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Abstract
In recent years, generative adversarial networks (GANs) have gained tremendous popularity for various imaging related tasks 
such as artificial image generation to support AI training. GANs are especially useful for medical imaging–related tasks 
where training datasets are usually limited in size and heavily imbalanced against the diseased class. We present a systematic 
review, following the PRISMA guidelines, of recent GAN architectures used for medical image analysis to help the readers in 
making an informed decision before employing GANs in developing medical image classification and segmentation models. 
We have extracted 54 papers that highlight the capabilities and application of GANs in medical imaging from January 2015 
to August 2020 and inclusion criteria for meta-analysis. Our results show four main architectures of GAN that are used for 
segmentation or classification in medical imaging. We provide a comprehensive overview of recent trends in the application 
of GANs in clinical diagnosis through medical image segmentation and classification and ultimately share experiences for 
task-based GAN implementations.

Keywords  Generative adversarial networks · Medical imaging · Image segmentation · Image classification · Image 
generation

Introduction

Generative adversarial networks (GANs) have gained tre-
mendous popularity in the field of image processing and 
generation since their inception in 2014 [1]. GANs have 
been adapted for complex image processing tasks like 
image synthesis, data augmentation, semantic segmenta-
tion [2], image translation [3], generative image modeling 
[4], and domain adaptation. GANs have also been adapted 
for adversarial learning to build robust deep networks that 
can handle domain shift or bias in training data [5]. Sev-
eral survey papers have been written to track and analyze 
the application of GANs for image processing. Wang et al. 
surveyed the state-of-the-art GAN techniques in 2017 [6], 
while Kurach et al. focused on various loss functions, regu-
larization, and normalization techniques being used for GAN 

implementation [7]. Pan et al. [8] evaluated GANs from 
three main perspectives: (i) high-quality image generation, 
(ii) diversity of generated images, and (iii) stability of the 
training process.

While a majority of the GAN literature focuses on gen-
eral image processing tasks using public datasets like Ima-
geNet [9] and celebA [10], these architectures have also been 
gaining popularity in the field of medical image processing 
for segmentation and classification tasks. GANs have been 
applied across various imaging modalities including radio-
graphs, CT scans, and MRI. A combined literature search 
in PubMed, Science Direct, and Google Scholar for GAN 
and MRI, CT, and X-ray produced approximately 5000, 
8500, and 2800 results, respectively, in May 2020. GANs 
have also been used for medical image data synthesis and 
generation [11–13]. Our search found only a single recently 
published review paper [14] on the general application of 
GANs broadly in medicine, without diving deep onto any 
specific applications.

In this paper, we present a systematic review of the appli-
cation of GANs for medical image processing. We focused 
on two main aspects for our review strategy: (i) the final 
task (i.e., application) for the GAN-based model, focused 
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on classification, segmentation, or generation, and (ii) the 
modality of the input image, i.e., as radiograph, CT scan, 
and MRI. We excluded papers outside of medical image 
processing tasks as there are review papers already pub-
lished in this area [15, 16]. To the best of our knowledge, 
there is no systematic review of GANs in medical imaging 
that summarizes reported performances and discusses the 
implementation challenges for segmentation and classifica-
tion tasks. Our goal is to provide an overview of the signifi-
cant work in this field in a form that is easily digestible for 
a broad range of readers and highlight some pathways for 
quick GAN implementation.

The review is structured as follows: “Evidence Acqui-
sition” provides our methodology for selecting the publi-
cations for this systematic review. “Evidence Synthesis” 
provides the results of our survey. Finally, “Discussion” 
provides a meta-analysis, discusses advanced GAN architec-
tures, and key research challenges in terms of implementa-
tion. In supplemental materials, we provided an introduction 
of the fundamental terminology and algorithms related to 
GANs.

Evidence Acquisition

This systematic review was conducted based on the 
PRISMA guidelines [17], specifically taking into account 
the rationale, objective, and depth of the discussion of the 
GAN architecture.

