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ABSTRACT
In eukaryotic cells, the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) 
results in ER stress that induces a cascade of reactions called the unfolded protein response (UPR). In 
Arabidopsis, the most conserved UPR sensor, Inositol-requiring enzyme 1 (IRE1), responds to both abiotic- 
and biotic-induced ER stress. Guanine nucleotide-binding proteins (G proteins) constitute another uni-
versal and conserved family of signal transducers that have been extensively investigated due to their 
ubiquitous presence and diverse nature of action. Arabidopsis GTP-binding protein β1 (AGB1) is the only 
G-protein β-subunit encoded by the Arabidopsis genome that is involved in numerous signaling path-
ways. Mounting evidence suggests the existence of a crosstalk between IRE1 and G protein signaling 
during ER stress. AGB1 has previously been shown to control a distinct UPR pathway independently of 
IRE1 when treated with an ER stress inducer tunicamycin. Our results obtained with combinatorial 
knockout mutants support the hypothesis that both IRE1 and AGB1 synergistically contribute to ER stress 
responses chemically induced by dithiothreitol (DTT) as well as to the immune responses against 
a phytopathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000. Our study highlights 
the crosstalk between the plant UPR transducers under abiotic and biotic stress.
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Introduction

Eukaryotic cells rely on their plasma membrane-localized 
receptor proteins to sense the extracellular stimuli and send 
the signals to intracellular components.1 Among the receptor 
proteins, guanine nucleotide-binding proteins (G proteins) are 
universal signal transduction elements in all eukaryotes that 
have been extensively investigated due to their ubiquitous 
presence and diverse nature of action.2 The G proteins form 
typically plasma membrane-bound heterotrimeric complexes3 

that function as hubs regulating responses to diverse develop-
mental and environmental cues.2,4–7 The canonical G-protein 
complexes are composed of Gα, Gβ and Gγ subunits8 and 
mediate the action of seven transmembrane cell surface recep-
tors known as G protein-coupled receptors.2,8 Typically, the 
plant genomes encode one Gα, one Gβ, and three to five Gγ 
subunits.2 For example, rice has one Gα, one Gβ and five Gγ 
subunits9 while Arabidopsis contains one Gα (AtGPA1),10 

three extra-large Gα’s (XLG1/XLG2/XLG3),11,12 one Gβ 
(AGB1)13 and three Gγ (AGG1, AGG2, and AGG3) 
subunits.14–16

It is well established that the plant G proteins play impor-
tant roles in a multitude of developmental responses to 
stimuli such as light, nutrients, sugar, and regulation of 
growth and stomatal density, among others.2,8,17–22 

Moreover, G proteins are implicated in phytohormone sig-
naling, most notably auxin,18 gibberellic acid,23,24 brassinos-
teroids (BR),23 abscisic acid (ABA),25 and jasmonic acid.8 

Moreover, G proteins are also extensively involved in plant 

defense responses. Evidence suggests that AGB1 (Gβ), 
AGG1/AGG2 (Gγ), and XLG2/XLG3 (extra-large Gα) parti-
cipate in Arabidopsis innate immune responses for defenses 
against a broad spectrum of pathogens.8,26–29 Additional 
reports indicate that the G proteins also constitute an inte-
gral part of resistance mechanisms against necrotrophic 
fungal infections.8,26

G proteins are primarily associated with the plasma mem-
brane; however, a fraction of the Arabidopsis Gβ subunit, 
GTP-binding protein β1 (AGB1), was detected in associa-
tion with the ER membrane,30 providing an intriguing con-
nection between G proteins and the ER signaling. The ER, as 
the largest membrane system of a eukaryotic cell, plays 
a central and integrative role in the coordination of cellular 
transport and signaling.31 The ER coordinates the essential 
cellular processes such as membrane protein synthesis, fold-
ing, post-translational modifications, and peptide delivery to 
target locations, ensuring the maintenance of 
proteostasis.31,32 Biotic and abiotic stress can disrupt these 
processes, leading to the accumulation of malfolded or unas-
sembled proteins in the ER, forming toxic protein aggregates 
that cause subsequent ER stress.33 The onset of ER stress 
triggers several responses to restore cellular homeostasis. 
Among those, unfolded protein response (UPR) is 
a universal form of the ER stress signaling executed by 
Inositol-Requiring Enzyme 1 (IRE1) and aimed at correcting 
the aberrant ER conditions and protecting cellular 
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viability.34–37 IRE1 is an evolutionarily conserved trans-
membrane sensor serine/threonine kinase equipped with 
an N-terminal ER-resident stress-sensing domain and 
a C-terminal endoribonuclease domain.37,38 Arabidopsis 
contains three IRE1 homologs: IRE1a, IRE1b, and 
IRE1c.36,39 IRE1a and IRE1b are the full-length homologs 
extensively involved in ER stress signaling in response to 
various biotic and abiotic stimuli36,39–42 and share consider-
able amino acid sequence similarity especially within their 
cytoplasmic tails.43 Whereas, IRE1c is a truncated variant,39 

