islands occur at 
the transcription start sites of approximately 60% 
human gene promoters. Hypermethylation of CpG 
island promoters can affect the cell cycle, DNA 
repair, the metabolism of carcinogens, cell-to-cell 
interaction, apoptosis, and angiogenesis, all of 
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which are involved in tumorigenesis and cancer 
development [13]. CpG island hypermethylation 
of different genes has been identified in different 
types of cancers [12]. Thus, methylation signatures 
from CpG islands have great potential in the 
detection and management of cancer [14].

Currently, the majority of cfDNA methylation 
profiling technologies are based on chemical treat
ment of the DNA with bisulphite [15]. Whole- 
genome bisulphite sequencing (WGBS) of cfDNA 
has been attempted, but this approach is not fea
sible for most patient-based studies because of its 
high cost and limited information recovery owing 
to the low genome-wide abundance of CpGs 
[16,17]. Targeted bisulphite sequencing of cfDNA 
has also been developed and high accuracy diag
nostic prediction models of hepatocellular carci
noma and colorectal cancer have been established 
from a large cohort of patients and normal con
trols [18,19]. However, the target methylation 
markers of these studies were selected from 
Infinium HumanMethylation450 BeadChip 
(HM450K) data. This methylation array is known 
to have selection bias and poor genome-wide cov
erage of all methylation sites (2%), which may miss 
important target sites [20]. Similarly, the applica
tions of quantitative and droplet digital methyla
tion-specific PCRs are limited to predefined 
genomic regions and restricted by their low 
throughput nature. Alternatively, enrichment- 
based methylation profiling methods have shown 
a similar sensitivity and specificity when compared 
to bisulphite conversion-based methods [21]. 
Methylated DNA can be captured by methyl- 
CpG binding proteins (MBD) or anti-5mC anti
bodies (MeDIP) that have a high affinity towards 
methylated CpGs. One critical limitation of such 
methods for liquid biopsies is that a relatively large 
amount of input DNA (ideally >1000 ng) is 
required while the yield of cfDNA is typically low 
(2 ~ 10 ng/ml plasma). To address this issue, 
a recent study optimized the MeDIP-seq protocol 
to allow methylome analysis of small quantities 
(1–10 ng) of cfDNA, termed cfMeDIP-seq [22–
22–24]. This technology has been applied to iden
tify differentially methylated regions (DMRs) in 
a wide variety of cancer patients and has shown 
very promising results [24]. Recent studies have 
also shown accurate classification of patients 

across all stages of renal cell carcinoma using 
plasma cfDNA [25,26].

Intrigued by the low-input improvements in 
cfMeDIP-seq, we optimized MBD-seq [27] to 
enable as little as 1 ng cfDNA input and termed 
this ultra-low input protocol cfMBD-seq. We opti
mized the MBD capture by adjusting the amount 
of MethylCap protein used in addition to the use 
of methylated filler DNA to maintain site-specific 
binding. Our data show a robust genome-wide 
inter-replicate Pearson correlation between 
cfMBD-seq and standard MBD-seq (>1000 ng 
input) even when the input DNA is as low as 1 
ng. Compared to cfMeDIP-seq, cfMBD-seq 
demonstrates higher sequencing data quality with 
more sequenced reads passed filter and less dupli
cate rate. Moreover, cfMBD-seq outperforms 
cfMeDIP-seq in terms of enrichment of CpG 
islands. Genome browser visualization shows that 
cfMBD-seq also recapitulates methylation signals 
from other methylation profiling technologies. 
This new bisulphite-free ultra-low input methyla
tion profiling technology has a promising future in 
non-invasive and cost-effective cancer detection 
and classification.

Result

Characterization of cfMBD-seq technology

The standard protocol for methylation enrichment 
requires a minimum of 1000 ng DNA as input. 
Since the yield of cfDNA is extremely low at 2–10 
ng per ml plasma, the current protocol is not 
suitable for cfDNA methylation analysis. To 
ensure amplification of methylation-enriched 
cfDNA, we added sequencing adapters to cfDNA 
by end repair/A-tailing and ligation before methy
lation enrichment and library amplification. This 
pre-enrichment adapter ligation preserves the 
methylation status of cfDNA because newly 
synthesized DNA are not methylated. To meet 
the high input requirement for methylation 
enrichment, we added exogenous Enterobacteria 
phage λ DNA (filler DNA) to the adapter-ligated 
cfDNA to increase the final DNA input to 100 ng. 
The filler DNA ensures a constant MethylCap 
protein/DNA ratio and helps maintain a similar 
methylation enrichment efficiency across different 
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samples with different cfDNA yields while mini
mizing non-specific binding and DNA loss. Since 
filler DNA is not amplified during library amplifi
cation and is not aligned with the human genome, 
it will not interfere with the analysis of sequencing 
data. Unlike genome-wide sequencing, cfMBD-seq 
captures only a fraction of the genome (methylated 
DNA) and thus allows adequate sequencing cover
age with fewer total reads. Therefore, it enables 
pooling of multiple uniquely indexed samples for 
a single run while retaining high sensitivity. This 
makes cfMBD-seq a cost-effective method for 
methylome-wide association analysis in a large- 
scale study (for details, see Methods and 
Figure S1a).