Search Strategy

Figure 1 outlines the search strategy. First, the papers for the 
review were identified from three different sources: PubMed, 
Science Direct, and Google Scholar. The first screening pass 
identified papers pertaining to the keywords (“Generative 
Adversarial Network” or “GAN”) and (“medical image”). 
The addition of the keyword (“medical image”) was impor-
tant as it was the specific focus of our review and it also 
helped to exclude any irrelevant papers from our search 
with another common explication of (“GAN”): gallium 
nitride (GaN). Secondly, we excluded papers published 
before 2015. We used the KEYWORDS and YEAR based 
on the search criteria in the Publish or Perish software [18] 
to extract ~ 2000 papers for an internal review for study 
selection. Publish or Perish is a widely available software 
that retrieves and analyzes academic papers from various 
sources like Google Scholar and ScienceDirect. It generates 
useful analytics of each retrieved citation for a deep review 
of the literature such as the number of citations per paper 
and author.

Study Selection

Within the internal review for study selection, we selected a 
total of four reviewers (JJ, AT, TA, and IB). Each reviewer 
was given a random fourth of the papers for review. We 
assigned a fifth reviewer (JG) to resolve any conflict between 
the four. The primary exclusion criteria were (i) papers that 
were not peer reviewed, such as those in arXiv, and (ii) 
those that lack methodological details, such as conference 
abstracts. Finally, the papers eligible to be included in this 
study were selected using an agreed upon criteria between 
the raters based on specific targeted tasks image segmen-
tation, classification, or generation. For each paper, we 
reviewed the GAN model architecture, modifications made 
to a representative variant of GANs as shown in Table 1, and 
an application or architecture of interest.

Data Extraction

For benchmarking, the existing GAN approaches, in 
Tables 2–4, we extracted the following data from each of the 
selected articles: (a) authors/year of publication, (b) coun-
try of author, (c) clinical domain, (d) GAN architecture, (e) 
application of the task, (f) imaging modality, (g) number of 
samples for training and testing, and (h) reported performance 
for papers that generation, classification, and segmentation, 
respectively. The number of samples reported as the full data-
size including training, validation, and testing data. For classi-
fication tasks, we extracted area under receiver operating char-
acteristic curve (AUROC) whenever this metric was reported 
and extracted other metrics such as accuracy, sensitivity, and 
specificity. When the article contained several experiments, 
metrics from the experiment with the best performing model 
were extracted. These items were extracted to enable research-
ers to quickly find and compare current GAN architectures in 
their medical field or input modalities of interest.

Evidence Synthesis

Figure 1 presents a flowchart of the study screening and 
selection process. After removing duplicates and excluding 
studies based on title and abstract using our study selec-
tion criteria, 1206 studies remained for full-text screen-
ing. A total of 54 studies fulfilled our eligibility criteria 
and were included for systematic review and data extrac-
tion by our internal reviewers. To measure the consistency 
between the reviewers, we performed an inter-reviewer 
assessment study with 20 randomized papers, 10 selected, 
and 10 rejected from the combined list. To assess the 
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inter-reviewer agreement across the reviewers, we calculated 
the Fleiss’ Kappa statistic, a well-known and widely used 
index of the reliability of agreement across multiple review-
ers [38]. Across reviewers, a Fleiss’ Kappa of 86.67% was 
achieved for a significantly strong inter-reviewer agreement. 
Tables 2–4 show a comprehensive summary of the selected 
papers for review, stratified by task, and the following sub-
sections detail the benchmarking criteria.

Novelty of GAN Architectures

The most common variants of the vanilla GAN archi-
tecture used in medical images are (i) cGAN [19], (ii) 
DCGAN [22], and (iii) pix2pix [24]. Each variant of 
GANs and their key contributions to the vanilla GAN 
architecture is summarized in Table 1, and the hierar-
chical representation with modification to original GAN 

Fig. 1   PRISMA flow diagram for systematic review of GAN for medical Imaging
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architecture is shown in Fig. 2. The representative mod-
els in medical imaging and their architectures have been 
discussed in supplemental materials.