which lacks the ER-resident N-terminal domain and plays 
a crucial role in gametogenesis in the absence of IRE1b.39 

Upon biotic or abiotic stress, transcription and translation 
rapidly intensify, which places a burden on the ER protein 
folding machinery. The luminal domain of IRE1 senses the 
accumulation of misfolded peptides, leading to IRE1 homo- 
oligomerization, trans-autophosphorylation, and culmi-
nates in the activation of unconventional splicing of its 
cognate mRNA substrate bZIP60 to mediate downstream 
signal transduction.42,44

Mounting evidence suggests the existence of a crosstalk 
between IRE1 and G protein signaling during ER stress. 
AGB1 has been reported to be involved in UPR through 
a pathway parallel to IRE1,30,40 as evidenced by the heigh-
tened sensitivity to chemical ER stress, aggravated short- 
root phenotypes, and decreased expression of a suite of ER 
chaperones in the triple mutants ire1a/ire1b/agb1 when 
compared to ire1a/ire1b or agb1 alone.40 Another report 
further corroborated the AGB1’s involvement in the sensi-
tivity to tunicamycin (Tm; a potent inhibitor of N-linked 
glycosylation) and ER chaperone expression.30 In addition 
to its role in the ER stress responses, AGB1 is also implicated 
in diverse developmental and physiological processes, and 
the agb1 mutants display several related phenotypes, such as 
reduced hypocotyl lengths, shorter siliques,2,18,45–47 altered 
leaf and flower shape,18,47 enhanced cell division in roots 
and excess lateral roots,18 higher stomatal density21 and 
altered metal ion profiles.48 Furthermore, AGB1 was shown 
to physically interact with a group I bZIP protein (VIP1),49 

which is involved in the regulation of extracellular osmolar-
ity and turgor pressure. The loss of AGB1 function addition-
ally caused altered abiotic stress responses, for example, 
increased drought tolerance,22 hypersensitivity to salt 
stress,50 enhanced programmed cell death,,51 altered 
responses to hormones, i.e., BR, ABA, and auxin, as well as 
altered sugar sensing.23,45,52–56

Several studies reported the involvement of AGB1 in plant 
immunity,57 demonstrating reduced reactive oxygen species 
accumulation upon microbial infection,56,58,59 hypersensitivity 
to fungal infections by Alternaria brassicicola,3,8 Botrytis 
cinerea,26 Plectosphaerella cucumerina,26,60 and Fusarium 
oxysporum.8,26,28 An earlier report also indicated that AGB1 
is involved in defenses against hemibiotrophic bacteria 
Pseudomonas syringae59 in a manner that is independent of 
salicylic acid (SA) signaling.

Here, we set out to provide more insights into the rela-
tionship of AGB1 and IRE1 in ER stress signaling and the 
mechanisms of resistance to P. syringae. We employed 
a genetic approach using single and combinatorial loss-of- 

function mutants of AGB1, IRE1a, and IRE1b to assess the 
differential sensitivity of these genotypes to two established 
ER stress-inducing chemicals, tunicamycin (Tm) and dithio-
threitol (DTT), by measuring plant fresh weight and root 
elongation rates following chemical exposure. We also quan-
tified the levels of susceptibility to infection with 
a phytopathogenic bacterium P. syringae pv. tomato strain 
DC3000. Our results showed that Arabidopsis AGB1 is 
required for effective ER stress and immune responses, and 
provided evidence suggesting that AGB1 works in parallel 
and synergistically with the IRE1 pathway to regulate ER 
homeostasis.