Reduced MethylCap protein improves 
methylation enrichment

Based on the use of filler DNA, we performed 
extensive benchmarking to identify an optimal 
methylation enrichment condition. One of the 
key adaptations for this purpose is to determine 
the appropriate amount of MethylCap protein to 
bind the input DNA mixture. If the amount of 
protein is too high, non-specific binding will 
occur due to extra binding sites on the protein. If 
too low, a portion of methylated fragments will 
not be captured. We thus tested across different 
ratios of MethylCap protein and magnetic beads to 
input DNA. When MethylCap protein/DNA ratio 
is kept the same as recommended by the manu
facturer, where 2 μg MethylCap protein is used for 
1 μg DNA (2:1 ratio), the captured CpG islands 
reached up to 58.65% of all mapped reads (Figure 
1(a)). Since methylation differences sometimes 
occur at a short distance away from the CpG 
islands [28], we also calculated the sum of cap
tured reads from CpG islands/shores/shelves 
regions. Under the recommended ratio, 94.56% 
of reads fell into the extended regions while these 
regions only account for 6.72% of the entire gen
ome (Figure 1(b), S1b). We then plotted the gen
ome-wide coverage (average number of fragments 
covering CpGs) against CpG density (number of 
CpGs per fragment). The curve shows that the 
coverage is relatively low in CpG-poor regions 
and ultra-dense regions, while peaks in regions 
have moderate CpG density. As the peak 

represents CpG-rich regions such as CpG islands, 
the higher coverage at the peak indicates the better 
methylation enrichment (Figure 1(c)). To better 
characterize these distributions, we termed the 
CpG density at the point of the highest coverage 
as ‘peak’. We also used the term ‘noise’ to illustrate 
the ratio of average non-CpG coverage to average 
CpG coverage. Consistently, the 2:1 ratio gives the 
highest peak and the lowest noise (Figure 1(d)). 
Unlike the MethylCap protein, the volume of mag
netic beads had less impact on the performance of 
methylation enrichment. Given that redundant 
beads may increase the risk of nonspecific binding, 
we determined the best enrichment conditions as 
0.2 μg protein and 3 μl beads with a total input 
DNA of 100 ng.

Methylated filler DNA is needed to increase 
enrichment efficiency and reduce background 
noise

In MBD-based enrichment, the typical yields of 
methylated DNA are 3–20% of the input DNA 
mass. Since cfDNA only accounts for a small frac
tion (<10%) in the mixture of cfDNA and filler 
DNA, the methylated fragments in cfDNA may 
not be able to fill all binding sites in the 
MethylCap protein. If the filler DNA is not methy
lated, the risk of unspecific binding is increased. 
To test the potential impact of filler DNA methy
lation status on enrichment efficiency, we treated 
the filler DNA with CpG methyltransferase and 
used the mixture of the treated and untreated filler 
DNA as input. When filler DNA is methylated, we 
observe preferential enrichment in both the CpG 
islands and CpG islands/shores/shelves regions. 
The coverages of enriched target regions decreased 
with reduced methylation level of filler DNA 
(Figure 2(a, b)). For example, CpG islands cover
age was 58.65%, 40.05%, and 20.53% when methy
lation level of filler DNA was 100%, 50%, and 0%, 
respectively. The extended regions show the same 
trend. The coverage by CpG density plot (Figure 2 
(c)) and peak/noise trend plot (Figure 2(d)) 
further confirmed the importance of methylated 
filler DNA. Since the methylated filler DNA can 
block the extra binding sites on the protein, it is 
not difficult to explain why the specificity of the 
reaction was enhanced.
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Library yield and spike-in control are used for 
pre-sequencing quality controls