Recently, many variants of GANs are reportedly applied 
in medical images, with small and large modifications to 
the common variants mentioned while maintaining the 
overall adversarial network architecture. One common 
modification in these architectures is translating the 2D 
model to 3D to accommodate 3D radiological scans (e.g., 
CT, MR) instead of the traditional 2D images. These papers 
modified the GANs or variants of them to consider the 3D 
losses and generate 3D volumes of the target images like 
3D GAN (35) and 3D cGAN (36). Others used different 
loss functions, metrics, and architectural modifications to 
optimize and stabilize the network like Wasserstein GAN 
(37) and progressive growing GAN (PGGAN) (27) or for 
specific tasks like confidence GAN (26) for segmentation 
and fixed-point GAN (30) for generation. Nineteen papers 
in our review had unique names for their GAN models, 
but architecture-wise they were close variants of one of 
the three main variants GANs. From Table 1, we mapped 
the variant architectures to the representative GAN names 
by task and report them in Fig. 3b. Overall, most reported 
architectures share the same general adversarial network 
architecture and have similar implementation details to 
other GAN variants with small modifications for their tasks 
like encoding additional target characteristics for the gen-
erated images (38) or being tissue specific (28). However, 
some architectures introduce highly unique modifications 
such as fixed-point GAN (30) where the architecture can 
generate unique and diverse images while preserving “fixed 
points” such as backgrounds.

Targeted modality

Starting from 2017, GANs have been applied to various 
medical imaging modalities including screening modali-
ties, like x-ray (mammography and chest), ultrasound (US), 
retinal fundus images, dermoscopic images, and diagnostic 
imaging, e.g., magnetic resonance (MR), computed tomogra-
phy (CT), and positron emission tomography (PET) images. 
The two most common imaging modalities that GANs were 
applied to were MR with 21 studies and CT with 17 studies, 
each primarily focusing on the brain/chest and chest/abdo-
men regions respectively. Although a significant number of 
x-ray screening exams are performed every year in radiology 
departments, it was the third most common modality with 11 
studies focusing on the chest/abdomen and mammographic 
images. Finally, ultrasound, dermoscopic, PET, and retinal 
fundus images were in the minority with a few studies each. 
This could be due to limited availability of open-source data-
sets in these domains and the complexity of processing the 
images. Sample sizes of each modalities varied based on the 
availability of the data and dataset used to train the GAN, 
ranging from over 100,000 chest X-rays (50) and 38,000 
MRIs (40), to as little as 50 echocardiograms (41).

Medical Task

The distribution of the tasks within each modality was fairly 
uniform between GANs for image segmentation and GANs 
for image augmentation (for increasing training size for clas-
sification and segmentation tasks). However, the distribution 
of tasks within the total set of reviewed papers was heavily 

Table 1   Primary variants of GANs used in medical image analysis

Representative variants of GANs in medical images

Architecture Similar variants Description

cGAN (Mirza and Osindero [19]) DiagNet (Li et al. [20])
Feature2Mass [13]
confidence GAN (Nie and Shen [21])

Conditional GANs added conditional information, specifically 
class label information to the basic GAN architecture allowing 
the conditional training of GANs and conditional generation 
of images. This allows the generator to selectively generate an 
imbalanced class through label input

DCGAN (Radford et al. [22]) Progressive Growing GAN [23] Deep convolutional GANs explicitly stated the use of 
convolutional/convolutional-transpose layers and LeakyReLU/
ReLU activation layers with batch normalization to stabilize 
higher resolution GANs training and generation. It has been 
adopted as a stabilization technique for most current GAN 
architectures

pix2pix [24] and CycleGAN [25] Pancreas-GAN [26]
ScarGAN [12]
SPCGAN (Xing et al. [27])
fixed-point GAN [28]
SynSeg-Net (Huo et al. [29])

Pix2pix introduced the embedding of whole images as an input 
to the generator instead of random noise allowing a paired, 
image-to-image translation. CycleGANs introduced cycle 
consistency and identity losses allowing for unpaired training of 
the architecture
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skewed with 33 papers (60%) on GAN segmentation (21 
papers of direct GAN segmentation and 12 papers augment-
ing segmentation tasks with GANs), 13 (24%) papers for 
GAN generation, and 9 (16%) on GAN augmentation of 
classification. In the 21 papers on GAN augmentation for 
classification and segmentation, very few papers reported 
the generated augmentations with Chi et al. [39] and Shen 
et al. [40] reporting experiments with exactly half (50%) and 
a little more than half (54%) of the training set being GAN 
generated images respectively. We discussed the targeted 
tasks by dividing into the following two subsections: GAN 
generation/classification and GAN segmentation.

