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Abstract
Neuropeptides are the most diverse messenger molecules in metazoans and are involved in regulation of daily physiology and 
a wide array of behaviors. Some neuropeptides and their cognate receptors are structurally and functionally well conserved 
over evolution in bilaterian animals. Among these are peptides related to gastrin and cholecystokinin (CCK). In mammals, 
CCK is produced by intestinal endocrine cells and brain neurons, and regulates gall bladder contractions, pancreatic enzyme 
secretion, gut functions, satiety and food intake. Additionally, CCK plays important roles in neuromodulation in several brain 
circuits that regulate reward, anxiety, aggression and sexual behavior. In invertebrates, CCK-type peptides (sulfakinins, SKs) 
are, with a few exceptions, produced by brain neurons only. Common among invertebrates is that SKs mediate satiety and 
regulate food ingestion by a variety of mechanisms. Also regulation of secretion of digestive enzymes has been reported. 
Studies of the genetically tractable fly Drosophila have advanced our understanding of SK signaling mechanisms in regula-
tion of satiety and feeding, but also in gustatory sensitivity, locomotor activity, aggression and reproductive behavior. A 
set of eight SK-expressing brain neurons plays important roles in regulation of these competing behaviors. In males, they 
integrate internal state and external stimuli to diminish sex drive and increase aggression. The same neurons also diminish 
sugar gustation, induce satiety and reduce feeding. Although several functional roles of CCK/SK signaling appear conserved 
between Drosophila and mammals, available data suggest that the underlying mechanisms differ.
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Abbreviations
AKH	� Adipokinetic hormone
AstA	� Allatostatin A
CAPA-PK	� Capability pyrokinin
CCAP	� Crustacean cardioactive peptide
CCHa2	� CCHamide-2
CCK	� Cholecystokinin
CRZ	� Corazonin
DH44	� Diuretic hormone 44
DILP	� Drosophila Insulin-like peptide
DSK	� Drosophila Sulfakinin
GABA	� Gamma aminobutyric acid
GPB5	� Glycoprotein B5

Hugin-PK	� Hugin-derived pyrokinin
ILP	� Insulin-like peptide
ITP	� Ion transport peptide
LK	� Leucokinin
MIP	� Myoinhibitory peptide
NPF	� Neuropeptide F
PDF	� Pigment-dispersing factor
SIFa	� SIFamide
SK	� Sulfakinin
sNPF	� Short neuropeptide F
TK	� Tachykinin

Introduction

Neuropeptides are involved in the regulation of physiology 
and a wide array of vital behaviors of metazoans. They con-
stitute secreted signals in neuronal circuits that are hierarchi-
cally arranged in the brain and partake in context-dependent 
orchestrating signaling by higher-order neurons, as well as 
in local executive modulation in specific circuits (see [1–5]). 
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Thus, neuropeptides impart plasticity to the hardwired cir-
cuits of the central nervous system and in this review we 
highlight some specific roles of neuropeptides, especially 
cholecystokinin-like peptides, in regulation of competing 
behaviors such as feeding, mating and aggression.

Neuropeptides and peptide hormones constitute ancient 
signaling molecules that are genetically encoded on precur-
sors that give rise to one or more bioactive peptides acting 
on different types of membrane receptors. Bioactive peptides 
are present already in organisms that lack a nervous system, 
such as for instance sponges [6] and the Placozoan Trichop-
lax adhaerens, [7]. The latter small marine animal utilizes a 
small number of peptides, derived from five precursors, to 
regulate simple behaviors associated with locomotion and 
food intake [8]. In organisms with simple nervous systems, 
such as cnidarians and ctenophores, there are more diverse 
sets on peptides produced by neurons, and thus referred to as 
neuropeptides [9–12]. The more evolved animals among the 
Bilateria produce numerous neuropeptides as well as pep-
tide hormones that display a wide array of diverse functions 
in development, physiology and behavior [13–17]. Many 
of these peptidergic signaling pathways are evolutionarily 
conserved in the bilaterian phyla, including mammals [13, 
14]. Among the conserved signaling pathways are those that 
utilize cholecystokinin (CCK)-related peptides and their 
receptors. It should be noted that in mammals CCK exists 
alongside a closely related (paralog) peptide named gastrin, 
which is encoded on a separate gene. We will discuss these 
two peptides in Sect. 2, but in the following we will refer 
to CCK signaling for simplicity. Interestingly, CCK signal-
ing is functionally pleiotropic in most animals studied and 
regulates behavior and physiology associated with feeding, 
digestion, aggression and reproduction (reviewed in [16, 
18–23]).

CCK signaling components have been identified in 
vertebrates and in several bilaterian invertebrate phyla 
[13–15, 24–31], as well as in deuterostome invertebrates 
such as echinoderms and invertebrate chordates (the latter 
also known as protochordates) [32, 33]. In mammals, CCK 
activity was first discovered in tissue already in 1906 [34] 
and CCK was isolated as a gut hormone in 1928 [35]. The 
peptide was initially identified as a factor released from the 
small intestine of cats and dogs that induced contractions of 
the gall bladder [35], and from pig intestine that triggered 
secretion of pancreatic enzyme [36]. Over the years, mul-
tiple additional functions have been discovered, including 
regulation of satiety and various neuromodulatory roles in 
the brain (see [18, 19, 37]).

The presence of CCK like peptides in insects and some 
other invertebrates was suggested early on [38–41], but was 
based solely on immunochemical detection with heterolo-
gous antisera. The first invertebrate CCK-type peptide was 
isolated in 1986 from the cockroach Leucophaea maderae 

(now Rhyparobia maderae) using head extract and monitor-
ing myostimulatory action on the hindgut [24]. This peptide 
was named leucosulfakinin and closely related peptides, sul-
fakinins (SKs), have since been identified in multiple insects 
and other invertebrates, as well as in invertebrate chordates 
(see examples in Fig. 1). However, CCK-type peptides have 
not been found in non-bilaterians such as Porifera, Placozoa, 
Cnidaria, or Ctenophora (see [13–15]). After the identifica-
tion of two SK receptors in Drosophila [42, 43], numer-
ous invertebrate SK receptors are now known that display 
homologies to those of gastrin and CCK receptors in verte-
brates (see [20, 32]). Signaling with CCK-type peptides has 
been assayed in multiple invertebrates and in this review we 
highlight the structure, distribution and functions of these 
peptides and their receptors, with some more detailed analy-
sis in Drosophila and with comparisons to mammals. More 
specifically, we discuss the roles of SKs in satiety signal-
ing, feeding, metabolism, reproductive behavior and aggres-
sion. Interestingly, it has been shown that DSK neurons are 
important in the regulation of competing behaviors. Thus, in 
male flies, DSK signaling diminishes sex drive, but increases 
aggression, in addition to its known role in inducing satiety 
and reduced feeding [23, 44, 45]. This peptidergic regulation 
of competing behaviors is the topic of one of the sections 
in this review. We also discuss how CCK-mediated satiety 
signaling in mammals differs mechanistically from SK sign-
aling in Drosophila, although the outcome on food intake 
is similar. Finally, we outline some other neuromodulatory 
systems that use neuropeptides and monoamines to regulate 
feeding, reproductive behavior and aggression in association 
with SKs.

CCK signaling in mammals: a brief overview

Since there is a tremendous amount of published data on the 
distribution and functional roles of CCK and its receptors 
in mammals we will mainly focus on some of those fea-
tures that relate to SK functions in invertebrates: satiety and 
feeding behavior, reproductive behavior, and aggression. For 
further details, several reviews are available that cover CCK 
signaling in mammals and other vertebrates [18, 19, 46–49].

CCK was one of the first hormones to be discovered in 
mammals, and was originally isolated from the small intes-
tine as a factor that regulates gallbladder emptying and 
enzyme secretion from the pancreas [34, 35]. It can be noted 
that before sequencing of the factors acting on gall bladder 
and pancreas they were named CCK [35] and pancreozy-
min [36], respectively. After purification and sequencing in 
1968, it turned out that the two activities were derived from 
a single peptide CCK/pancreozymin [50] and the name pan-
creozymin was abandoned. CCKs display strong sequence 
similarities to the peptide hormone gastrin, which was 
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Fig. 1   Sequence alignments 
of CCK, gastrin, sulfakinin 
and sulfakinin-like peptides 
from select species. Conserved 
residues are highlighted in black 
(identical) or gray (similar). 
Sulfated tyrosine was high-
lighted in green with black 
background. Species belonging 
to the same phyla have been 
highlighted with the same 
color. Note that pyroglutamate-
blocked N-terminal residues are 
not indicated. Species names 
are as follows: Homsa (Homo 
sapiens), Cioin (Ciona intesti-
nalis), Astru (Asterias rubens), 
Caeel (Caenorhabditis elegans), 
Ureun (Urechis unicinctus), 
Capte (Capitella teleta), Aplca 
(Aplysia californica), Cravi 
(Crassostrea virginica), Phoau 
(Phoronis australis), Linan 
(Lingula anatina), Notgen 
(Notospermus geniculatus), 
Zopat (Zophobas atratus), Trica 
(Tribolium castaneum), Peram 
(Periplaneta americana), Blage 
(Blattella germanica), Leuma 
(Leucophaea maderae), Drome 
(Drosophila melanogaster), 
Anoga (Anopheles gambiae), 
Delra (Delia radicum), Apime 
(Apis mellifera), Chrvi (Chrysis 
viridula), Rhopr (Rhodnius 
prolixus), Nillu (Nilapar-
vata lugens), Grybi (Gryllus 
bimaculatus), Locmi (Locusta 
migratoria), Bommo (Bombyx 
mori). Note that some insects 
only have one form of SK. 
The accession numbers of the 
sequences are listed in “Fig. 1 
source data” in Supplementary 
data files
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actually sequenced prior to CCK [51]. Gastrin was found 
in the duodenum and stomach and regulates gastric acid 
secretion [51]. Both CCK and gastrin exist in several forms 
that are N-terminal extensions of the same core peptides 
(CCK: 8, 33, 39, 58 or 83 amino acids; gastrin: 13, 17 or 34 
amino acids) (see [18, 19, 52]). Note that CCK and gastrin 
are encoded on separate genes/precursors (see Fig. 2). The 
sequence of CCK8 in mammals is DYMGWMDFamide, 
where the tyrosine (Y) residue is commonly sulfated. The 
gastrin and CCK peptides share the C-terminal sequence 
GWMDFamide (see Fig. 1). It is interesting to note that, 
like several other neuropeptides, CCK-type peptides (e.g., 
cerulein) have also been identified in frog skin, where they 
are likely to be secreted as a deterrent against predators [53].