We empirically find that the library yield for dif
ferent conditions is different and hypothesize that 
a non-specific capture will increase the final 
library yield. To test this, we examined the final 
library concentration and the quality of methyla
tion enrichment. We find that optimal condition 
tended to have a lower library concentration while 
suboptimal conditions generate more final library 
DNA under the same amplification cycles (Figure 
S2a, S2b). Besides library concentration, real-time 
PCR (qPCR) often provides a more accurate pre- 
sequencing quality control. Since cfDNA is highly 
fragmented, the use of large amplicon (such as 170 
bp of methylated control TSH2B) is not recom
mended. In fact, it is very hard to detect unmethy
lated control GAPDH in a successful enrichment 
due to low input. Therefore, instead of the TSH2B 
and GAPDH control pair, we used A. thaliana 

DNA as spike-in control to estimate the enrich
ment efficiency. We observed a significant enrich
ment of methylated DNAs when compared spike- 
in controls before and after capture reaction. 
Under the optimal condition, the specificity of 
capturing methylated control DNA was ≥99%, 
with the recovery rate of spiked-in methylated 
control should be ~50%-90% and the recovery of 
spiked-in unmethylated control should be <1% 
(Figure S2c, S2d).

1 ng input achieved high-quality results similar 
to 1000 ng input DNA

To compare the low-input cfMBD-seq with stan
dard MBD-seq (>1000 ng input), we sheared col
orectal cancer HCT116 DNA into small fragments 
with a peak of ~167 bp to mimic cfDNA and 
tested different DNA inputs for methylation 
enrichment (1, 10, 100, and 1000 ng). For 1 ng 

10
0%
Me

50
%
Me
+
50
%
Un
Me

10
0%
Un
Me

80

85

90

95

100

CpG islands/shores/shelves coverage

M
ap
pe
d
re
ad
s
(%
)

10
0%
Me

50
%
Me
+
50
%
Un
Me

10
0%
Un
Me

0

10

20

30

40

0.0

0.1

0.2

0.3

0.4

Peak and Noise

C
pG

de
ns
ity
at
pe
ak

N
ois e

CpG density at peak

Noise

10
0%
Me

50
%
Me
+
50
%
Un
Me

10
0%
Un
Me

0

20

40

60

80

CpG islands coverage

M
ap
pe
d
re
ad
s
(%
)

a b

c d

Figure 2. Methylated filler DNA is needed to compensate for low-input methylation enrichment.
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and 10 ng DNA, we used methylated filler DNA to 
increase the final DNA input to 100 ng. For 1000 
ng input, standard MBD-seq was used for library 
preparation. The results show robust genome-wide 
inter-replicate Pearson correlation (Figure 3(a)). 
More importantly, saturation analysis showed 
a high saturation correlation of 0.91 with only 1 
ng DNA as input (Figure S3), indicating that the 
methylome profile from 1 ng DNA is sufficient to 
generate a saturated and reproducible coverage 
profile of the reference genome. The saturation 
correlation of 3 ng cfDNA input is consistent 
with low genomic DNA (gDNA) input (Figure 
S3). Together, these results suggest cfMBD-seq 
can generate high-quality methylome profiles 

similar to standard MBD-seq while allowing ultra- 
low DNA input. As the 1000 ng input has a high 
genome-wide inter-replicate correlation, we 
further investigated if increased amount of filler 
DNA can enhance the performance of the reac
tion. We thus increased the DNA input by adding 
more filler DNA, with the quantity of cfDNA 
unchanged (in total 100, 500, and 1000 ng). 
However, we did not observe an improved methy
lation enrichment even when the amounts of 
MethylCap protein and beads were adjusted 
accordingly. The higher filler DNA reduced the 
performance of target region enrichment (Figure 
3(b, c)) and increased background noise (Figure 3 
(d)), suggesting that the increased amount of 
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methylated filler DNA overshadowed the trace 
amount of methylated cfDNA. Thus, we deter
mined 100 ng as an optimized DNA input, due 
to the robust recovery of high CpG density regions 
with low noise.

Additional wash and elution buffers did not 
significantly affect methylation enrichment

Given the confirmed MethylCap protein-to- 
DNA ratio and amount of methylated filler 
DNA, we evaluated other experimental condi
tions to see if methylation enrichment can be 
further improved. First, we examined the effect 
of a more stringent washing condition on non- 
specific binding. Compared to single wash, the 
double wash did not significantly increase cover
age of CpG islands. The additional wash also did 
not decrease the coverage of the open sea 
regions, where non-specific bindings are most 
likely to occur (Figure S4a). Likewise, there was 
no significant difference in noise between the 
standard wash and double wash (Figure S4b). 
Second, we examined the effect of the elution 
buffer salt concentration on methylation enrich
ment. We performed single fraction elution for 
three different elution buffers provided in the 
MethylCap kit. Theoretically, an increased salt 
concentration may preferentially enrich regions 
with a higher CpG density [29]. However, we 
did not observe a notable shift in the coverage 
by density plot nor coverage difference in each 
CpG annotations (Figure S5a-c). For example, 
the coverage signals at the CpG island MGAT3 
showed no difference among three elution buf
fers (Figure S5d). The finding that MethylCap 
protein (MeCP2) is not sensitive to the salt con
centration of elution buffer is consistent with 
previous findings [30,31]. We also tested multi
ple fractions elution, that is, sequential elution 
with low, medium, and high salt elution buffer 
from one capture reaction. The coverage by den
sity plots illustrated robust methylation enrich
ment in both the first fraction (low salt) and the 
pool of three fractions (Figure S5e). However, 
the second fraction (medium salt), the third 
fraction (high salt), and the pool of both frac
tions had very low coverage due to the intrinsic 
limitation of low input (Figure S5e). In 