Materials and methods

Plant materials

Ecotype Columbia (Col-0) was used as the control genotype in 
this study. T-DNA and EMS mutant lines agb1-2 (CS6535), 
ire1a-2 (SALK_018112), ire1b-4 (SAIL_238_F07)42 and npr1-1 
(CS3726)61 were obtained from Arabidopsis Biological 
Resource Center (ABRC). The phenotypes of rosette leaves in 
all genotypes are illustrated in Figure 1. Phenotypes of seed-
lings treated with tm and DTT are displayed in Figure 2a, 3a 
and 4a. All pictures were taken by NIKON D5600 camera and 
images were prepared using Adobe Photoshop (Version: 
22.4.2).

Figure 1. Representative phenotypes of Arabidopsis plants used in the study. 
Plants were photographed by NIKON D5600 camera. Images were prepared using 
Adobe Photoshop (Version: 21.2.4).
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ER stress response assays

Arabidopsis seeds were sterilized with a wash buffer (70% 
Ethanol and 0.05% Triton) and stratified at 4°C for 3 days on 
half-strength solid Murashige Skoog (MS) media plates 
(Phytotechnology Labs, Overland Park, KS, USA). The MS 
plates were then transferred to a growth chamber under 
a 12 h light/12 h dark photoperiod; 40% relative humidity; 
21°C and 100 μmol/m2/s light intensity. The plants were 
grown vertically for 7 days, followed by the appropriate che-
mical ER stress treatment.

For tunicamycin (Tm) sensitivity assays, 7 days old 
Arabidopsis seedlings were transferred to 12-well plates con-
taining liquid half-strength MS media supplemented with Tm 
concentration of 0.3 μg/mL (Tocris Bioscience) or mock 
(DMSO). After 5 days of Tm exposure, the total fresh weight 
of seedlings was recorded. 15 seedlings were used per biological 
replication and at least three biological replications were 
performed.

For dithiothreitol (DTT) sensitivity assays, 7 days old 
Arabidopsis seedlings were transferred to 12-well plates con-
taining liquid half-strength MS media supplemented with 
0.75 mM of DTT (ACROS Organics) or mock (ddH2O). 
After 7 days of DTT exposure, the total fresh weight of seed-
lings was recorded. An average of 15 seedlings was used per 
biological replication and at least four biological replications 
were performed. For root length assays, 7 days old seedlings 
were transferred to half-strength solid MS media plates with or 
without 0.75 mM of DTT. After 7 days, the root length was 
measured using a ruler. An average of 15 seedlings was used 
per biological replication and at least four biological replica-
tions were performed.

Bacterial strain and growth quantification

For bacterial quantification assays, seedlings were sown in 
individual pots on sterilized soil (SunGro Horticulture, 
Super-Fine Germinating Mix) and transferred to a cold 
room facility for stratification at 4°C for 7–10 days. After 
stratification, the pots were transferred to a controlled 
growth room facility with 12 h light/12 h dark photoperiod; 
40% relative humidity; 21°C and 100 μmol/m2/s light inten-
sity. 10–15 days old seedlings were transplanted into 72- 
well flats for growth. 3–4 weeks old rosette leaves were 
infiltrated with Pseudomonas syringae pv. tomato DC3000 
(Pst DC3000) (OD600 = 0.0002) using needleless syringes 
and bacterial growth was quantified after 72 hours.62 3 
leaves per plant, 6 plants per biological replication, and at 
least three biological replications were performed.

Statistical analyses

Statistical differences were calculated by two-tailed Student’s 
t-test or one-way ANOVA in Microsoft Excel. RStudio 
(ggplot2) was used to generate the graph in Figure 3 while 
MS Excel was used to make graphs in Figure 2b, 3b, and 4b 
Statistically significant differences are indicated with *p < .05, 
**p < .01, ***p < .001, or ****p < .0001.

Results

Responses to ER stress

A decade ago, the Arabidopsis AGB1 was proposed to operate 
in an ER stress-responsive pathway that is independent of and 
parallel to IRE1a/IRE1b.40 While previous studies reported 
somewhat conflicting findings on the specific role of AGB1 in 
ER stress, ranging from enhanced sensitivity to enhanced 
tolerance,30,40,63 here we set out to better understand the pos-
sible combinatory effects of AGB1 with IRE1 homologs when 
exposed to different chemical ER stressors. Toward this, we 
crossed the agb1-2 mutants with the ire1a-2/ire1b-4 double 
mutant plants (further referred to as ire1a-2/1b-4) to obtain 
the triple mutant ire1a-2/ire1b-4/agb1-2 (further referred to as 
ire1a-2/1b-4/agb1-2). All of these mutants showed distinguish-
able morphology from wild-type Col-0 under our growth con-
ditions (Figure 1) and the previously described rounder rosette 
leaves phenotype of the agb1-2 plants was also detected under 
our growth conditions in the ire1a-2/1b-4/agb1-2 plants.22 