Mammalian CCK and gastrin act on the two GPCRs 
designated CCK1R and CCK2R, respectively (see [49]), 
the first of which was cloned in 1992 [54]. These recep-
tors have different affinities for the gastrin/CCK peptide 
isoforms. Thus, CCK1R has a high affinity for sulfated 
CCK8-CCK58 and a 1000-fold lower affinity for gastrin, 
whereas CCK2R can be activated by both gastrin and CCK, 
even in their non-sulfated forms [19, 55]. The CCK1R is 
distributed in peripheral tissues such as the gastrointestinal 
tract, gallbladder, pancreas, and also in the anterior pituitary, 
nucleus accumbens, posterior hypothalamus, the brainstem 
(notably the nucleus of the solitary tract) and some areas of 

the midbrain, whereas the CCK2R is distributed predomi-
nantly in the brain, including amygdala, habenula, thala-
mus, cortex, hippocampus, and the olfactory bulb, and also 
in the pancreas and some parts of the gastrointestinal tract 
(reviewed in [18, 19]).

CCK, especially CCK8, is distributed widely in neurons 
in different parts of the brain, corresponding to the sites 
where the two CCK receptors have been found [18, 19, 
56]. Importantly, CCK is also produced by a specific type 
of enteroendocrine cells (EECs), classified as type I cells, 
present in the duodenum and jejunum of the gastrointestinal 
tract (see [18, 46, 48, 57, 58]). It is CCK from these EECs 
that induces satiety.

Satiety in mammals is primarily induced by CCK sign-
aling from the gut to the brain via the vagus nerve, and the 
mechanisms described next are based on several reviews 
[18, 46–48, 55]. Upon food intake and ensuing gastric dis-
tension, CCK is released from the EECs to act on affer-
ent neurons in the adjacent vagal nerve (Fig. 3). These 
vagal afferent neurons (VANs) express CCKR1 and their 
axons connect to neurons in the nucleus of the solitary 
tract of the brainstem (hindbrain) (Fig. 3). CCK binding 
to the CCK1R in neurons of the VANs leads to activa-
tion of these neurons and thereby triggers a post-ingestive 
feedback to the hindbrain. The sensitivity of the VANs 
to CCK is modulated by the metabolic/energy state and 

Fig. 2   Schemes of CCK/SK precursors from representative species. 
Boxes and lines show exons and introns, respectively. Red boxes 
represent SK/CCK peptides and blue boxes indicate signal peptides. 
Note that DSK0 is not indicated in Drosophila. Crassostrea and Aply-
sia are mollusks, Ciona an invertebrate chordate, Caenorhabditis a 

nematode worm, Phoronis australis a phoronid, Lingula anatine a 
brachiopod, Notospermus geniculatus a nemertin and the others are 
insects. Introns have only been identified in mammals and C. elegans. 
The accession numbers of the sequences are listed in “Fig. 2 source 
data” in Supplementary data files
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CCK signaling regulates the expression of genes encod-
ing other anorectic and orexigenic peptides and receptors 
in the VANs (e.g., receptors for leptin, urocortin, insulin, 
α-MSH, ghrelin and endocannabinoids). Thus, the VANs 
integrate several peptidergic signals and some sensory 
inputs to fine-tune food intake. It has been suggested that 
the VANs can adopt two states depending on the expres-
sion of these peptides and receptors, one associated with 
feeding (hunger) and another with inhibition of feeding 
(satiety) and that CCK acts as a gatekeeper that deter-
mines these states (see [47]). The CCK-induced signals 
in VANs propagate to the brainstem and result in efferent 
signals to the gastrointestinal tract that reduces food intake 
by controlling meal size. Mechanistically, these efferent 
satiety signals regulate (inhibit) gastric emptying, which 
in turn leads to reduced food ingestion (see [18, 47]). Fur-
thermore, the VAN signals to the nucleus of solitary tract 
(NST) in the brainstem lead to activation of second-order 
neurons expressing for example neuropeptide Y, proopi-
omelanocortin (POMC) and dopamine. These NST neu-
rons innervate several brain centers that regulate reward 
and food ingestion, such as the hypothalamus, mesolimbic 
system and nigro-striatal pathway. Thus, CCK-mediated 
satiety signaling originating in the intestine not only acti-
vates a direct feedback to the gastrointestinal tract, but also 

indirectly activates signaling within the brain that may 
mediate more long-lasting effects on behavior.

A direct central action of CCK in satiety has also been sug-
gested. It was for instance shown that microinjection of CCK 
into the dorsomedial hypothalamus in rats leads to a reduced 
food intake and is mediated by the CCKR2 [59]. In mice, the 
neuronal substrate for this CCK8-mediated satiety signaling 
includes nutrient-responsive CCK-producing neurons of the 
NST that innervate the paraventricular nucleus of the hypo-
thalamus [60]. Activation of these CCK neurons generates a 
long-term effect on appetite and reduction of body weight. In 
contrast, the CCK feedback action via the VAN/brainstem is 
associated with a short-term effect on food intake.

Further roles of CCK associated with feeding and metabo-
lism include local actions in the intestine to decrease gastro-
intestinal motility, stimulate secretion of pepsinogen, inhibit 
gastric acid secretion, stimulate gallbladder contraction, and 
trigger secretion of hormones in the endocrine pancreas 
(reviewed in [18, 19, 61]). CCK peptides also stimulate secre-
tion of calcitonin, insulin, and glucagon that are important 
regulators of metabolic homeostasis (see [19]).

Some evidence for a role of CCK in reproductive behavior 
is available. There is a sexual difference in neuronal CCK dis-
tribution in the bed nucleus of the stria terminalis and in the 
amygdala in rats [21]. This sexually dimorphic distribution 
of CCK neurons is in regions that are targets of steroid sex 
hormones and that are known to regulate aspects of repro-
duction [21]. This suggests that CCK is involved in a cen-
tral integration of sensory input and steroid hormone action 
to modulate reproductive behavior [21]. Furthermore, it was 
reported that intraperitoneal administration of CCK-8 inhibits 
lordosis behavior (a mating response) in female rats, but not 
in males [62, 63].

A role of CCK in aggression in rats and mice has also been 
suggested. CCK-expressing neuronal projections have been 
identified within the limbic system, the brainstem, and the cer-
ebral cortex, areas known to overlap with neuronal pathways 
that are involved in the modulation of fear, anxiety, and aggres-
sion (see [64]). It was shown that CCK signaling through the 
CCK1R in the brain induces hyperactivity and aggression [65]. 
Furthermore, overexpression of CCK2R in the mouse brain 
increases aggressive behavior, whereas mice lacking CCK2R 
display increased exploratory behavior and reduced anxiety 
[65, 66]. Other-CCK mediated regulatory functions in the 
brain have been discovered: in sleep, nociception, memory 
and learning processes, panic and anxiety (see [46, 67, 68]).

Fig. 3   CCK and regulation of satiety in mammals. Upon stomach dis-
tension, CCK is released from enteroendocrine cells of the intestine 
and acts on CCK receptors on afferent neurons in the vagus nerve. 
These afferents signal to the nucleus of the solitary tract (NST) in 
the brainstem. Efferent neurons in the NST signal to regulate food 
intake by stomach emptying. Signals from adipose tissue (e.g., leptin) 
reach the neurons in the arcuate nucleus (ARC) in the hypothalamus, 
which in turn activate neurons in the paraventricular nucleus (PVN) 
and triggers signals to the NST that also regulate food ingestion. The 
vagus nerve afferents relay complex satiety signals that are gated by 
CCK (see text for further details). There is also CCK8-mediated sign-
aling from nutrient-responsive CCK-producing neurons of the NST 
that innervate the PVN (not shown here). This figure is based on, but 
redrawn from, Morton et al. [286] and Dockray [47]
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CCK/sulfakinin signaling components 
in invertebrates: a general overview

We now turn to signaling with CCK-type peptides, or SKs, 
in various invertebrate species. In this section, we describe 
general features of SKs, the structures of their precursors 
and SK receptors. We also point out structural similari-
ties to vertebrate CCK and gastrin signaling components 
and evolutionary aspects of this signaling system. Finally, 
we discuss the distribution of peptides and receptors and 
their functional roles in invertebrates. A more detailed 
description of SK (DSK) signaling in Drosophila is given 
in Sect. 4, where we also highlight how DSK signaling 
serves to modulate competing behaviors.

Structure of invertebrate SK precursors 
and peptides

The first invertebrate CCK-type peptide was isolated from 
cockroach head extract and has the sequence EQFEDYGH-
MRFamide, which is highly similar to mammalian gas-
trin and CCK (see Fig. 1), including a sulfated tyrosine 
[24]. This peptide was designated leucosulfakinin (LSK). 
A second, pyroglutamate blocked, LSK (LSK-II, pQSD-
DYGHMRFamide) was identified soon after [69]. The first 
invertebrate gene encoding a SK precursor was cloned 
in Drosophila in 1988, and can give rise to the peptides 
DSK1, DSK2 and DSK0 [70] and later two DSK receptors 
(CCKLR1 and CCKLR2) were identified and character-
ized [42, 43].