summary, our results suggest an optimal condi
tion for low input MBD methylation enrichment 
includes 0.2 μg MethylCap protein and 3 μl 
beads for 100 ng DNA mixture (cfDNA + 
methylated filler DNA), standard wash, and sin
gle fraction elution.

Comparison of cfMBD-seq with other 
technologies

To evaluate the methylation capture accuracy of 
cfMBD-seq, we calculated its sensitivity (propor
tion of methylated CpG islands detected) and spe
cificity (proportion of non-methylated CpG 
islands detected). We used Infinium HM450K 
data (Gene Expression Omnibus (GEO): 
GSE55491, peripheral blood mononuclear cell 
(PBMC) from N = 5 healthy controls) as standard 
to determine whether a CpG island was methy
lated or non-methylated. It is known that the 
methylation level between neighbouring CpG 
sites is positively correlated. Therefore, to obtain 
a comparable measurement between cfMBD-seq 
and methylation array, we averaged beta-values 
of adjacent CpG sites within each CpG island 
and defined the methylation status of that CpG 
island. We then built a logistic regression model 
for all CpG islands in the microarray using nor
malized read counts from cfMBD-seq and methy
lation status from the microarray (AUC = 0.995, 
Figure 4(a)). At the cut-off of 13.25, derived from 
the intersection of the specificity and sensitivity 
curves translated to normalized read counts, the 
sensitivity of cfMBD-seq is 0.94 and the specificity 
is 0.98. Namely, at this threshold, cfMBD-seq 
detected 94% of the methylated CpG islands that 
were reliably detected by Infinium methylation 
array while correctly classifying 98% of the non- 
methylated sites.

To determine the performance of cfMBD-seq 
over existing methylation enrichment assays, we 
compared cfMBD-seq with a previously published 
low-input MBD-seq protocol (N = 4 from GEO: 
GSM2593327-GSM2593330) that did not use filler 
DNA [32]. This protocol uses MBD2, another 
MBD family member that is sensitive to the salt 
concentration of the elution buffer, for methyla
tion capture. In order to balance the methylome- 
wide coverage, this protocol uses a low-salt buffer 
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for elution, which results in a very low recovery 
rate (median 19.95% [(Q1) 19.25%-(Q3) 20.11%]) 
of the high CpG density regions (CpG islands) and 
a relatively high recovery rate (14.30% [14.24%- 
14.49%]) of the open sea regions (Figure 4(b, c)). 
Worst of all, the overall coverage is low, which 
makes it difficult to discriminate methylated frag
ments from non-specific fragments and reduces 
the statistical power of differentially methylated 
analyses (Figure 4(d)). We next compared cfMBD- 
seq with cfMeDIP-seq (N = 24 from published 
dataset) which showed adequate performance in 
capturing tumour-specific methylation in cfDNA 
[24]. According to the summary QC from the 
RaMWAS package, we observed a higher percen
tage of reads that passed the filter in cfMBD-seq 
(83.15% [82.93%-83.68%]) than in cfMeDIP-seq 
(74.90% [74.53%-75.45%]) and a lower duplicate 
rate (3.45% [3.40%-3.90%] vs. 12.00% [9.00%- 
19.23%]). Taken together, cfMBD-seq generated 
higher quality of sequencing data and provided 
more informative sequences than cfMeDIP-seq 

given the same amount of aligned reads (79.60% 
[79.15%-80.43%] vs. 62.65% [55.60%-66.65%]) 
(Table 1). From CpG annotation-based coverage 
report, cfMBD-seq showed a significantly higher 
recovery rate at CpG islands (60.13% [58.78%- 
60.81%] vs. 38.16% [37.21%-41.28%], Figure 4(b)) 
and a slightly higher recovery rate at combined 
CpG islands/shores/shelves (94.81% [94.61%- 
94.98%] vs. 90.90% [90.91%-91.55%], Figure 4 
(c)), suggesting that cfMBD-seq preferentially 
enriches CpG islands while cfMeDIP-seq has 
more signal on CpG shores and CpG shelves. 
This finding is consistent with the coverage by 
the CpG density plot, where cfMBD-seq peaks at 
higher CpG density than cfMeDIP-seq (29.98 [29.
54–30.33] vs. 22.88 [22.37–23.50], Figure 4(d)). 
The comparison between cfMBD-seq, low input 
MBD-seq, and cfMeDIP-seq is summarized in 
Table 1.