GAN Generation and Augmentation 
for Classification

A total of 24% papers in Tables 2 and 3 used GANs only to 
generate artificial medical images without any follow-up 

targeted. In such cases, the quality of the generated images 
was measured in both subjective and objective scale. Sub-
jective measures of generated image quality were visual 
inspections as well as true positive and negative detection 
rates of several radiologists when presented with real and 
generated images. Objective measures included compari-
son of image features of the real and generated lesions 
such as peak-signal-to-noise ratio (PSNR) and structural 
similarity index (SSIM). In most cases, GANs successfully 
generate realistic images with low PSNR and high SSIM. 
A total of 16% of the papers used GANs to generate more 
images to augment imbalanced classes for classification to 
increase the training size and increase the minority class 
which is usually diseased images. They reported a com-
bination of the final test set classification metrics such 
as accuracy, sensitivity, specificity, and area-under the 
receiver-operating-curve (AUC). Across the board, high 
metrics were reported; Yang et al. [41] reported an GAN 

Table 2   Benchmarking of the 13 selected manuscripts on GAN generation

Authors (first/last) Country Clinical GAN Application Imaging Sample
Year Domain Architecture Modality Sizes

Kwon/Kim 2019 (Kwon 
et al. [30])

South Korea Neurology 3D GAN Whole 3D brain MRI 
generation

MR Total: 1421
Train: 1421

Ossenberg/Grau 2019 
(Ossenberg-Engels and 
Grau [31])

UK Cardiology cGAN Cardiac MRI translation 
from end-diastolic to end-
systolic

MR Total: 38,000
Train: 33,500
Test: 4500

Chuquicusma/Bagci 2018 
(Chuquicusma et al. [11])

USA Pulmonology DCGAN Synthetic lung nodule 
generation

CT Total: 1145
Train: 1145

Islam/Zhang
2020 (Islam and Zhang 

[32])

USA Neurology DCGAN Synthetic brain PET image 
generation

PET Total: 411
Train: 411

Lee/Ro 2018 (Lee et al. 
[13])

South Korea Senology Feature2Mass Generation of breast masses 
with target characteristics

MR Total: 960
Train: 960

Siddiquee/ Liang 2019 
(Siddiquee et al. [28])

USA Neurology fixed-point GAN Generate new images with 
fixed points

CT MR Total 6540
Pulmonology Train: 4068

Test: 2472
Yu/Lu 2019 (Yu et al. [33]) China Ophthalmology pix2pix Multi-input generation of 

retinal images
Retinal Total: 141

CycleGAN Train: 141
Lau/Golden 2018 (Lau 

et al. [12])
USA Cardiology ScarGAN Simulation of scar tissue MR Total: 159

Train: 159
Zhang/Liu 2019 (Zhang 

et al. [34])
China Neurology Pulmonology SkrGAN Sketch guided image 

generation
X-ray Total: 12,709
CT MR Train: 12,709

Xu/Xu 2019 (Xu et al. [35]) USA Pulmonology 3D multi cGAN Generation of lung nodules 
conditioned from the 
background

CT Total: 1018

Zhou/Shao 2019 (Zhou 
et al. [36])

UAE Ophthalmology DR_GAN Using background and 
semantic features generate 
high resolution images 
with added manipulation

Retinal

Li/Menze 2019 (Li et al. 
[37])

Germany Neurology DiamondGAN Multi sequence image 
synthesis

MRI Total: 65
Train: 30
Testing: 35
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augmented classification accuracy, sensitivity, specificity, 
and AUC of 0.9171, 0.5833, 0.9774, and 0.8812, respec-
tively. When compared to the training results without 
GAN augmentation, there were improvements in overall 
metrics.