Now CCK-type peptides have been identified in numer-
ous invertebrate species of several bilaterian phyla, includ-
ing the protostome phyla nematodes, mollusks, nemerte-
ans, brachiopods, phoronids, annelids, tardigrades and 
arthropods [13–15, 24–31, 71–73], as well as in deuter-
ostome invertebrates such as echinoderms and inverte-
brate chordates [32, 33]. Examples of SK sequences from 
different taxa are shown in Fig. 1. In all studied inverte-
brates, with the exception of spiders, there is only one gene 
encoding SK precursors [74]. In spiders, but not scorpions 
and mites, there are two genes encoding SK precursors 
[74, 75]. One of these spider precursors encodes two SK 
paracopies, and the other just a single SK. The organiza-
tion of select CCK/SK precursors is shown in Fig. 2.

Interestingly, it seems that the presence of SKs is vari-
able among species of certain taxa. For instance, among 
arthropods, SKs have not been identified in quite a number 
of studied beetles [76], and are lacking in the genomes of 
some parasite wasps [77, 78], in pea aphids [79, 80], in 
a stick insect, Carausius morosus [81], the Asian citrus 
phyllid Diaphorina citri (hemiptera) [82] and in a spider 

mite [83]. Interestingly, however, another mite, the house 
dust mite, does produce SKs [74]. It should be mentioned 
here that in cases where it has been investigated the lack of 
SK peptides is correlated with a lack of cognate CCK-type 
receptor. An exception to this is seen among the Xenacoe-
lomorphs, a group that may have branched off from the 
other bilaterian phyla (Nephrozoa) early in evolution or 
constitute a sister group of Ambulacraria (see [84]). In 
this group SKs have not been identified, but two clades, 
Xenoturbella and Nemertodermatida, possess SK-type 
receptors, whereas the Acoela do not [29].

An important question to ask is whether other neu-
ropeptides functionally replace SKs in those species that 
lack them, or whether the functional roles played by SKs 
are simply missing. Since SKs seem to play major roles in 
satiety signaling and regulation of feeding and digestion one 
might suspect that lack of SKs could reflect specific feed-
ing habits. This seems not to be the case at least in beetles 
(coleopterans) where 31 species were analyzed of which 13 
lack SKs [76]. When comparing the presence of SKs to life 
history parameters, including dietary behavior (herbivo-
rous, mixed, predacious, saprophagous and xylophagous), 
no obvious correlation was found [76]. In the same study the 
authors also found no correlation between lack of SK (and 
some other neuropeptides) and other life history parameters 
or taxonomic relatedness of species. A few other neuropep-
tides are also lacking in several arthropod species, such as 
for example adipokinetic hormone/corazonin-related peptide 
(ACP), allatotropin, corazonin and leucokinin (see [16, 76, 
82, 83, 85]). Thus, it remains to be understood why these 
losses have occurred and what the functional consequences 
are.

There are SK sequence entries for 116 insect species in 
the DINeR insect neuropeptide database (http://​www.​neuro​
stres​spep.​eu/​diner [86]). These entries reveal that insects 
commonly have two SKs, although several have only one 
form (e.g., Locusta migratoria, Bombyx mori and Manduca 
sexta), whereas the giant springtail Tetrodontophora bielan-
ensis has three (see [87]). Also the shrimp Penaeus monodon 
has three bona fide SKs [88]. In Drosophila, melanogaster 
and other Drosophila species the precursor encodes a third 
shorter peptide (DSK0), whose sequence barely resembles a 
bona fide DSK ([70], DINeR database) and the presence of 
processed DSK0 in tissue has not been confirmed by mass 
spectrometry (see [89]). As mentioned, SKs are missing in 
some insect taxa, but since already the most basal apterygote 
insects possess SKs [87], it is suggestive that lack of SKs in 
various species is the result of a secondary loss.

Also in invertebrates in general, the precursors give rise 
to two SK paracopies (isoforms) in each species (see Fig. 2). 
Often, like in the starfish Asterias rubens [32] and several 
insect species such as for instance the cockroach P. ameri-
cana [90] and bed bug Cimex lectularius [91], two SKs can 

http://www.neurostresspep.eu/diner
http://www.neurostresspep.eu/diner
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be identified on the precursor, but mass spectrometry reveals 
that these exist both in sulfated and non-sulfated forms, sug-
gesting the presence of four structural isoforms. A recent 
study of the locust Schistocerca gregaria found that the 
two paracopies SK1 (12 residues) and SK2 (27 residues) 
can be identified by mass spectrometry of dissected tissues 
in three forms each: SK1 as sulfated with N-terminal pQ 
(pyroglutamate), nonsulfated with pQ and sulfated without 
pQ, and SK2 as sulfated with pQ, nonsulfated with pQ and 
a truncated sulfated form (9 residues) [92]. In C. elegans 
the NPL-12a and 12b peptides only display weak sequence 
similarities to CCK (see Fig. 1), but activate two GPCRs 
related to CCK receptors (T23B3.4 and Y39A3B.5) [25, 93], 
suggesting the presence of CCK-type signaling in this worm.

In insects the SKs are C-terminally amidated and com-
monly between 9 and 17 amino acids long, and in many cases 
a species has one short and one longer form (see DINeR 
Database). However, with the exception of S. gregaria 
SK2 with 27 residues, there seems not to be any drastically 
extended SK forms in invertebrates, in contrast to mamma-
lian CCK33, CCK58 and gastrin34. As noted above, some 
of the SKs are blocked with an N-terminal pyroglutamate 
(pQ), which adds a resistance to certain peptidases (e.g., in 
L. maderae, A. rubens, S. gregaria and Tribolium castaneum 
[32, 69, 92, 94]). The SKs have a conserved tyrosine (Y) 
residue that needs to be sulfated for full bioactivity of the 
peptide [90, 95, 96]. Curiously, in a bivalve mollusk, Cras-
sostrea gigas, in the white shrimp Litopenaeus vannamei 
and the invertebrate chordate Ciona intestinalis, one of the 
SKs was identified with two sulfated tyrosines [33, 71, 97]. 
Several investigations of insects have found biological activ-
ity also for non-sulfated SKs (see e.g., [98–101]). It should 
be noted that this activity was detected in assays different 
from the ones used in canonical SK signaling in insects 
(see Table 1) and it is not known whether these SKs act 
on the bona fide SK receptors. In summary, the active core 
sequence in insect SKs for canonical bioactivity is Y(S03H)
GHMRFamide [95, 96], which is well conserved also among 
other arthropods. As seen in Fig. 1, the sequences of other 
invertebrate SKs vary somewhat.

Typically, only one gene encoding a CCK/gastrin type 
precursor has been found in each species of protostome 
invertebrates [20], as well as in the deuterostome inverte-
brates of the Ambulacraria (echinoderms and hemichor-
dates) [32] and in invertebrate chordates, like the ascidian 
Ciona intestinalis [102]. Thus, a duplication of an ancestral 
CCK/gastrin gene that gave rise to separate genes encoding 
CCK and gastrin in the vertebrates seem to have occurred 
before the emergence of cartilaginous fish [52]. More spe-
cifically, synteny analysis has shown that this duplication 
arose through a whole genome duplication event (the second 
one known, 2R), probably before the emergence of cyclos-
tomes [103].

Invertebrate SK receptors

Two DSK receptors (CCKLR1 and CCKLR2) were iden-
tified and characterized in Drosophila [42, 43] and later 
orthologs were characterized in Tribolium castaneum 
[104, 105]. These were followed by detection of numer-
ous SK receptors (SKRs) in other invertebrates (see [20, 
106]). Thus SKRs have been identified in several insects, 
as well as in for instance C. elegans, the water flea Daph-
nia pulex, a spiny lobster Panulirus argus, the sea squirt 
Ciona intestinalis, as well as the echinoderms Strongy-
locentrotus purpuratus and Asterias rubens (see [20, 25, 
102, 107, 108]). However, cloning and characterization 
of SKRs has been performed only for a more limited 
number of species: Drosophila, T. castaneum, Rhodnius 
prolixus, A. rubens, C. elegans and C. intestinalis [20, 
25, 32, 102, 105, 109]. Like in mammals and Drosophila, 
several insects and other invertebrates have two CCK-type 
receptors, or SKRs. However, in some only one SKR could 
be found in the genome: for instance brown planthopper 
Nilaparvata lugens, silkworm Bombyx mori and American 
cockroach P. americana, (see [20]). Also the starfish A. 
rubens seems to have only one SKR [32]. In cases that 
have been investigated, it appears that in insects that lack 
SK peptides also no SKR can be found in the genome, 
for example in pea aphid Acyrthosiphon pisum, the para-
sitic wasp Nasonia vitripennis and the parasitic nematode 
Meloidogyne incognita [20].

In Drosophila, sulfated DSK-1 and DSK-2 can both 
activate the two receptors CCKLR1 (CCKLR-17D3; 
CG32540) [42] and CCKLR2 (CCKLR-17D1; CG42301) 
[43] in different in vitro expression/assay systems. How-
ever, DSK-0, and the non-sulfated DSK-1 and DSK-2 can-
not active the receptors at physiological concentrations. 
The signaling downstream of the CCKLRs in Drosophila 
has been analyzed to some extent. DSK/CCKLR2 regula-
tion of larval neuromuscular junction growth was found 
to be mediated by the cyclic adenosine monophosphate 
(cAMP)—protein kinase A (PKA)—cAMP response 
element binding protein (CREB) pathway [110]. In the 
in vitro assays CCKLR1 coupled to both the Gq/G11 and 
Gi/Go signaling pathways [42] and the SK receptors of 
T. castaneum stimulated both the Ca2+ and cyclic AMP 
second messenger pathways [111]. Ligand-receptor 
interaction characteristics were modeled for the T. cas-
taneum SKRs (TcSKR1 and TcSKR2) [112] and the struc-
ture–activity properties of different SKs were monitored in 
the cockroach hindgut contraction assay and it was found 
that the C-terminal heptapeptide DYGHMRFamide with 
sulfated tyrosine and amidation is critical for activity [95]. 
Using the flour beetle T. castaneum as a model, stable 
agonists and antagonists of SK were developed, injected 
and found effective on food intake [113].
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As we shall see below, the two SKRs appear to be dif-
ferentially distributed and contribute to distinct functions in 
invertebrates (in those few species that have been studied).