To better demonstrate the reproducibility of 
cfMBD-seq, we show a snapshot of a genomic 
region with consecutive CpG islands 
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Figure 4. Comparison of cfMBD-seq with low input MBD-seq and cfMeDIP-seq.
(a) Receiver operating characteristic curve and corresponding area under the ROC curve for methylation status of CpG islands from 
Infinium HM450K data predicted by cfMBD-seq normalized read counts. (b,c) Total normalized CpG annotations coverage and CpG 
islands/shores/shelves coverage of cfMBD-seq (N = 8), cfMeDIP-seq (N = 24), and low-input MBD-seq (N = 4). (Mean with SEM.) (d) 
Coverage by CpG density plot of cfMBD-seq, cfMeDIP-seq, and low-input MBD-seq. 
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(chr8:86,703,816–86,880,439). We observed peaks 
with high similarity among cfMBD-seq (1 to 100 
ng input DNA), standard MBD-seq (1000 ng), 
cfMeDIP-seq (1 to 10 ng), and standard MeDIP- 
seq (100 ng) (Figure S6). We then compare the 
signal peaks among different methylation profiling 
technologies. We show that cfMBD-seq also reca
pitulated methylation profiles from reduced repre
sentation bisulphite sequencing (RRBS, 1000 ng) 
and WGBS (2000 ng) (Figure 5). All these findings 
suggest that cfMBD-seq, allowing for ultra-low 
amounts of starting material, will extend the 
methylome-wide investigations that can be con
ducted with MBD-seq.

Discussion

In this study, we further optimized the MBD-seq 
protocol to enable methylation enrichment from 
ultra-low DNA input. Our data show that cfMBD- 
seq achieves high genome-wide inter-replicate 
Pearson correlation with the standard MBD-seq 
(>1000 ng input) even when the input DNA is as 
little as 1 ng. cfMBD-seq also performs better than 
a previously published low input MBD-seq proto
col without using filler DNA in methylation 
enrichment of CpG islands/shores/shelves regions 
[32]. Moreover, cfMBD-seq outperforms 
cfMeDIP-seq in the enrichment of fragments 
with higher CpG density such as CpG islands. 
This finding is consistent with a previous study 
comparing the standard MBD-seq with the stan
dard MEDIP-seq: MeDIP commonly enriches 
methylated regions with a low CpG density while 
MBD captures a broad range of CpG densities and 
identifies the greatest proportion of CpG islands 
[33]. It is known that CpG-rich fragments do not 
undergo complete denaturation into single 
stranded DNA, which is required for an efficient 
MeDIP capture and may explain why MeDIP-seq 
is less sensitive towards fragments with high CpG 
density. In contrast, MBD capture does not require 
DNA denaturation because the MethylCap protein 
is sensitive towards double stranded DNA. 
Therefore, temperature control of DNA–protein 
mixture during MBD capture is less strict than 
that of MeDIP capture. In addition, MBD enrich
ment in cfMBD-seq can be finished within 5 hours 
(including 3 hours of incubation) while cfMeDIP 
enrichment requires overnight incubation. Thus, 
the reaction to MBD enrichment is less time- 
consuming. cfMBD-seq showed a slightly higher 
noise than cfMeDIP-seq in the summary QC of 
RaMWAS package. Noise is defined as the ratio of 
the average coverage of fragments that do not 
contain a CpG tandem to the average coverage of 
fragments that contain a CpG tandem in this 
package. As cfMBD-seq preferentially enriches 
methylated fragments with high CpG density, the 
coverage of fragments with low CpG density is 
expected to be low. However, low CpG density 
fragments are widely distributed in the human 
genome (open sea, Figure S1b), resulting in 

Table 1. Feature comparison among cfMBD-seq, low input 
MBD-seq, and cfMeDIP-seq.

cfMBD-seq 
(N = 8)

Low input 
MBD-seq 
(N = 4)

cfMeDIP-seq 
(N = 24)

Experiment
Filler DNA Methylated 

DNA only
No filler Mixture of 

methylated and 
unmethylated 
DNA

DNA 
Denaturation

Not required Not required Required

Capture 
protein

MeCP2 MBD2 Anti-5mc

Capture time 5 hours 
(including 
3 hours 
incubation)