Next, we subjected MS-media grown Col-0, agb1-2, ire1a-2/ 
1b-4 and ire1a-2/1b-4/agb1-2 seedlings to treatments with 
0.3 µg/mL Tm, which we previously determined to be the 
ideal concentration for the detection of mild defects in the 
UPR tolerance,64 and we quantified their total weight after 
5 days of exposure. We found that all of the tested genotypes 
were sensitive to Tm, as indicated by the statistically significant 
decrease in the relative weight (P-value < 0.00001) when com-
pared to their respective mock-treated control groups 
(Table 1).

We observed that the Tm exposure reduced the weight of 
the agb1-2 plants more dramatically than that of Col-0 
(Figure 2 a,b), which is in agreement with the previous findings 
on this specific agb1 mutant allele.40,63 We detected an 
enhanced Tm sensitivity in the ire1a-2/1b-4 seedlings, which 
was expected given the pivotal roles of IRE1a and IRE1b in 
plant ER stress responses, and is also consistent with the earlier 
reports.64,65 The triple mutant ire1a-2/1b-4/agb1-2 displayed 
a statistically significant reduction in the fresh weight; however, 
its Tm sensitivity was not further enhanced compared to the 
double mutant ire1a-2/1b-4 seedlings (Figure 2 a,b).

To substantiate our findings with Tm and further test the 
genetic relationship between AGB1 and IRE1a/IRE1b path-
ways in Arabidopsis chemically-induced ER stress, we 
exposed the mutants to another ER stress-eliciting chemical, 
dithiothreitol (DTT), and measured their total fresh weight 
7 days following the treatment. We found that all of the 
tested genotypes were sensitive to 0.75 mM DTT and dis-
played a statistically significant reduction in their fresh 
weights as compared to their respective mock-treated 

Table 1. P-values from independent sample (two-tailed) t-test for fresh weight 
data resulting from the Tm treatment experiments.

Comparison of Tm-treated genotypes: p-value

Col-0 to ire1a-2/1b-4 < 0.00001
Col-0 to agb1-2 < 0.00001
Col-0 to ire1a-2/1b-4/ agb1-2 0.009688
ire1a-2/1b-4 to ire1a-2/1b-4/ agb1-2 0.037884
agb1-2 to ire1a-2/1b-4/ agb1-2 0.14394
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control groups (Table 2). In response to treatment, the 
average fresh weight of the agb1-2 plants was not signifi-
cantly different when compared to that of Col-0 (Figure 3 a, 
b). Whereas, ire1a-2/1b-4 double mutants showed 

a significantly increased DTT sensitivity, weighing ~30% 
less than the Col-0 control plants. The DTT-treated triple 
mutants ire1a-2/1b-4/agb1-2 displayed a further reduction 
in their fresh weight compared to all other tested genotypes, 
indicating a synergistic effect of the IRE1a/IRE1b and AGB1 
pathways on the Arabidopsis sensitivity to DTT-triggered 
chemical ER stress (Figure 3 a,b).

Given that we were able to better observe the genetic inter-
action between IRE1a/IRE1b and AGB1 using the DTT- 
induced ER stress treatment, we further investigated the effect 
of this compound on the inhibition of root elongation. We 
grew the above-described genotypes vertically on plates sup-
plemented with 0.75 mM DTT and we observed that all of the 

Figure 2. Analysis of chemical ER stress sensitivity to 0.3 μg/ml tunicamycin (Tm) on fresh weight of indicated genotypes. Seedlings were grown vertically on solid MS 
media for 7 days, then transferred to fresh liquid MS media without (NT = no treatment) or with Tm. Five days following Tm exposure. the seedlings were photographed 
(a) and total fresh weight of at least 30 plants per biological replication was recorded (b). At least three biological replications were performed. Statistical analyses were 
performed by two-tailed Student’s t-test or one-way ANOVA in Excel. Error bars show mean ± SD (n ≥ 30). Significant differences are indicated by asterisks (*** p < .001, 
** p < .01).  Short solid bars connecting bars represent the comparison of fresh weight between untreated and treated samples for each genotype, while long solid lines 
represent the comparison of fresh weights of Tm-treated plants between Col-0 and an indicated mutant.