Distribution of SK peptides and receptors 
in invertebrates

Peptide distribution

Table 1   Functions of sulfakinins in invertebrates

a Cells/neurons where SK signaling was manipulated. In other cases global action was assayed by various techniques
b Function shows result of increased SK signaling
c Function in Drosophila assessed by various genetic manipulations
d Injection of dsRNA
e Inhibits octopaminergic dorsal unpaired median (DUM) neurons that regulate foraging activity antagonistically to the orexigenic peptide AKH
f Also suggested that SK regulates feeding

Species Cells/neuronsa Functionb Reference

Insects
Drosophilac IPCs or all DSK neurons Decreases food intake, starva-

tion resistance and dilp2 
expression

[121]

Drosophilac IPCs or all DSK neurons Decreases food intake, 
increases male aggression

[140]

Drosophilac All DSK neurons
CCKLR-17D1

Increases male aggression, 
promotes social dominance

[44]

Drosophilac IPCs or all DSK neurons Increases male aggression 
(induced by social isolation)

[141]

Drosophilac MP1/MP3 neurons
CCKLR-17D3

Suppresses male sexual arousal [23]

Drosophilac MP1/MP3 neurons Suppresses sugar gustation and 
mediates satiety

[45]

Drosophila Peptide injections Larval odor preference and 
locomotion

[98]

Nilaparvata lugens Peptide injection
SK knockdownd

Suppresses sugar gustation and 
mediates satiety

[45]

Nilaparvata lugens Peptide injection Reduces digestive enzyme 
activity

[142]

Tribolium castaneum Peptide injection and SKR2 knockdownd Decreases food intake [104, 105, 113, 143]
Schistocerca gregaria Peptide injection Decreases food intake [144]
Gryllus bimaculatus SK knockdownd Decreases food intake [145]
Blattella germanica Peptide injection Decreases food intake [146]
Rhodnius prolixus Peptide injection Decreases food intake [116]
Rhodnius prolixus SK and SKR knockdownd Decreases food intake [109]
Phormia regina Peptide injection Decreases carbohydrate intake [147]
Periplaneta americana Electrophysiology and SK application Inhibits DUM neurons antago-

nistically to AKHe
[118]

Locusta migratoria Peptide injection Inhibits digestive enzyme 
secretion

[135]

Rhynchophorus ferrugineus Peptide injection Stimulates release of α-amylase [136]
Leucophaea maderae In vitro assay Myostimulatory on hindgut [24]
Zophobas atratus Peptide injection Fatty acid composition and ILP 

levels in oenocytes,
[137]

Tenebrio molitor Peptide injection Carbohydrate and ILP levels in 
hemolymph of larvae

[100]

Other invertebrates
Homarus americanus
(lobster)

In vitro assay Stimulates heart contractions [148]

Asterias rubens
(starfish)

Peptide injection Inhibits feeding and triggers stomach retraction [32]

Crassostrea gigas (oyster) In vitro assay Inhibits contractions in hindgutf [71]
Pecten maximus (scallop) Peptide injection Stimulates release of α-amylase [136]
C. elegans Genetic manipulation Modulates food-related behavior [27]
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In general, the cellular SK peptide expression in the nervous 
system is conserved among studied insects, but the distri-
bution in other arthropods has not been described in detail. 
Thus, it is hard to make wide comparisons even among the 
arthropod taxa. Also in the other invertebrates, data on the 
cellular SK distribution is scarce.

In insects SK expression is primarily seen in a small num-
ber of neurons and neurosecretory cells with cell bodies in 
the brain [114–118]. Generally, SK has not been found in 
neuronal cell bodies of the ventral nerve cord (VNC), or in 
enteroendocrine cells (EECs) of the intestine. One exception 
is the mosquito Aedes aegypti where SK immunoreactiv-
ity was detected in EECs of the midgut [119]. In the insect 
brain, the number of SK-producing neurons is small: for 
example, about 26 neurons have been detected in R. pro-
lixus [116], 20–24 in Drosophila (Fig. 4) [23, 44, 114, 120, 
121], and about 30 neurons in P. americana [117, 118]. In 
all these species the numbers of neurons include small sets 
of neurosecretory cells in the pars intercerebralis, with axon 
terminations in the corpora cardiaca and neurohemal areas 
on the anterior aorta, crop and foregut, suggesting roles of 
SKs as circulating hormones (or local modulators of endo-
crine cells or muscles). In Drosophila, it was shown that the 
DSK-expressing pars intercerebralis neurons are a subpopu-
lation of the 14 insulin-producing cells (IPCs) [121, 122]. It 
cannot be excluded that the axon terminations of the DSK/
DILP-containing IPCs on the crop release peptide that acts 
on crop muscle, as was shown for the peptide myosuppres-
sin released from similar neurosecretory cells [123, 124]. 
All studied insect species appear to have one or two pairs of 
large SK-expressing neurons with cell bodies and extensive 
processes in the brain and axons descending throughout the 
VNC (see [23, 114–116, 118, 125]).

The available data on the cellular distribution of SK in 
insects suggests a rather unique pattern compared to many 

other brain neuropeptides (see [16]). In addition to being 
excluded from gut EECs, SK is expressed in a few neurons 
with wide arborizations that invade neuropils interspersed 
between the so-called structured neuropils (also known as 
glomerular or columnar/layered neuropils). One exception 
is the DSK processes invading the lobula of the optic lobe 
in Drosophila, which is a columnar neuropil. Thus, there 
are no reports of SK-expressing neuronal branches in the 
central complex, the mushroom bodies, the antennal lobes 
or the rest of the optic lobe of insects (see Fig. 5). Also, 
there are no reports on clock neurons expressing SK. The 
arborizations in the Drosophila lobula are diffuse and irregu-
lar and derived from the two MP1a neurons (each neuron 
with branches bilaterally in both lobulae) (Fig. 5c, d). In 
Drosophila and other insects, two pairs of brain neurons 
have axons that descend throughout the VNC [23, 44, 114, 
115, 125]. In Drosophila, these are the MP1a and MP1b 
neurons [44].

There are other neuropeptides/peptide hormones in 
Drosophila that can be seen only in neurons with processes 
in non-structured neuropils. These are CAPA-PK, CCAP, 
DH44, GPB5, hugin-PK, DILPs, ITP, and LK (see [16], and 
furthermore they are not expressed in gut EECs [126]. Three 
of these peptides, DH44, hugin-PK, ITP, are however, also 
present in clock neurons [127, 128]. Interestingly the pep-
tides listed above are known to regulate metabolism, feeding 
and/or water and ion homeostasis in adult flies (see [16]. In 
summary, it appears that in insects SK is not a brain–gut 
peptide, in contrast to many other peptides (see [1, 129, 
130]). However, SK is likely to function both as a local neu-
romodulator and a circulating hormone. We will describe the 
detailed anatomy of the Drosophila DSK neurons in relation 
to their functions in a later section (Sect. 4).

In crustaceans, there is scarce information about cellular 
distribution of SK. In the shrimp Penaeus monodon, SK-
immunolabeled neuronal cell bodies were seen only in the 
brain [88]. One pair of large cell bodies give rise to descend-
ing axons running throughout the VNC, similar to those in 
insects, and there are six to eight additional smaller brain 
neurons [88]. SK was detected in axon terminations of the 
neurohemal organ in the eyestalks designated the sinus gland 
[131] and in the neurohemal pericardial organ [132] of the 
crab Cancer borealis. CCK-type peptide was furthermore 
identified in neuronal processes in the stomatogastric nerv-
ous system (STN) of this crab [133, 134]. The STN is known 
to house neuronal circuits that regulate rhythmic movements 
of elements in the internal feeding apparatus such as the 
gastric mill (for chewing) and pylorus (for pumping and 
filtering of chewed food). The distribution of CCK-type 
peptide suggests that it may act both as a neuromodula-
tor in local STN neurons, and as a circulating hormone to 
regulate rhythm-generating networks utilized during feeding 
and food processing [133, 134]. However, although several 

Fig. 4   Distribution of cell bodies of neurons expressing DSK in the 
Drosophila brain. Four of the insulin-producing cells (IPCs) co-
express DSK (the other IPCs are not shown). The MP1 and MP3 neu-
rons express the male splice form of the transcription factor fruitless 
(FruM). The designations of the DSK neurons are based on [114, 287, 
288]
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neuropeptides/peptide hormones have been investigated for 
their modulatory actions in the circuits of the STN, the func-
tion of CCK-type peptide remains to be tested.

In C. elegans the CCK-type neuropeptide NPL-12 is 
localized in one tail neuron with its cell body in the dorso-
rectal ganglion, and was identified as the ring interneuron 
DVA [25]. This neuron connects to the SMB motoneuron 
that regulates head movements during feeding and ven-
tral cord motoneurons controlling body wall muscles and 
thereby locomotion (see [27, 93]). The ventral cord moto-
neurons express the CCK receptor CKR2 and in presence 
of food the worms dwell and feed, whereas in absence of 
food they disperse under control of this circuit, which also 
includes sensory cells, as well as dopaminergic (PDE) and 
other peptidergic (AVK) neurons [27].

In the starfish A. rubens (Echinodermata) the CNS is 
organized in a radial fashion with a circumoral nerve ring 
and radial nerve cords. SK peptide was detected by in situ 
hybridization and immunohistochemistry to neuronal cell 
bodies and axonal processes in the so-called ectoneural and 
hyponeural regions of the CNS [32]. The neurons in the 

ectoneural region are predominantly sensory neurons and 
interneurons, whereas the hyponeural region houses moto-
neurons [32]. Furthermore these authors found SK neurons 
in the digestive system (esophagus, peristomial membrane, 
cardiac stomach, pyloric stomach, pyloric duct, pyloric 
caeca, intestine, and rectal caeca), tube feet and body wall. 
SK peptides were shown to trigger stomach retraction and 
inhibition of feeding in the starfish [32].