5 hours 
(including 
3 hours 
incubation)

23 hours 
(including 
17 hours 
overnight 
incubation)

Quality Control
Reads passed 
filter

83.15% 
[82.93%- 
83.68%]

85.40% 
[85.03%- 
85.70%]

74.90% 
[74.53%-75.45%]

Duplicate rate 3.45% 
[3.40%-3.90%]

2.65% 
[2.60%-2.78%]

12.00% 
[9.00%-19.23%]

Used reads 79.60% 
[79.15%- 
80.43%]

82.75% 
[82.25%- 
83.10%]

62.65% 
[55.60%-66.65%]

Methylation 
Enrichment

Reads on CpG 
islands

60.13% 
[58.78%- 
60.81%]

19.95% 
[19.25%- 
20.11%]

38.16% 
[37.21%-41.28%]

Reads on CpG 
islands/ 
shores/ 
shelves

94.81% 
[94.61%- 
94.98%]

85.70% 
[85.51%- 
85.76%]

90.90% 
[90.91%-91.55%]

CpG density 
at peak

29.98 
[29.54–30.33]

15.76 
[15.41–15.88]

22.88 
[22.37–23.50]

Noise 0.12 
[0.12–0.15]

0.13 
[0.10–0.16]

0.02 
[0.02–0.02]

Median along with [first quartile (Q1) – third quartile (Q3)] are shown. 
See supplementary table for detail including numbers of raw reads, 
duplicate reads, uniquely mapping reads, peak, and noise per sample. 
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a relatively low average CpG coverage of cfMBD- 
seq. The average non-CpG coverage of cfMBD-seq 
and cfMeDIP-seq is less than 1, indicating high 
specificity of both assays. Overall, cfMBD-seq is 
a method of choice for interrogating regulation of 
gene expression (methylation changes in CpG 
islands). On the other hand, cfMeDIP-seq would 
be preferable in investigating transcriptional regu
lation of non-coding RNAs (methylation changes 
in gene bodies and CpG shores).

There are a few caveats to ensure successful 
cfMBD-seq. First, the quality of the MethylCap 
protein is very important. We notice that the use 
of the MethylCap protein, which has experienced 
multiple freeze–thaw cycles negatively impacts the 
data quality. Because the MethylCap protein is 
used with 10-fold dilution before adding to the 
reaction, it can be used for more reactions than 
standard MBD capture. Therefore, we recommend 
splitting the MethylCap protein into multiple ali
quots to minimize the freeze–thaw cycles and 
using fresh diluted protein for each batch. 
Second, the success of the methylation enrichment 
reaction must be validated by qPCR to detect 
recovery of spiked-in control. The specificity of 

the reaction should be ≥99% before proceeding 
to the next step. Third, accurate library quantifica
tion is critical. Since methylated filler DNA is used 
in the methylation enrichment, qPCR-based 
library quantification is recommended because of 
its ability to quantify amounts of amplifiable DNA. 
Finally, adequate sequencing depth is crucial for 
high-quality data. Based on the saturation analysis, 
at least 30 million mapped reads are required to 
generate a saturated and reproducible coverage 
profile. The cost of cfMBD-seq from cfDNA 
extraction through the generation of sequencing 
data (single-end and pooling 12–15 indexed 
libraries) using the Illumina NextSeq 550 platform 
is less than $300 per sample. This cost-effective 
feature allows large-scale methylome-wide associa
tion analysis that is crucial for the establishment of 
a diagnostic model with high accuracy.

It is worth mentioning that the current study 
also has some limitations. First, it is well known 
that methylation status is different between indi
viduals. The differences observed among cfMBD- 
seq, low-input MBD-seq, and cfMeDIP-seq could 
be partly attributed to differences in the samples 
that were used. Thus, this approach requires 

cfMBD 1ng

cfMBD 10ng

cfMBD 100ng

MBD 1000ng

cfMeDIP 1ng

cfMeDIP 10ng

MeDIP 100ng

RRBS 1000ng

RRBS 1000ng

WGBS

RefSeq Genes

hg19 CpG islands

hg19 CpG annotations

Figure 5. cfMBD-seq recapitulates methylation profiles from other technologies.
Genome Browser snapshot of HCT116 cfMBD-seq signal across chr8:145,095,942–145,116,942, at different starting DNA inputs (1 to 
100 ng), compared with cfMeDIP-seq (Gene Expression Omnibus (GEO): GSE79838), RRBS (ENCODE: ENCSR000DFS), and WGBS (GEO: 
GSM1465024) data. For cfMBD-seq and cfMeDIP-seq, the y-axis indicates RPKMs normalized reads; for RRBS, red and green blocks 
represent hypermethylated and hypomethylated CpGs, respectively. For the WGBS track, peak heights indicate methylation levels. 
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further validation. Second, the main application 
of cfMBD-seq is to identify cancer biomarkers in 
cfDNA. However, current study was limited to 
technology development and optimization. 
Further study in patient’s samples is warranted 
to test the feasibility of cfMBD-seq in clinical 
settings, in particular to elaborate how well this 
technology can differentiate the tumour-derived 
cfDNA (ctDNA) methylation from high back
ground overall cfDNA.