Improving Segmentation with GAN Augmentation 
and Translation

Exactly 60% of the papers in Table 4 used GANs for medi-
cal image segmentation task. A total of 21 applied GANs to 
directly translate the image into a segmentation map, while 
12 used GAN generated images to augment training of seg-
mentation models. The papers that used generated images 
to augment the training of segmentation models reported 
the final test set segmentation metrics of Dice-similarity 
coefficient (Dice) and sometimes reported the segmentation 
pixel accuracy, precision, sensitivity, and specificity. High 
metrics were reported in several papers, for example, lung 
nodule segmentation with GAN augmentation. Jin et al. [47] 
reported a Dice of 0.989 and cardiac ultrasound segmenta-
tion with GAN translation. Jafari et al. [48] reported a Dice 
of 0.941 ± 0.033, 0.936 ± 0.038, and 0.930 ± 0.039 for ED 
(end-diastolic), RF (random middle frame), and ES (end-
systolic) respectively.

Discussion

In this paper, we performed a systematic review of GAN for 
medical images based on PRISMA guidelines in “Evidence 
Synthesis”, and in the following subsections, we perform a 
multi-dimensional meta-analysis of the reported studies and 
discuss the limitations and reliability of the review.

Meta‑analysis by Modality

GANs have been popular on smaller datasets, including 
those private, institutional datasets with less than few 
hundred cases only since it can alleviate the limitations 
imposed of smaller dataset size, making them suitable 
for training complex deep learning based models. Other 
than the representative variants of GANs, there are many 
other variants of GAN such as ScarGAN [12], fixed-point 
GAN [28], and Pancreas-GAN [26]. We observed that most 
of the uniquely named architectures modified the repre-
sentative variants’ GAN architecture. These modifications 
include the transformation of a 2D cGAN architecture 
into a 3D cGAN [47], unique stacking, and the addition 
and transition of DCGAN layers into progressive growing 
GANs [23], and use of different loss functions like Was-
serstein loss to stabilize the training of traditional GANs 

Fig. 2   The hierarchy of various GAN architectures
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[59]. Figure 3a shows the distribution of papers stratified 
into the representative variants of GANs as well as vanilla 
GANs by image modality. The two most popular variants 
of GAN were cGANs and pix2pix. The ability to easily 
modify the vanilla GAN architecture and allowing the gen-
erator to learn the coarse features from the whole dataset 
and finetuning with class labels [19, 74] makes cGANs 
a popular choice for medical image analysis augmenta-
tion task, especially for handling class imbalance issues. 
Translational GANs like pix2pix architecture are popular 
with MR and CT images because they have the largest, 
high resolution, and already segmented datasets useful for 
segmentation training.

We also noticed that 3D architectures are popular with 
volumetric images from MR and CT. For example, Yang 
et  al. [41] focused on generating 3D CT lung nodules 
with specified disease classes, i.e., malignant or benign, 
in a masked volume in the lung. They used their trained 
3D cGAN to triple the imbalanced, malignant class, from 
the original 233 malignant cases for a total of 696 malig-
nant cases. With their augmentations, their pre-trained 
3D ResNet-152 showed a marked improvement in accu-
racy, specificity, and AUC. In practice, screening tests  

are performed on large patient populations compared to 
diagnostic tests. Large screening image datasets such as 
ultrasound [75] and X-ray [76] are usually widely available; 
however, such datasets suffer from severe class imbalance 
because most patients receiving screening tests have a nor-
mal exam. Therefore, GANs are mostly used to remedy class 
imbalance for such modalities to train task specific models. 
On the other hand, diagnostic tests are usually expensive 
procedures, performed only when necessary. As such, avail-
able datasets of such images are usually small and private. 
In these datasets, GANs are usually applied to both aug-
ment the available data and remedy any class imbalances 
for model training.

Meta‑analysis by Task

The task of GAN image generation is either evaluated 
though visual inspection and detection of fake images by 
reviewers and quantitative measures like PSNR, or through 
the performance of a follow-up task like classification. Simi-
larly, GAN image generation has been applied to augment 
the performance of a segmentation model, while GAN image 