SK receptor distribution

The general distribution of SK receptors in major tissues 
has been assayed in some insects by PCR [100, 104, 105, 
109]. There are no data for the two DSK receptors in tissues 
of Drosophila in FlyAtlas, probably due to low expression 
levels. The cellular distribution of SK receptors has to our 
knowledge only been investigated in Drosophila [23, 44, 
45], the cockroach P. americana [118], and in the starfish 
A. rubens [32], but not in other invertebrates.

In Drosophila, different knock-in GAL4s into the gene 
loci of CCKLR-17D3 and CCKLR-17D1 were utilized for 

Fig. 5   Single-neuron labeling 
of DSK-producing MP neurons. 
a–f. Stochastic labeling of 
single MP3 (a), two MP3 (b), 
single MP1a (c and d) and 
single MP1b (e) neurons. Two 
MP3, one MP1a and one MP1b 
neurons are registered in a 
standard brain (f). Scale bars, 
50 μm. Note that the MP1/MP3 
neurons do not innervate central 
complex, antennal lobes or 
mushroom bodies. Figure from 
Wu et al. [23], with permission
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displaying the distribution of the DSK receptors [23, 44, 
45]. The two receptors appear to be largely differentially 
expressed, but detailed analysis was not performed to screen 
for any colocalization or for detailed neuronal expression 
(but see below). Both receptors display widespread distri-
butions in numerous neurons in the brain and VNC [23, 44, 
45]. CCKLR-17D1 is expressed in neurons of the optic lobe, 
fan-shaped body of the central complex, SEZ and numerous 
protocerebral neurons [44]. CCKLR-17D3 is expressed in 
fan-shaped body of the central complex, mushroom bodies 
and in a smaller number of neurons scattered in the protocer-
ebrum and SEZ [23, 44]. Furthermore, it was found that 
CCKLR-17D3 is expressed in subsets of gustatory receptor 
neurons (GRNs) in the proboscis and proleg tarsi that house 
the sweet sensing gustatory receptors Gr64f [45]. Recent 
work showed that CCKLR-17D1 is needed for modulation 
of aggression [44], whereas CCKLR-17D3 in suppressing 
sexual arousal and in sweet sensing [23, 45].

In the cockroach P. americana SK receptor protein was 
detected in octopaminergic dorsal unpaired median (DUM) 
neurons of the VNC and it was found that as a satiety signal 
SK depresses activity in these DUM neurons antagonisti-
cally to the orexigenic peptide AKH [118].

In the starfish A. rubens, the distribution of the single SK 
receptor was localized by immunocytochemistry to neurons 
in the CNS, tube feet, apical muscle, and digestive system 
[32]. Close apposition between SK peptide and SK recep-
tor was seen in the ectoneural neuropil in the circumoral 
nerve ring and radial nerve cords. These authors furthermore 
found that some SK producing neurons also expressed the 
SK receptor.

Functional roles of SK signaling in invertebrates

As seen in Table 1, SK signaling has been investigated in 
several species of insects, as well as in a few other inverte-
brates. Since Drosophila and the brown planthopper Nilapa-
rvata lugens have been studied in some more detail we will 
describe DSK functions in these insects separately in the 
next section.

In several insect species injection of SK peptide and 
double stranded RNA for RNA-interference (RNAi) to 
knock down SK and SKR have been utilized to show that 
SK signaling decreases food intake (references in Table 1). 
DSK injections furthermore decrease secretion of digestive 
enzymes in a locust [135], but increased α-amylase secretion 
in the palm weevil Rhynchophorus ferrugineus [136]. Other 
effects of SK determined after injections or by in vitro assays 
are stimulation of gut muscle contractions [24], effects on 
fatty acid-, carbohydrate- and insulin-like peptide levels in 
beetles [100, 137]. In the ascidian Styela clava mammalian 
CCK8 peptide acts to stimulate gastric enzyme secretion 
[138] and in another ascidian C. intestinalis the distribution 

of SK receptor in the siphon and ovary suggests a role for 
CCK-type signaling in feeding and reproduction [102].

Could loss of SK signaling in some insects be correlated 
with altered physiology and/or behavior? Some papers 
suggest so. For instance, SK/SKR could not be found in 
the genomes of the peach aphid Myzus persicae and pea 
aphid Acyrthosiphon pisum [139]. Since SK/SKR plays an 
important role in feeding behavior and aphids excrete hon-
eydew, which results in a substantial loss of energy, it was 
proposed that loss of the SK signaling system might lead 
to increased food intake to compensate for the energy loss 
[79]. Another suggestion is that a specific insect lifestyle 
could result in loss of SK signaling since parasitic wasps 
lack SK/SKR, whereas the social honeybee A. mellifera does 
not [78]. However, as mentioned above in an earlier section, 
lack of SK signaling could not be correlated with differ-
ences in feeding behaviors and other life history parameters 
or taxonomic relatedness of species in a study of 31 species 
of beetles 13 of which lack SKs [76]. Thus, it remains to be 
clarified whether a loss of SK signaling reflects behavior 
and physiology or if other peptidergic systems take over the 
role of SKs.

Multiple functional roles of CCK‑type 
signaling in Drosophila

Since DSK signaling in Drosophila has been quite well 
investigated at the cellular level, we provide a more detailed 
description here. We first outline the anatomy of the DSK 
neurons and the circuits they are part of. These circuits 
modulate aggression, courtship behavior, taste, foraging and 
feeding and seem to integrate multiple inputs from external 
and internal sensors. The studies reviewed here pertain to 
adult Drosophila males if nothing else is stated.

DSK signaling in Drosophila

In the Drosophila brain there are 20 distinct DSK-expressing 
neurons (Fig. 4) and a small number of additional neurons 
that are less consistently seen with immunolabeling and 
Gal4-expression [23, 44, 45, 114]. No DSK-producing neu-
ronal cell bodies were detected in the ventral nerve cord or 
intestine, although brain-derived axonal processes can be 
seen in the ventral nerve cord [44, 114]. The major types of 
DSK neurons that we will discuss here are a small subset 
of the IPCs in the pars intercerebralis [121, 122], and four 
pairs of median posterior neurons designated MP1 and MP3 
[23, 44, 114]. The functions of the other DSK neurons are 
not yet known.

It is not clear how many of the 14 DILP-producing IPCs 
that co-express DSK, since the DSK expression is varia-
ble, but at least four cells can consistently be seen in adults 



	 D. R. Nässel, S.-F. Wu 

1 3

188  Page 12 of 28

[121]. The IPCs send axons to the retrocerebral complex 
(corpora cardiaca–corpora allata and hypocerebral gan-
glion) as well as the anterior aorta, foregut and crop and 
additionally have branches (presumed dendrites and/or 
peptide release sites) in pars intercerebralis, tritocerebrum 
and SEZ (see [149, 150]). DSK-immunolabeling can be 
seen in these brain processes, but the peptide distribution 
in the other sites has unfortunately not been examined in 
Drosophila. However, in the American cockroach, the cor-
responding neurons have SK expressing axon terminations 
in the corpora cardiaca–corpora allata [117].

The MP1 and MP3 neurons are of three distinct types 
shown in Fig. 5 [23, 44]. Each of the two pairs of MP3 
neurons has wide ipsilateral arborizations dorsally in one 
brain hemisphere (Fig. 5a, b). The MP1a neurons are bilat-
eral with branches in the lobula and ventrolateral brain 
neuropils (including subesophageal zone, SEZ) in both 
hemispheres (Fig. 5c, d), as well as axons descending into 
the VNC where they innervate the accessory mesothoracic 
neuropil. MP1b neurons are bilaterally supplying branches 
to the midbrain and SEZ (Fig. 5e) and have axons to the 
VNC. Together these DSK neurons innervate a substan-
tial volume of the brain (Fig. 5f), but avoid the prominent 
centers such as the mushroom bodies, central complex and 

antennal lobes. Also the lamina, medulla and lobula plate 
of the optic lobe are devoid of DSK processes.

As seen in Fig. 6, the DSK-producing IPCs and the MP1/
MP3 neurons are in male flies part of circuits regulating 
sugar sensing, feeding, daily activity, aggression and court-
ship behavior (females have not been specifically studied). 
Furthermore, this figure shows that the DSK expressing neu-
rons are of different functional types (and molecular set-up). 
Thus, the IPCs express the octopamine receptor OAMB and 
are under influence of octopaminergic neurons [140, 151, 
152], whereas the MP1/MP3 neurons express the male splice 
form of the transcription factor Fruitless (FruM) and are con-
nected reciprocally to the P1 neuron cluster [23, 44]. Both of 
these types of DSK neurons receive direct or indirect signals 
reporting nutritional status and the MP1/MP3 neurons are 
additionally influenced by other internal and external factors 
(age and housing conditions) [23, 45, 153]. It can be noted 
that the IPCs are furthermore regulated by a number of other 
neurotransmitters, neuropeptides and systemic inputs that 
will be discussed in a later section. The other DSK neuron 
types have not been specifically investigated. We shall get 
back to this figure in the next section in the context of func-
tional DSK circuits.