Figure 3. Analysis of chemical ER stress sensitivity to 0.75 mM DTT on fresh weight of indicated genotypes. Seedlings were grown vertically on solid MS media for 7 days, 
then transferred to fresh liquid MS media without (NT = no treatment) or with DTT. Seven days following DTT exposure, the seedlings were photographed (a) and total 
fresh weight of at least 30 plants per biological replication was recorded (b). At least three biological replications were performed. Statistical analyses were performed by 
two-tailed Student’s t-test or one-way ANOVA in Excel. Error bars show mean ± SD (n ≥ 30). Significant differences are indicated by asterisks (*** p < .001, ** p < .01), 
while “ns” indicates no statistically significant differences. Short solid bars connecting bars represent the comparison of fresh weight between untreated and treated 
samples for each genotype, while long solid lines represent the comparison of fresh weights of DTT-treated plants between Col-0 and an indicated mutant.

Table 2. P-values from independent sample (two-tailed) t-test for fresh weight 
data resulting from the DTT treatment experiments.

Comparison of DTT-treated genotypes: p-value

Col-0 to ire1a-2/1b-4 0.000273
Col-0 to agb1-2 0.269186
Col-0 to ire1a-2/1b-4/ agb1-2 < 0.00001
ire1a-2/1b-4 to ire1a-2/1b-4/ agb1-2 < 0.00001
agb1-2 to ire1a-2/1b-4/ agb1-2 < 0.00001
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Figure 4. Analysis of root length in response to a chemical ER stress triggered by exposure to 0.75 mM DTT of indicated genotypes. Seedlings were grown vertically on 
solid MS media for 7 days, then transferred to fresh plates containing solid MS media without (NT = no treatment) or with DTT. After 7 days, the seedlings were 
photographed (a) and root length was measured using a ruler (b). An average of 15 seedlings was used per biological replication and at least four biological replications 
were performed. Statistical analyses were performed by two-tailed Student’s t-test or one-way ANOVA in Excel. Error bars show mean ± SD (n ≥ 30). Significant 
differences are indicated by asterisks (*** p < .001, ** p < .01, * p < .05). Short solid bars connecting bars represent the comparison of root length between untreated 
and treated samples for each genotype, while long solid lines represent the comparison of root length of DTT-treated plants between Col-0 and an indicated mutant 
genotype.

PLANT SIGNALING & BEHAVIOR e2018857-5



experimental plants showed marked sensitivity to DTT expo-
sure as reflected by a statistically significant reduction in root 
length (Figure 4 a,b and Table 3).

When grown under control conditions, agb1-2 roots grew 
slightly longer than wild-type, whereas ire1a-2/1b-4 and ire1a- 
2/1b-4/agb1-2 produced roots shorter than those of Col-0. 
These findings are consistent with a previous study on these 
genotypes.40 Upon exposure to DTT, the agb1-2 roots dis-
played a reduction in length but were still longer than those 
of Col-0 seedlings. In agreement with the fresh weight DTT 
assay results, the seedlings of the double mutant ire1a-2/1b-4 
showed a significant DTT sensitivity and produced shorter 
roots compared to Col-0 (Figure 4 a,b  and Table 3). 
Moreover, we detected a slightly more pronounced DTT sen-
sitivity in the triple mutant ire1a-2/1b-4/agb1-2, which was the 
genotype with the shortest roots following the treatment, 
despite having comparable root size to the double mutant 
ire1a-2/1b-4 when grown in the absence of the chemical ER 
stress (Figure 4 a,b). This result further substantiates the notion 
that the DTT-induced chemical ER stress involves a synergistic 
effect of the IRE1a/IRE1b and AGB1 pathways in Arabidopsis.

Responses to bacterial infection with Pst DC3000

Earlier reports from our lab indicated that IRE1a and IRE1b 
play an important role in mediating the basal defense responses 
and systemic acquired resistance against Pseudomonas syringae 
infection.42 On the other hand, evidence exists in support of 
AGB1’s involvement in defense responses against P. syringae,59 