Our study demonstrates the potential benefits of 
using cfMBD-seq to profile the methylome of 
cfDNA with ultra-low DNA input. Current results 
provide justification for further validation using 
case and control plasma samples from different 
malignancies to perform differential methylation 
analyses. Since enrichment-based methods are 
analysed by comparing the relative abundance of 
sequenced fragments, cfMBD-seq shares similar 
analysis workflows with cfMeDIP-seq for identifi
cation of DMRs and other downstream machine 
learning analyses. Another potential for cfMBD- 
seq is its use in other methylome-wide investiga
tions that are limited by DNA yield. We confi
dently believe that cfMBD-seq, being non-invasive 
and cost-effective, has great potential in identify
ing biomarkers for cancer detection and 
classification.

Methods

cfDNA and HCT116 DNA extraction

Pooled human plasma (IPLAWBK3E50ML) was 
purchased from Innovative Research (Novi, MI, 
USA). Whole blood (K3 EDTA tube) was collected 
from donors in an FDA-approved collection cen
tre. Plasma was frozen immediately after isolation. 
After thawing, additional centrifugation of 
3000 rpm for 10 min was performed to ensure 
complete depletion of cell debris. cfDNA was 
extracted using QIAamp Circulating Nucleic Acid 
Kit (Qiagen; Hilden, Germany) and quantified 
using Qubit Fluorometer with iQuant™ NGS-HS 
dsDNA Assay Kit (Genecopoeia; Rockville, MD, 
USA). The average cfDNA yield from 1 ml plasma 
was ~7.5 ng. The colorectal carcinoma cell line 
HCT116 was purchased from ATCC (CCL-247™) 

and cultured according to the recommended cell 
culture method. HCT116 DNA was extracted 
using QIAamp DNA Blood Mini Kit (Qiagen) 
and quantified using Nanodrop (NanoDrop 
Technologies; Wilmington, Delaware, USA). 
gDNA was sheared to 160 bp using Covaris 
ME220 Focused Ultrasonicator to mimic the frag
ment size of cfDNA. HCT116 was chosen because 
of the availability of public DNA methylation data.

Library preparation and filler DNA generation

DNA was subjected to end repair/A-tailing and adap
ter ligation using KAPA Hyper Prep Kit (Kapa 
Biosystems; Wilmington, MA, USA) with the sequen
cing adapter from NEBNext Multiplex Oligos for 
Illumina (New England BioLabs; Ipswitch, MA, 
USA). The number of adapters used in the reaction 
was adjusted according to an adapter:insert molar 
ratio of 200:1. Adapter ligated DNA was purified 
with SPRI Beads (Beckman Coulter; Pasadena, CA, 
USA) and digested with USER enzyme (New England 
BioLabs) followed by purification with DNA Clean & 
Concentrator-5 Kit (ZYMO Research; Irvine, CA, 
USA). Meanwhile, filler DNA was generated via poly
merase chain reaction (PCR) with GoTaq Master Mix 
(Promega; Madison, WI, USA), using Enterobacteria 
phage λ DNA as template. Amplicons were treated 
with CpG methyltransferase (M.SssI; Thermo Fisher 
Scientific; Waltham, MA, USA) for CpG methylation. 
The CpG methylation-sensitive restriction enzyme 
HpyCH4IV (New England BioLabs) digestion fol
lowed by agarose gel electrophoresis was used to 
ensure complete methylation of filler DNA. More 
detailed protocols regarding library preparation and 
filler DNA generation (including primer sequences) 
were reported previously [23].