As mentioned earlier, the distribution of the two DSK 
receptors CCKLR-17D1 and CCKLR-17D3 has been 

Fig. 6   DSK-expressing neurons in the Drosophila brain and their 
interactions with other neurons in regulation of behavior and physi-
ology. Of the DSK expressing neurons shown, only the MP1, MP3 
and a subpopulation of insulin-producing cells (IPCs) in the pars 
intercerebralis have been specifically implicated in regulation of 
feeding/metabolism, aggression and mating behavior. Their func-
tions are shown in the box with DSK action. The functional roles of 
the remaining (dark blue) neurons are not yet known. Other neurons 
shown are a pair of octopaminergic neurons (OAN), a pair (only a 
pair from a larger neuron cluster is shown) of fruitlessM (FruM) and 
doublesex (Dsx) expressing neurons (P1) and a sweet-sensing gus-
tatory receptor neuron (GRN) that expresses the gustatory receptor 
Gr64f, takeout and the DSK receptor CCKLR-17D3 (CCKLR). The 
OANs regulate activity in IPCs, probably including the ones express-

ing DSK, thereby regulating satiety (feeding), aggression and daily 
activity [140, 151]. It is not known if the OANs also interact with the 
MP1/MP3 neurons (indicated by ?). The MP1/MP3 neurons act on 
the P1 neurons to suppress male sexual behavior [23]. The P1 neu-
rons also regulate activity in MP1/MP3 neurons to modulate male 
aggression, and MP1/MP3 neurons are postsynaptic to P1 neurons 
as shown by trans-tango [44]. Furthermore, the MP1/MP3 neurons 
receive inputs mediating internal and external cues about age, meta-
bolic status, and housing conditions and thereby regulate mating, 
feeding and sugar sensing [23, 45]. After food intake, the MP1/MP3 
neurons suppress activity in the Gr64f-expressing GRNs to diminish 
sugar sensitivity and thereby food search and feeding [45]. The GRNs 
signal to circuits that regulate motivation to feed (Feeding Circuits)
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mapped in the Drosophila CNS by Gal4-driven fluores-
cence [23, 44]. The distribution has not been described at the 
cellular level though, except that a subset of the gustatory 
receptor neurons (GRNs) in the proboscis and proleg tarsi 
that also express the sugar receptor Gr64f have co-localized 
CCKLR-17D3 [45]. In male flies a subset of the P1 neurons 
also express CCKLR-17D3 [23]. Generally, the distribution 
of the two DSK receptors appear to match that of DSK pro-
ducing neurons processes, but they can also be seen in pro-
cesses in the fan-shaped body of the central complex (17D1 
and 17D3), in the optic lobe (17D1 and 17D3), and in the 
mushroom body lobes (17D3) [23, 44, 45]. This reflects the 
Gal4-driven GFP expression in the receptor expressing neu-
rons and not necessarily the distribution of receptor protein; 
the polarity of these neurons in terms of dendrites and axon 
terminations/output sites needs to be resolved.

Aggression and courtship behavior

In male flies, the MP1 and MP3 neurons express FruM and 
receive inputs from the male-specific P1 neurons that also 

express FruM [23, 44] (Fig. 6). These DSK neurons are 
thus part of a circuit that regulates male-specific behav-
ior. The P1 neurons constitute a heterologous set of about 
20 neurons that express FruM and are known to integrate 
chemosensory and other cues from potential mates and 
control sexual arousal, or cues from other males and regu-
late aggression [154–160]. Thus, the P1 neurons weigh 
sensory inputs to control two opposing behaviors. Inter-
estingly, the MP1/MP3 neurons play important roles in 
this circuitry by being postsynaptic to a subset of the P1 
neurons and acting on FruM positive neurons that express 
the DSK receptor CCKL-17D3 for sexual arousal and 
CCKL-17D1 for aggression [23, 44]. In Fig. 7, we show a 
simplified scheme of the circuitry that regulates aggression 
and courtship behavior, including the MP1/MP3 neurons. 
These circuits are interconnected by GABAergic neurons 
that form a switch between courtship and aggression [157]. 
In Fig. 6, we show that P1 neurons and some DSK neurons 
receive inputs from the external and internal environment 
that provide cues for activation of specific circuits.

Fig. 7   Neuronal circuits that regulate courtship behavior and aggres-
sion in Drosophila. In this simplified scheme, single neurons are 
shown even when multiple neurons are involved (e.g., P1, pC1, 
MP1/3 neurons). Circuits to the left regulate courtship behavior 
and those to the right aggression. Arrows show activation and stop 
bars inhibition. The gray arrows indicate indirect action via other 
neurons. The double arrows indicate a stimulatory recurrent circuit 
that involves pCD and NPF neurons that is known to sustain court-
ship motivation [167]. The neurotransmitters and neuropeptides 
utilized by some of the neurons are shown in the upper left corner. 
This scheme does not include the sensory inputs to P1 neurons and 
other neurons that mediate various signals from conspecific male 
and female flies. The P1 neurons are a subpopulation of the double-
sex-expressing pC1 neurons (light blue circle), as shown to the right 
[157]. Approximately 20 P1 neurons (FruM-expressing) are central in 
initiating courtship, whereas an unspecified number of P1/pC1 neu-
rons trigger aggression [157, 161–163]. The DSK-expressing MP1/3 

neurons are functionally associated with P1 neurons in both behav-
iors [23, 44]. Importantly, the Fru-expressing LC1 and mAL neu-
rons use GABA to switch P1 (or P1/pC1) neuron activity between 
courtship and aggression [157]. Thus, LC1 neurons are shown here 
schematically as interconnecting P1 and P1/pC1 circuits reciprocally 
in the two behavior circuits. In the real fly, this circuit is present in 
each hemisphere as shown in the inset. There is an inhibitory recur-
rent signal from copulation-reporting neurons in the abdominal gan-
glion to brain NPF neurons (not shown here). In the VNC, another 
set of abdominal neurons utilize GABA, glutamate and corazonin to 
regulate copulation under modulation by dopamine. In aggression 
P1 neurons and octopaminergic neurons (OANs) converge on aSP2 
neurons to promote aggression. Like in the courtship circuitry, pCd 
neurons ensure sustained aggression (A), but it is not known whether 
also here the NPF neurons are involved (indicated by ?). For further 
details, see the text. This figure is based on a figure in Lee and Wu 
[289] and is redrawn and updated with MP1/MP3 circuits
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The P1 neurons are a subpopulation of the doublesex-
expressing pC1 neurons [157]. About 20 P1 neurons receive 
various sensory cues from female flies and are central in 
initiating courtship, whereas an unspecified number of P1/
pC1 neurons trigger aggression based on sensory cues from 
other males or non-conspecifics [157, 161–163]. The DSK-
expressing MP1/MP3 neurons are functionally associated 
with P1 neurons in both behaviors [23, 44]. We shall start 
by describing the courtship circuitry (Fig. 7, left side). In 
courtship, the P1 neurons are triggered by sensory inputs 
and are modulated by dopamine from DA-SMPa neurons 
[164, 165], inhibited by DSK from MP1/3 neurons [23] and 
indirectly, via neuropeptide F receptor (NPFR) expressing 
DA-SMPa neurons, by NPF [166]. In support of the action 
of DSK from MP1/MP3 on P1 neurons, it was shown that P1 
neurons express the receptor CCKLR-17D3 [23]. A stimu-
latory recurrent circuit including pCD and NPF neurons is 
known to sustain courtship motivation [167]. P1 neurons 
indirectly act on pCd neurons to extend duration of court-
ship singing [168]. A set of Fru-expressing LC1 and mAL 
neurons use GABA to switch P1 (or P1/pC1) neuron activ-
ity between courtship and aggression based on sensory 
cues from flies of either sex [157]. The P1 neurons act on 
descending neurons (known as P2b/plP10 neurons) to acti-
vate courtship singing via pacemaker circuits in the thoracic 
neuromeres of the VNC [169]. Via various inputs the MP1/
MP3 neurons monitor internal and external signals such as 
metabolic status, housing conditions and ageing (Fig. 6) and 
based on the valence of these inputs they can inhibit the P1 
neurons and thereby suppress courtship behavior [23]. The 
MP1/MP3 neurons have axons descending into the VNC 
[44, 114], but whether they are involved in regulating cir-
cuits controlling courtship in these ganglia is not known. 
After copulation there is an inhibitory recurrent signal from 
copulation reporting neurons in the abdominal ganglion 
to brain NPF neurons that ensure that the activation of P1 
neurons cease [167]. Local circuits in the VNC comprise 
a set of abdominal neurons that utilize GABA, glutamate 
and corazonin to regulate copulation motor behavior under 
modulation by dopamine [170]. The MP1/MP3 neurons not 
only inhibit sexual arousal, they also suppress wakefulness 
and spontaneous walking, suggesting that DSK release has 
a general inhibitory effect on activity [23].

In virgin female flies, DSK also inhibits reproductive 
behavior via the CCKLR-17D3 receptor, by diminishing 
receptivity to courting males [23]. Female flies lack P1 neu-
rons, but have doublesex-expressing neurons (e.g., PC1 and 
pCd) that are critical for female receptivity [171]. Labeling 
experiments suggest that the DSK neurons are presynaptic 
to the sex-specific doublesex neurons. Thus, both in males 
and females DSK neurons interact with the sex-dimporphic 
doublesex neurons to suppress reproductive behavior [23]. 
A recent study (preprint) also reported a role of DSK in 

female reproductive behavior [172]. These authors found 
that the DSK expressing MP1 neurons act on the CCKLR-
17D3 receptor to regulate virgin female receptivity to mat-
ing males, as measured by copulation rate and copulation 
latency. Thus, the MP3 neurons appear to play no role in 
this behavior [172].

In male flies, P1 neurons and octopaminergic neurons 
(OANs) converge on aSP2 neurons to promote aggressive 
behavior [173] (Fig. 7). Like in the courtship circuitry, 
pCd neurons ensure sustained aggression [167], but it is 
not known whether also here the NPF neurons are involved 
in the circuitry, although NPF is involved in regulation of 
aggression [174]. As mentioned for courtship, the LC1-mAL 
circuit acts to switch P1 (or pC1) neuron activity between 
courtship and aggression. The MP1/MP3 neurons are post-
synaptic to the P1 neurons and upon activation they pro-
mote aggression by acting on neurons expressing the DSK 
receptor CCKL-17D1 [44]. There are additional neurons 
that regulate aspects of aggressive behavior that utilize NPF, 
tachykinin and serotonin [174–176], but their relation to the 
MP1/MP3 circuits are not known (and they are not shown 
in Fig. 7).

