Skip to main content
. 2022 Mar 10;29(1):821–836. doi: 10.1080/10717544.2022.2048131

Table 2.

(a) Coefficient estimates for different model terms appearing in the final equation for each response and their significance, together with each model’s lack of fit, type, and evaluation.

a)  
 
 
 
1/PS
ZP
EE
Component Coeff. Estimate Df p-value Coeff. Estimate df p-value Coeff. Estimate df p-value
Linear mixture:   2 <0.0001*   2 0.003*   2 <0.0001*
A: Span 20 0.0043     −36.23     85.96    
B: Cholesterol 0.0050     −38.44     85.12    
C: Cremophor RH 0.0100     −28.49     72.53    
AB −0.0023 1 0.2109    
AC 0.0129 1 0.0005*    
BC   −23.16 1 0.0193* −12.02 1 0.0554
ABC −0.1482 1 0.0001* 1964.67 1 < 0.0001*  
Lack of fit   3 0.3901   4 0.0564   5 0.1049
Pure error   4     4     4  
Model type Reduced cubic Reduced cubic Reduced quadratic
Model evaluation      
RMSE 0.000 1.826 1.344
CV% 8.155 6.735 1.658
R2 0.980 0.991 0.953
Adjusted R2 0.966 0.987 0.938
Prediction R2 0.936 0.978 0.903