although the molecular mechanisms governing its contribution 
remain to be elucidated. Infection with P. syringae is known to 
cause an increased burden on the cellular translation, protein 
modifications, and secretion, which can lead to an over-
whelmed ER function, accumulation of misfolded peptide 
aggregates and, in turn, severe ER stress.66 Given an indication 
that IRE1a/IRE1b operate in a signaling pathway independent 
of AGB1 during UPR signaling, as reported previously40 and 
inferred from the results of DTT sensitivity assays described 
above, we next asked if IRE1a/IRE1b and AGB1 have indepen-
dent and possibly cumulative contributions to the immune 
response mounted against a virulent strain of P. syringae Pst 
DC3000. Toward this, we subjected the wild type Col-0 (posi-
tive control), agb1-2, ire1a-2/1b-4 and ire1a-2/1b-4/agb1-2 
along with the hypersusceptible npr1-1 mutant to Pst DC3000 
infection. We used a low bacterial inoculum dose of Pst 
DC3000 (OD600nm = 0.0002) to precisely assess the disease 
phenotypes in the individual genotypes. As expected, the Col- 
0 plants showed mild disease symptoms and limited pathogen 
proliferation (Figure 5), while the npr1-1 exhibited the highest 
levels of bacterial accumulation, amassing ~31 times more 
bacterial colonies. The single mutant agb1-2 and double 
mutant ire1a-2/1b-4 displayed significantly enhanced bacterial 
loads compared to Col-0, which is consistent with earlier 
reports.42,59,65 The triple mutant ire1a-2/1b-4/agb1-2 showed 
a further increased bacterial susceptibility compared to ire1a-2/ 
1b-4 and agb1-2, supporting 0.7 log (~5 times) more bacterial 
growth than Col-0 (Figure 5), and further substantiating the 

Table 3. P-values from independent sample (two-tailed) t-test for root length data 
resulting from the DTT treatment experiments.

Comparison of genotypes:
NT to DTT 

p-value
DTT to DTT 

p-value

Col-0 < 0.00001 -
ire1a-2/1b-4 < 0.00001 -
agb1-2 < 0.00001 -
ire1a-2/1b-4/ agb1-2 < 0.00001 -
Col-0 to ire1a-2/1b-4 - 0.025996
Col-0 to agb1-2 - < 0.00001
Col-0 to ire1a-2/1b-4/ agb1-2 - 0.002349
ire1a-2/1b-4 to ire1a-2/1b-4/ agb1-2 - 0.217358
agb1-2 to ire1a-2/1b-4/ agb1-2 - < 0.00001

Figure 5. Bacterial infection with Pseudomonas syringae pv. tomato DC3000. Leaves of 4 weeks old plants of indicated genotypes were syringe infiltrated with the 
pathogen. In planta bacterial growth was quantified at 3 days post inoculation. The violin plots extend from 25th to 75th percentiles and whiskers extend from the 
minimum to the maximum levels. Light gray dots represent individual data points. Black lines in the middle represent the median. The data was generated from three 
independent biological replicates. Statistical analyses were performed in MS Excel by One-Way ANOVA. Significant differences in bacterial loads compared to Col-0 are 
indicated by asterisks (*** p < .001).
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hypothesis that the IRE1 and AGB1 likely act non-redundantly 
and have a cumulative contribution to plant stress responses, 
including immunity to a bacterial pathogen.

Collectively, our results suggest that AGB1 contributes to 
both DTT-mediated chemical ER stress as well as pathogen- 
triggered ER stress in a manner that is distinct from and 
synergistic with the IRE1-mediated ER stress-responsive path-
way in Arabidopsis.

Discussion

The plant signaling pathways utilize a complex network of 
interactions to orchestrate biochemical and physiological 
responses in response to various stresses. To ensure adequate 
and integrated responses, plants often engage different signal-
ing pathways that are interlinked with each other. In both 
animals and plants, G proteins have been well documented to 
act as hubs interconnecting various cellular signaling 
pathways.67–69 Our study showed that the Arabidopsis 
G protein subunit β1 (AGB1) cross-talks with the IRE1a and 
IRE1b homologs to modulate the abiotic and biotic ER stress 
response mechanisms. While the functions, mechanism of 
action, and importance of both IRE1a/IRE1b34–36,40,42,65 and 
AGB12,19,40,47,56,60 in Arabidopsis have been well characterized, 
the nature of their cooperative roles in UPR remains unclear. 
Our findings support the notion that AGB1 and IRE1 signaling 
pathways are at least partially independent and can act syner-
gistically in their response mechanisms, as proposed in an 
earlier study.40