It can be noted that also in mammals there is an associa-
tion between circuits regulating aggression, reproduction 
and feeding, although not necessarily involving CCK. Such 
circuits are found in the hypothalamus and the neuroendo-
crine system, and it has been shown that neurons that are 
activated during aggression are inhibited during mating 
[177]. To some extent the functional analog of the hypo-
thalamus in insects is the pars intercerebralis [178–180]. In 
Drosophila, this region houses several types of peptidergic 
neurosecretory cells, including the 14 IPCs that produce 
DILPs and DSK [121, 149, 180–182]. There is some evi-
dence that the IPCs are involved in the regulation of male 
aggression [140, 141, 151, 183], and there seems to be to 
be a role of the co-localized DSK [140, 141], but the role of 
DSK in IPCs in courtship has not been tested.

Satiety and feeding in Drosophila and brown planthopper

Of the DSK expressing neurons, only the MP1, MP3 and a 
subpopulation of IPCs in the pars intercerebralis have been 
specifically implicated in regulation of satiety, feeding and 
metabolism [45, 121, 184] (Fig. 6). Knockdown of DSK in 
the IPCs or all DSK neurons, or inactivation of these neu-
rons via expression of a hyperpolarizing ion channel, leads 
to flies that ingest more food [121]. Interestingly, it suffices 
to manipulate DSK in the IPCs alone to affect feeding. The 
same manipulations also affect the flies’ choice of food so 
that they are less discriminative against bitter food [121]. It 
was also found that knockdown of DSK in IPCs or all DSK 
neurons led to an increase in dilp2, 3, and 5 transcript lev-
els in fed, but not in starved flies. Reversely, knockdown of 
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dilp2, 3, and 5, using a triple mutant, diminished Dsk levels 
in fed flies [121]. Thus, there seems to be an endocrine or 
autocrine feedback regulation of the two sets of neuropep-
tides. Another study also demonstrated that DSK knock-
down in IPCs increased total amount of food ingested and 
number of feeding bouts [184]. That study found that octo-
pamine increases feeding, but also Dsk transcription, sug-
gesting a negative feedback between octopamine and DSK in 
regulation of feeding. Neither of these studies addressed the 
mechanisms by which DSK induces satiety and decreased 
food ingestion.

More recently, experiments on Drosophila and the 
brown planthopper N. lugens dissected the role of DSK 
signaling in satiety in some more detail [45]. This study 
focused on the MP1/MP3 neurons and their interactions 
with other neurons (see Fig. 8). Feeding upregulates Dsk 
transcription in the brain and more specifically induces 
elevated DSK immunolabeling in MP1/MP3 neurons, as 
well as increased spontaneous activity and calcium sign-
aling in these neurons [45]. Thus, the MP1/MP3 neurons 
receive inputs from nutrient sensing neurons. Further anal-
ysis was guided by experiments in the planthopper. In this 
insect, an RNA-seq transcriptome analysis was performed 
after genetic downregulation of SK. Out of multiple genes 
with altered expression, a few genes of interest were found 
upregulated, namely those encoding sweet sensing gusta-
tory receptor neurons (GRNs) and the takeout gene [45]. 
This is interesting since gustation is necessary for probing 
the palatability of food sources [185, 186] and takeout is 
important in feeding behavior of flies [187, 188]. Further 
experiments in Drosophila [45] showed that food ingestion 
downregulates the sweet gustatory receptor Gr64f (and 
starvation increases it). Optogenetic activation of GRNs 
that express Gr64f increases the flies’ motivation to feed. 

Furthermore, knockdown of dsk leads to an upregulation 
of Gr64f transcription and optogenetic activation of the 
DSK expressing MP1/MP3 neurons decreases the sugar 
sensitivity of gustatory neurons [45]. The DSK receptor 
CCKLR-17D3 could be found in a subpopulation of the 
Gr64f-expressing GRNs in proleg tarsi, proboscis and 
maxillary palps, and feeding dowregulates expression of 
this receptor in the appendages [45]. It was also found 
that silencing of the Dsk gene negatively regulates takeout 
expression and intriguingly knockdown of takeout leads to 
an upregulation of Gr64f expression. Thus, in summary, 
food intake leads to DSK release from MP1/MP3 neurons 
which upregulates takeout and downregulates Gr64f in 
CCKLR-17D3-expressing GRNs. This decreases the sugar 
sensing and thereby food ingestion is reduced (Fig. 8). In 
the planthopper similar mechanisms were revealed [45]. 
Thus, DSK signaling nutrient-dependently modulates the 
sensitivity of sweet-sensing GRNs both in Drosophila and 
the planthopper, suggesting a conserved peptidergic sign-
aling pathway in these distantly related insects.

In Drosophila, it appears that the DSK-producing IPCs 
are not necessary for the interactions with sugar gustation 
and ensuing decreased feeding. This suggests that satiety 
signaling induced by DSK from the IPCs [121] is mecha-
nistically distinct and further studies are required to deter-
mine whether it is by hormonal activity or maybe action on 
contractions of the crop, which is innervated by the IPCs. It 
is also important to note that the DSK/SK satiety signaling 
described by Guo et al. [45] is mechanistically very differ-
ent from that shown for CCK in the mammalian gut—vagus 
nerve—hindbrain axis shown in Fig. 3. However, it might 
be that more similarities will be discovered in insects when 
compared to circuits in the brainstem and hypothalamus (see 
Sect. 2).

Fig. 8   DSK regulates sugar sensitivity and feeding in Drosophila. (a) 
The MP1/MP3 neurons receive nutrient signals of unknown origin. 
Upon feeding DSK is released and inhibits responsiveness of affer-
ent gustatory receptor neurons (GRNs) that express the DSK receptor 
CCKL17D3, as well as the sugar receptor Gr64f and the gene takeout 

(to). (b) Scheme depicting the action of MP1/MP3 neurons after food 
intake. It is likely that a parallel pathway acts on unknown neurons 
(indicated by ?) to decrease sugar sensing. Panel b is based on Guo 
et al. [45]
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Since a subset of the IPCs produce DSK [121] it is pos-
sible that the mechanisms that are known to regulate produc-
tion and release of DILPs affect the colocalized DSK in a 
similar way. This remains to be investigated. However, it was 
shown that Dilp2, 3, 5 mutant flies display decreased DSK 
transcript levels and also that DSK-knockdown in DSK-neu-
rons or in IPCs leads to increased dilp transcripts [121], sug-
gesting feedbacks between these peptidergic systems. Thus, 
it is possible that the intrinsic nutrient sensitivity of IPCs 
and the neuropeptides and neurotransmitters that regulate 
IPC activity also affect DSK production and release. These 
signaling substances are listed in Table 2 and would be of 
interest to investigate in relation to DSK signaling.

Does DSK interact with other peptidergic 
and aminergic systems in Drosophila?

There are several other neuropeptides involved in the regu-
lation of feeding, aggression and courtship in Drosophila. 
They are listed in Tables 3, 4 and 5, and the peptide distribu-
tion in neurons involved in feeding is shown in Fig. 9. These 
peptides act at different levels of relevant circuits either as 
neuromodulators or as circulating hormones and their dis-
tribution in the brain is widespread with cell bodies in many 
different areas (Fig. 9). The details of the circuits involving 
these neurons are beyond the scope of this review and the 
reader is referred to the papers listed in the tables for further 
information.

Also monoamines like dopamine, octopamine, tyramine 
and serotonin play important roles in these behaviors. 

Octopaminergic neurons regulate courtship [207] or choice 
between courtship and aggression [208, 209], aggression 
[140, 210], appetite [211], and feeding behavior [184, 212, 
213]. Tyramine is a satiety signal that in males supports 
courtship rather than feeding [214]. Dopaminergic neu-
rons modulate courtship [164, 215], aggression [216], food 

Table 2   Neuropeptides, peptide 
hormones and neurotransmitters 
that regulate IPCs in adult 
Drosophila, some of which 
produce DSK

a Another study found no TkR99D expression in IPCs and suggest that activation of IPCs is indirect via 
TkR99D expressing interneurons contacting IPCs [205]. In larval Drosophila, a pair of large TK express-
ing interneurons directly inhibit IPCs, but the specific receptor was not identified [206]

Peptide/SMN Source Receptor in IPCs References

Allatostatin A DAR2 [189]
CCHamide2 EECs CCHa2-R [190, 191]
DILP2,3,5 Autocrine feedback dInR [192]
DILP6 Fat body dInR [193]
DILP8 Tumors Lgr3 [194]
Dopamine Interneurons Dopamine R1 [195]
DSK Interneurons or autocrine Not shown [121]
GABA Interneurons GABABR2 [196]
Leucokinin Interneurons LKR [197, 198]
Limostatin Corpora cardiaca Pyrokinin receptor 1 [199]
NPF EECs NPFR [200]
Octopamine Interneurons OAMB receptor [151]
Pigment-dispersing factor Clock neurons PDFR [201]
Serotonin Interneurons 5-HT1A receptor [202]
sNPF Interneurons/LNCs sNPFR1 [203]
Tachykinin Interneurons TkR99D (DTKR)a [204]

Table 3   Neuropeptides that regulate aggression

Peptide Neurons References

DH44 DH44-R1 cells [223]
DSK IPCs, MP1/MP3 [44]
Natalisin Interneurons [224]
NPF Interneurons [174]
TK Interneurons [175]

Table 4   Neuropeptides that regulate mating and copulation

Peptide Neurons References

Corazonin VNC neurons [225, 226]
DH44 MNCs [227]
DSK MP1/MP3 [23]
MIP Interneurons VNC (females) [228]
Natalisin Interneurons [224]
NPF Interneurons [229–231]
PDF Clock circuit [229, 232]
Sex peptide Sperm transfer [232–235]
SIFa Interneurons [236, 237]
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search [217] and feeding behavior [218]. Serotonin modu-
lates courtship [219, 220], aggression [176], and feeding 
behavior [221, 222]. In circuits that regulate aggression and 
courtship behavior, the MP1/MP2 neurons cooperate with 
neurons utilizing NPF, dopamine and octopamine as shown 
in Figs. 6, and 7, but in other cases it is not known whether 
the monoamines and other neuropeptides interact with DSK 
neurons and DSK signaling.