cfMBD-seq

Adapter ligated DNA was first combined with 
methylated filler DNA to ensure that the total 
amount of input for methylation enrichment was 
100 ng, which was further mixed with 0.2 ng of 
methylated and 0.2 ng of unmethylated A. thaliana 
DNA from DNA Methylation control package 
(Diagenode, Seraing, Belgium). The DNA mixture 
was then subjected to methylation enrichment 
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using MethylCap Kit (Diagenode) following the 
manufacturer's protocol with some modifications. 
The total volume brought up by Buffer B was 
reduced to 140 μl to minimize DNA waste. The 
amounts of MethylCap protein and magnetic beads 
were decreased proportionally according to the 
recommended DNA to protein and beads ratio 
(0.2 μg protein and 3 μl beads per 100 ng DNA 
input). Single fraction elution with High Elution 
Buffer was applied. The eluted fraction was puri
fied by DNA Clean & Concentrator-5 Kit. The 
purified DNA was divided into two parts, one for 
qPCR (PowerUp™ SYBR™ Green Master Mix, 
Thermo Fisher) quality control and another for 
library amplification. The recovery of spiked-in 
methylated and unmethylated control can be cal
culated based on the cycle threshold (Ct) value of 
the enriched sample and input control. The speci
ficity can be calculated by (1 – [recovery of 
unmethylated control DNA over recovery of 
methylated control DNA]) × 100. The methyla
tion-enriched DNA libraries were amplified as fol
lows: 95°C for 3 min, followed by 12 cycles of 98°C 
for 20 s, 65°C for 15 s, and 72°C for 30 s and a final 
extension of 72°C for 1 min. During amplification, 
a unique index from the primer was added to the 
sequencing adapter for each sample. The amplified 
libraries were purified using SPRI Beads followed 
by a dual size selection (0.6x followed by 1.2x) to 
remove any adapter dimers. All final libraries were 
first quantified using Qubit Assay and KAPA 
Library Quantification Kits (Kapa Biosystems) 
and then submitted to Moffitt Cancer Center 
Molecular Genomics Core for D1000 ScreenTape 
Assay (Agilent; Santa Clara, CA, USA). Libraries 
were sequenced on the NextSeq 550 platform 
(Illumina; San Diego, CA, USA), high-output 75 
bp single-end read, multiplexed as ~12-15 samples 
per run.

Data processing

After sequencing, pre-alignment quality control 
was performed for the raw sequenced reads using 
fastp (Version 0.20.1) [34] with the default set
tings. The sequenced reads were then aligned to 
the human genome (hg19) using Bowtie-2 
(Version 2.4.2) [35] with the default settings. 
After the alignment, the generated sam files were 

converted to bam files, followed by sorting and 
indexing duplicate read removal, and read count 
extractions on chr1 – chr22 using SAMtools 
(Version 1.11) [36] ‘view’, ‘sort’, ‘index’, and 
‘markdup’ command lines. R (Version 4.0.3 or 
greater) package RaMWAS (Version 1.12.0) [37] 
was used for quality control of the overall mapping 
quality and calculation of average non-CpG/CpG 
coverage and coverage by CpG density. To ensure 
the comparability between different conditions, 
bam files of the same experimental condition 
were merged and 30 million sequenced reads 
were randomly extracted (https://github.com/ 
ACSoupir/MiscProcessingScripts) from each con
dition for plotting of coverage by CpG density 
plot. R package MEDIPS (Version 1.40.0) [38] 
was then applied for saturation analysis and calcu
lation of correlations of genome-wide short read 
coverage profiles between samples based on counts 
per 1000 bp non-overlapping windows. 
Normalized data were exported as wiggle files for 
visualization on the Integrative Genomics Viewer.

CpG annotations reference was obtained from 
R package annotatr (Version 1.16.0). BEDtools 
(Version 2.28.0) [39] ‘coverage’ command line 
was used to call the coverage according to the 
CpG annotations reference. TPM (Transcripts 
Per Kilobase Million) normalization was per
formed before comparing the CpG annotations 
coverage between different samples. Data from 
low-input MBD-seq and cfMeDIP-seq were 
reprocessed from raw data (fastq level) using 
the same workflow. R package minfi (Version 
1.36.0) was used to call and annotate (hg19) 
methylation signal from Infinium HM450K 
data. The average beta-values of each CpG site 
among different samples were first calculated. 
Methylation status of CpG islands was then 
determined by the average beta-values of adja
cent CpG sites within the same CpG island (<0.5 
as unmethylated and ≥0.5 as methylated). 
Logistic regression model was built using nor
malized read counts from cfMBD-seq and 
methylation status (methylated as 1 and 
unmethylated as 0) from microarray. R package 
ROCR (Version 1.0–11) was used to generate the 
receiver operating characteristic curve. All data 
and R images were imported into GraphPad 
Prism 8 for preparation of figures. A detailed 
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bioinformatics analysis pipeline was coded in git 
bash and is available in GitHub (see availability 
of materials and data).

Availability of materials and data

The sequencing data is available from GEO under the acces
sion number GSE161331.

The data analysis pipeline is available at https://github. 
com/LiangWangLab/cfMBD-seq.
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