Our study uncovered both commonalities and differ-
ences in how Tm and DTT engage AGB1 and IRE1a/b 
signaling pathways. This finding is not surprising given 
the distinct modes of action mediated by these two com-
pounds. Tm causes ER stress by interrupting the enzyme 
GlcNac phosphotransferase, thereby preventing N-linked 
glycosylation.70 On the other hand, DTT is a strong redu-
cing agent that inhibits disulfide bond formation during 
protein folding, which induces acute ER stress.71 Tm and 
DTT have been demonstrated to differentially affect the 
kinetics of ER stress and UPR target gene expression.72 In 
our study, seedlings treated with Tm showed enhanced 
sensitivity to this stressor, as illustrated by a statistically 
significant decrease in their fresh weights. While the agb1-2 
and ire1a-2/1b-4 demonstrated heightened sensitivity, the 
combinatorial triple mutant ire1a-2/1b-4/agb1-2 did not 
show further enhanced ER stress phenotypes, possibly 
because the conditions used by us have already maximized 
and saturated the responses mediated by the IRE1a/b path-
way in the highly sensitized ire1a-2/1b-4 mutant back-
ground. However, treatments with DTT exerted overall 
a milder degree of the ER stress than Tm and thus, pro-
vided a more sensitive experimental setup to detect the 
synergistic contributions of both pathways to ER stress 
responses, as demonstrated by the lowest fresh weights 
and shortest roots of the triple mutant ire1a-2/1b-4/agb1-2 
seedlings compared to agb1-2 and ire1a-2/1b-4.

The specific dose and duration of the chemical ER stress 
treatment could be the reason behind some contrasting 
reports on the AGB1’s roles in ER stress. While earlier 

research using various Tm concentrations supported con-
clusions ranging from significant sensitivity of agb1 
plants40,63 to no substantial difference40 to enhanced 
resistance,30 the experimental setup varied between these 
studies, as did the age of seedlings, the concentration of 
Tm, duration of exposure to Tm, and the specific agb1 
T-DNA insertion mutant line used. Our conclusion is con-
sistent with the findings of Chen and Brandizzi40 and Cho 
et al.,63 where the agb1-2 plants were shown to have heigh-
tened Tm sensitivity. Moreover, our work provides addi-
tional experimental evidence for the role of AGB1 in 
chemical ER stress responses using a different stressor, 
DTT, and highlights the synergistic effects of IRE1a/b and 
AGB1 in this physiological process as previously proposed 
by Chen and Brandizzi.40 While the agb1-2 plants did not 
show a marked reduction in their fresh weight and root 
length following DTT exposure, it should be noted that 
their fresh weights were higher and roots were longer 
than those of Col-0 under control conditions and we 
hypothesize that these phenotypes may give the agb1-2 
plants an advantage in withstanding the chemical ER stress. 
The effect of AGB1’s mutation, however, was clearly 
observed when the agb1-2 plants were crossed into the 
highly sensitive ire1a-2/1b-4 background. Hence, we con-
cluded that AGB1 works synergistically with IRE1 during 
UPR induced by DTT to maintain the ER homeostasis.

Previous studies reported the independent contributions of 
IRE1a/IRE1b35,36,42,65 and AGB12,19,40,47,56,59,60 to plant 
immune responses. In our study, we provide evidence that 
both IRE1a/IRE1b and AGB1 are required for initiating the 
basal defense response against the virulent bacterial pathogen 
(Figure 5), as the triple mutant ire1a-2/1b-4/agb1-2 harbored 
a significantly higher number of bacteria than did the ire1a-2/ 
1b-4 and agb1-2 plants. Under the infection conditions tested 
(inoculation with a low bacterial dose), the agb1-2 plants 
showed a more susceptible phenotype than ire1a-2/1b-4, 
which indicates a trend opposite to the findings with DTT. 
This observation points toward an intriguing possibility that 
AGB1 may play a prominent role in the alleviation of biotic 
stress-induced UPR. Nonetheless, and consistent with the DTT 
results, the ire1a-2/1b-4/agb1-2 triple mutants supported the 
highest levels of bacterial growth, further confirming the syner-
gistic relationship of these two signaling pathways.

In summary, our study provided evidence of AGB1 contribu-
tions to both DTT-mediated chemical ER stress as well as patho-
gen-triggered ER stress in a manner that is distinct from and 
synergistic with the IRE1-mediated ER stress-responsive pathway 
in Arabidopsis. Our study highlights the novel aspects of crosstalk 
between the plant UPR transducers under abiotic and biotic stress.
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