Fig. 3   Multi-dimensional meta-analysis-distributions of the GAN 
publications over various factors: a publication counts stratified by 
imaging modality and GAN architectures. b Publications stratified by 

targeted task and GAN architectures. c Publications stratified by tasks 
and clinical domains
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translation has been used to directly translate an image to a 
segmented image. Figure 3b shows the distribution of tasks 
among selected publications against representative GAN 
architectures. It is evident that all architectures except for 
DCGAN are more popular for segmentation than they are 
for classification. While an adversarial network can be used 
to generate images, GANs can also be used to transform one 
image to another image, and this is applied to segmentation 
tasks where the input image needs to be transformed into its 
segmentation mask. However, DCGAN and other stabilizing 
variants are popular for the combined task of classification 
and image generation as DCGAN can generate high resolu-
tion images to give astounding improvements of 0.30 (from 
0.65 to 0.95) and 0.70 (from 0.90 to 0.20) in detection rate 
and false positives rates in the classification of metastatic 

liver lesions [42]. Additionally, DCGANs were combined 
with other variants of GANs like cGANs to create deep 
convolutional conditional GANs [77] and may have been 
included in other architectures but not explicitly stated in 
their methods.

Meta‑analysis by Clinical Domain

Selected publications cover several different clinical 
domains, from pulmonology, neurology, hepatology, to 
dermatology. As shown in Fig. 3c, image segmentation 
seems to be popular in several domains such as cardiology, 
senology, and neurology. Overall, the fraction of papers 
dealing with segmentation is greater than the combined 
fractions of classification and generation related papers for 

Table 3   Benchmarking of the 9 selected manuscripts on GAN classification

Acc accuracy, Sen sensitivity, Spe specificity, Prec precision, Dice Dice similarity coefficient, PSNR peak-signal-to-noise ratio, SSIM structural 
similarity index, MS-SSIM multi-scale SSIM

Authors (first/last) Country Clinical GAN Application Imaging Sample Performance
Year Domain Architecture Modality Sizes

Yang/Comaniciu 
2019 (Yang et al. 
[41])

USA Pulmonology 3D cGAN Lung nodule 
generation to 
augment task

CT Total: 1562 Acc: 0.9171
Train: 1249 Sen: 0.5833
Validation: 156 Spe: 0.9774
Test: 157 AUC: 0.8812

Doman/Mekada 
2020 (Doman 
et al. [42])

Japan Hepatology DCGAN Liver lesion 
generation to 
augment task

CT Total: 126 Detection
Train: 106 Rate: 0.95 

False Detection Rate: 
0.20

Test: 20

Bhattacharya/
Mitra 2020 
(Bhattacharya 
et al. [43])

India Pulmonology DCGAN Lung disease 
generation to 
augment task

X-ray Total: 27,524 Acc: 0.653
Train: 23,524
Validation: 2000
Test: 2000

Li/Laurenson 2019 
(Li et al. [20])

UK Senology DiagNet Breast mass 
generation to 
augment task

X-ray Total: 107 Acc:
Train: 86 0.934 ± 0.019
Test: 21 AUC: 0.950 ± 0.02

Frid Adar/
Greenspan 2018 
(Frid-Adar et al. 
[44])

Israel Hepatology Vanilla GAN Generate liver 
lesions to augment 
task

CT Total: 182 Sen: 0.857
Train: 63 Spe: 0.924
Validation: 63
Test: 62

Kim/Ro 2018 (Lee 
et al. [13])

South Korea Senology Vanilla GAN Generate breast 
masses to 
augment task

X-ray Total: 960 AUC: 0.908
Train: 768
Test: 192

Han/Hayashi 2019 
(Han et al. [23])

Japan Neurology PGGAN Brain tumor 
generation to 
augment task

MR Total: 12,979 Acc: 0.9108
Train: 8889 Sen: 0.8660
Validation: 1433 Spec: 0.9760
Test: 2657

Kaur/Rani 2020 
(Kaur et al. [45])

India Neurology GAN Generate images to 
augment data

MRI Total: 185 AUC 88.4%

Sedigh/Masouleh 
2019 (Sedigh 
et al. [46])

Iran Dermatology GAN Generation to 
augment data

Dermascopy Total: 97 Acc: + 18%
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Table 4   Benchmarking of the 33 selected manuscripts on GAN segmentation

Authors (first/
last)

Country Clinical GAN Application Imaging Sample Performance

Year Domain Architecture Modality Sizes

Jin/Mollura 2018 
(Jin et al. [47])

USA Pulmonology 3D cGAN Lung nodule 
generation to 
augment task

CT Total: 2000 Dice: 0.989
Train: 1966
Test: 34

Liao/Zhou 2018 
(Liao et al. 
[49])