Conclusions and future perspectives

In this review, we have discussed the evolutionary conserva-
tion of the structures of CCK-type peptides and their recep-
tors and some of their functions in bilaterian invertebrates 
and vertebrates. The relatedness between invertebrate and 
mammalian CCK-type signaling components was suggested 
already many years ago [24, 26, 33, 42, 106], but now we 
can see that also several of the functional roles of CCK sign-
aling appear to be evolutionarily conserved (see [32, 106, 
271]). These include roles in satiety signaling and regulation 
of feeding, digestion, aggression and courtship behavior [18, 
19, 23, 44–47, 62, 121, 135, 140, 272]. As will be discussed 
below, it is important to note that the “conserved functions” 
are only superficially similar and at a mechanistic level they 
differ in details and complexity between taxons. In contrast 
to the situation for mammals, there is not yet enough data 
in Drosophila or other invertebrates to reveal the complete 
circuits and pathways underlying DSK signaling in feeding, 
digestion, aggression and courtship behavior. In Drosophila 
some of this behavior regulation is by paracrine signaling 
in circuits within the CNS, and probably another part is by 
hormonal action via brain neurosecretory cells. In mammals, 

Table 5   Neuropeptides that 
regulate food search/feeding

Peptide Neurons References

AKH Corpora cardiaca cells [238, 239]
AstA Interneurons, gut EECs [189, 240–242]
CCHa2 Gut EECs, fat body [190, 191]
CRZ LNCs [243]
DH44 MNCs and VNC neurons [244–246]
DILPs IPCs [247–250]
DSK IPCs, MP1/MP3 [45, 121]
Hugin SEZ neurons [251]
ITP LNCs [252]
LK Brain neurons [197, 253]
MIP Brain neurons [254, 255]
NPF Interneurons [256–262]
Sex peptide Via sperm act in females [263–266]
SIFamide Interneurons [267]
sNPF OSNs-PNs, Interneurons MB circuits [250, 257, 261, 268, 269]
TK OSNs-PNs [270]

Fig. 9   Peptidergic neuroendocrine systems in the Drosophila brain 
that regulate feeding and associated behaviors in addition to the DSK 
neurons. The figure shows the distribution of cell bodies of peptider-
gic neurons that have been implicated in feeding-related behavior. 
These are neurosecretory cells in MNC (IPC and DH44-PI) and LNC 
groups (ITPn and DLP) and interneurons located in distinct brain 
regions (MP1 and MP3, CCAP, LHLK, PLP, NPF, SIFa, Hugin and 
SELK); a few of the Hugin cells are neurosecretory cells. The neuron 
groups indicated with asterisks are cell autonomously nutrient sens-
ing (only a subset of the DLPs), the MP1 and MP3 receive nutrient 
inputs, and the Hugin cells in the subesophageal zone receive gusta-
tory inputs. The peptides released from these cells are shown in the 
legend in the upper left part of the figure. Note that also circuits asso-
ciated with the mushroom bodies are linked to some of the peptider-
gic systems shown and are involved in regulation of food seeking and 
feeding [261]. There are also peptides derived from the intestine or 
corpora cardiaca that act on brain circuits to regulate feeding directly 
or indirectly (listed in the box in the bottom left of the figure). See 
text for further literature references. This figure was updated from 
Nässel and Zandawala [180]



	 D. R. Nässel, S.-F. Wu 

1 3

188  Page 18 of 28

there are further layers of CCK signaling served by periph-
eral neurons (e.g., CCKR-expressing vagus nerve neurons, 
VANs) and gut EECs [18, 19, 46, 47]. These layers seem 
to be lacking in insects, but may be present in a simpler 
form in echinoderms [32]. It is, however, possible that DSK 
released from IPCs in Drosophila acts directly on the crop, 
which is supplied by axon terminations of the IPCs. This 
might regulate crop contractions and thus provide a satiety-
induced effect similar to the gastric emptying triggered by 
the CCK-induced activity in the circuits of the vagus nerve 
afferents—brainstem efferents [18, 19, 46, 47].

It has been shown that CCK/SK act as local neuromodu-
lators in different circuits of the CNS in both insects and 
mammals, but detailed comparisons of the circuitry remains 
to be performed [19, 23, 44, 46, 273, 274]. In mammals, 
CCK is co-expressed in various brain neurons with dopa-
mine (DA), serotonin, GABA and other neuropeptides such 
as substance P, enkephalin, oxytocin and corticotropin-
releasing hormone [46, 275, 276]; see also [277] for further 
co-expression patterns suggested from single cell transcrip-
tomics data. Thus, CCK may function as a co-transmitter of 
dopamine, serotonin and GABA and as a co-modulator with 
other neuropeptides. Among invertebrates, we so far only 
know of the colocalization of DSK with DILPs in the IPCs 
of the Drosophila brain [121, 122], but systematic analysis 
has not been performed (however, see [278, 279]).

As noted above, the mechanisms by which CCK/SK 
induce satiety differ between insects and mammals. In mam-
mals, gastric distension leads to CCK release from EECs 
of the gastrointestinal tract that trigger CCKR express-
ing afferent neurons (VANs) of the vagus nerve to signal 
to neurons in the brainstem, leading to a reduction in food 
intake [18, 46–48]. Concomitantly, second-order neurons 
in the nucleus of the solitary tract in the brainstem signal to 
several brain centers (including hypothalamus) that regulate 
feeding, reward and ingestion. In insects the CCK-mediated 
satiety signaling known so far is by means of circuits in 
the brain that affect carbohydrate sensing by gustatory 
neurons and thereby food intake, although DSK from the 
brain neurosecretory cells (IPCs) also seem to contribute 
to other satiety mechanisms [45, 121, 140]. In C. elegans, 
the CCK signaling acts to alter locomotion associated with 
feeding, rather than direct reduction of food intake [27] and 
in starfish CCK-type peptide acts on muscle to retract the 
stomach and thereby stop food intake [32]. There is a need 
to further investigate the insect circuits involving SK and 
feeding since we do not know how the metabolic state is 
conveyed to the SK neurons or the neuronal mechanisms for 
the reduced food ingestion upon satiety. The regulation of 
feeding is complex in mammals, and both the peripheral and 
central mechanisms involve numerous neurotransmitters and 
neuropeptides [18, 280]. Also in Drosophila, multiple brain 
circuits and peptidergic systems, as well as a few peptides 

released from EECs, have also been identified in regula-
tion of feeding and metabolism (see Fig. 9 and Table 2). 
Due to this complexity, comparisons between mammals 
and insects regarding the complete circuitry are beyond the 
scope of this review. Also the DSK-associated circuits that 
regulate aggression and courtship behavior in Drosophila 
[23, 44] need further analysis and especially how the balance 
between the competing behaviors is accomplished.

Overall, the complexity of CCK/SK signaling varies 
depending on phylogenetic position of the organism and, 
thus, in mammals the range of pleiotropic actions is much 
wider than in insects. Yet we can show here that a relatively 
small number of DSK expressing neurons in the Drosoph-
ila brain have important roles in regulation of taste, satiety, 
feeding, activity, aggression and courtship. Most of these 
are interneurons that utilize DSKs in paracrine signaling 
in neuronal circuits within the CNS [23, 44, 45, 141], but 
a small set are neurosecretory cells (IPCs) that probably 
release DSKs and insulin-like peptides into the circulation 
for action on close or distant target tissues/organs, such as 
the crop, intestine and others [121]. In insects the hormonal 
action of SKs has not been explicitly verified by determi-
nation of peptides in the circulation. Some data, however, 
suggest hormonal action. Injection of SK regulates digestive 
enzyme activity and motility in the gut of insects, but the 
main part of the intestine is not innervated by SK producing 
neurons and no SK expressing EECs have been found [135, 
136, 142, 147]. Thus, the endogenous source of SK acting on 
the intestine is likely to be the brain neurosecretory cells. To 
confirm this, SK release needs to be detected in the hemo-
lymph and the distribution of DSK receptors in the periphery 
mapped to detect sites of action of SKs. Receptor expression 
data indicates low amounts of SKR1 and 2 transcript in heart 
and reproductive organs of R. prolixus [109], but data are 
lacking for other insects, including Drosophila.

One important finding is that DSK and specific small sets 
of DSK-producing neurons in Drosophila play a role in sev-
eral behaviors, some of which are conflicting. These are the 
FruM-expressing MP1/MP3 neurons that inhibit male court-
ship behavior, but stimulate aggression [23, 44]. The same 
neurons are also part of a satiety-inducing circuit that down-
regulates sugar sensitivity and appetite in fed flies [45]. The 
circuits involved in regulation of aggression, courtship and 
satiety/feeding are each composed of multiple neurons that 
utilize a multitude of neurotransmitters and neuropeptides 
(Tables 3, 4 and 5). Nevertheless, the MP1/MP3 neurons 
appear to be involved in the switching between conflict-
ing behaviors, probably by integrating different types of 
inputs that relay information about the external and inter-
nal environment. Other similar peptidergic brain systems 
are constituted for example by the four widely arborizing 
SIFamide-producing neurons that integrate sexual behavior, 
feeding and sleep by interactions with multiple brain and 
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VNC circuits [237, 267, 281, 282] and Hugin neurons that 
integrate homeostatic sleep signals and the circadian clock, 
and relays locomotor activity output in adults [283, 284]. In 
larvae, Hugin neurons receive gustatory inputs and form a 
hub between feeding and locomotion [251, 285], a function 
that is not yet explored in adult flies.

In conclusion, we still have a long way to go to fully 
understand the fascinating roles of CCK/SK and their recep-
tors in physiology and behavior of invertebrates. This pep-
tidergic system is also interesting from the evolutionary 
point of view, since it illustrates how CCK-type signaling 
can induce specific states such as satiety in mechanistically 
distinct ways in insects and mammals.
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