USA Cardiology 3D GAN Translation of 
ICE images into 
segmentation 
maps with 
2D and 3D 
information

Ultrasound Total: 12,196 Dice: 92.1
Train: 9758
Test: 2439

Chaitanya/
Konukoglu 
2019 
(Chaitanya 
et al. [50])

Switzerland Cardiology cGAN Cardiac 
deformation 
generation to 
augment task

MR Total: 50 Dice:
Train: 25–28 RV:0.844 Myo: 

0.825
Validation: 2 LV: 0.924
Test: 20

Rezaei/Meinel 
2017 (Rezaei 
et al. [51])

Germany Neurology cGAN Translation of 
brain tumor 
images into 
semantic 
segmentation 
maps

MR Total: 285 Dice: 0.68
Train: 285

Gaj/Li 2019 (Gaj 
et al. [52])

USA Rheumatology cGAN Translation of 
knee MRI to 
segmentation 
maps

MR Total: 176 Dice: 0.88
Train: 122
Validation: 36
Test: 18

Saffari/Puig 2018 
(Saffari et al. 
[53])

Spain Senology cGAN Translation of 
breast density 
images to 
segmentation 
maps

X-ray Total: 410 Recall: 0.95
Train: 250 Precision: 0.92
Validation: 60 F-score: 0.93
Test: 100

Shen/Chen 2019 
(Shen et al. 
[40])

China Senology cGAN Breast mass 
generation to 
augment task

X-ray Total: 112 Sen: 0.9619
Train: 63 Spe: 0.9637
Test: 49 Dice: 0.9628

Nie/Shen 2020 
(Nie and Shen 
[21])

USA Urology confidence GAN Confidence map 
generation for 
segmentation

MR Total: 404 Dice: 0.8952
Train: 240
Validation: 60
Test: 104

Sandfort/
Summers 2019 
(Sandfort et al. 
[54])

USA Gastroenterology CycleGAN Non-contrast 
image 
generation to 
augment task

CT Total: 419 Dice:
Kidney: 0.66
Liver: 0.89
Spleen: 0.69

Chi/Kumar 2018 
(Chi et al. [39])

Australia Dermatology CycleGAN Melanoma 
generation to 
augment task

Dermascopy Total: 1279 Dice: 0.844
Train: 900
Test: 379

Liu/Jambawalikar 
2019 (Liu et al. 
[55])

USA Urology CycleGAN Translation of 
prostate MRI 
to synthetic 
prostate CT to 
augment task

CT MR Total: 526 Dice: 0.83 ± 0.13
Train: 346
Validation: 60
Test: 120
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Table 4   (continued)

Authors (first/
last)

Country Clinical GAN Application Imaging Sample Performance

Year Domain Architecture Modality Sizes

Jafari/
Abolmaesumi 
2019 (Jafari 
et al. [48])

Canada Cardiology Vanilla GAN Translation 
of cardiac 
ultrasounds to 
segmentation 
maps

Ultrasound Dice:

Total: 648 ED: 0.941 ± 0.033

Train: 518 RF: 0.936 ± 0.038

Test: 130 ES: 0.93 ± 0.039
Dong/Xing 2018 

(Dong et al. 
[56])

USA Cardiology Vanilla GAN Translation of 
chest X-rays to 
segmentation 
maps

X-ray Total: 247 Acc: 0.8778
Train: 198 Prec: 0.9772
Test: 49 Sen: 0.8421

Spec: 0.9557
Ning/Zhang 2018 

(Ning et al. 
[26])

China Gastroenterology Pancreas-GAN Translation of 
pancreatic CT 
to segmentation 
maps

CT Total: 80 Dice: 88.72 ± 3.23
Train: 60
Test: 20

Shin/Michalski 
2018 (Shin 
et al. [57])

USA Neurology pix2pix Brain tumor 
generation to 
augment task

MR Total: 3416 Dice: 0.86 ± 0.08
Train: 3416

Xue/Huang 2018 
(Xue et al. [58])

USA Neurology SegAN Translation into 
segmentation 
maps

MR Total: 274 Dice: 0.85
Train: 247
Test: 27

Xing/Tan 2020 
(Xing et al. 
[27])

China Senology SPCGAN Semi-pixel-wise 
translation into 
segmentation 
maps

Ultrasound Total: 640 Dice: 0.92 ± 0.04
Train: 399
Validation: 141
Test: 100

Huo/Landman 
2018 (Huo et al. 
[29])

USA Gastroenterology 
Neurology

SynSeg-Net Transfer learning 
and translation 
to segmentation 
map

CT MR Total: 5136 Dice: 0.872 ± 0.064
Train: 3262
Test: 1874

Enokiya/ Han 
2018 (Enokiya 
et al. [59])

Japan Hepatology Wasserstein GAN Translation into 
segmentation 
maps

CT Total: 416 Dice: 0.94
Train: 396
Test: 20

Tu/He 2019 (Tu 
et al. [60])

China Ophthalmology Wasserstein GAN Translation into 
segmentation 
maps

Retinal Total: 60 Acc: 0.9571
Train: 30 Sen: 0.7840
Test: 30 Spe: 0.9850

AUC: 0.9850
Neff/Urschler 

2018 (Neff 
et al. [61])

Austria Pulmonology Wasserstein GAN Chest X-ray 
generation to 
augment task

X-ray Total: 247 Dice: 0.9712
Train: 135
Validation: 30
Test: 82

Shi/Li 2020 (Shi 
et al. [62])

China Pulmonology AUGAN Translation into 
segmentation 
maps

CT Total: 4709 Dice: 0.869
Train: 3326
Test: 1413

Decourt/Duong 
2020 (Decourt 
and Duong [63])

France Cardiology DT-GAN Segmentation 
of the left 
ventricle

MRI Total: 5011 Dice: 0.88 ± 0.08

Lei/Wang 2020 
(Lei et al. [64])

China Dermatology DAGAN Skin lesion 
segmentation

Dermascopy Total:2596 Acc: 0.935,
Train: 2296 Sen: 0.835
Test: 300 Spec: 0.976

Dice: 0.859

Shi/Zhou 2020 
(Shi et al. [65])

China Pulmonology style based GAN Generate images 
to augment data

CT Total: 1010 Dice: 85.21%
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such fields. This is understandable as domains like cardi-
ology and senology where fast and accurate segmentation 
of organs and lesions like the heart or breast for quantita-
tive assessment are paramount for diagnosis and treatment 
planning.

The segmentation accuracy is varied in pulmonology, 
urology, and gastroenterology images likely due to the 
large inter- and intra-disease variations within images. 
The lean towards GAN segmentation may be spurred by 
general trends in medical research. While classification is 
important, the accurate segmentation of organs and lesions 
heavily influence the classification accuracy. In the overall 
clinical workflow, fast and accurate segmentation precedes 
classification and is an important step towards personalized 
medicine [78].

Meta‑analysis for Developmental Insights

In order to provide insights on three challenging aspects 
of GAN implementation, i.e., architecture stability, image 
handling, and applications of outputs, the authors have 
reviewed in depth several GAN architectures (vanilla GANs, 
DCGANs, and cGANs) and evaluated them on the same 
publicly available RSNA Intracranial Hemorrhage dataset 
[79].

First, the stability of the GAN architecture depends 
heavily on variability of hyperparameters used. Unfortu-
nately, in the literature, GAN implementations in medi-
cal images do not report the model architecture in detail 
nor their hyperparameters which limits the reproducibility 
of experiments. They generally refer to the architectures 

Table 4   (continued)

Authors (first/
last)

Country Clinical GAN Application Imaging Sample Performance

Year Domain Architecture Modality Sizes

Hamghalam/
Lei 2020 
(Hamghalam 
et al. [66])

China Neurology CycleGAN Generates 
HTC images 
to augment 
segmentation

MRI Total: 2000 Dice: + 0.8%
 + 0.6%, + 0.5%

Zhao/Shen 2018 
(Zhao et al. 
[67])

USA Surgery Deep-supGAN Segment bony 
structures from 
MRI and CT

MRI, CT Total 16 Dice: 0.9446

Yu/Zhang 2019 
(Yu et al. [68])

China Cardiology SC-GAN Vessel 
segmentation

Angiography Total: 1092 Dice: 0.824 ± 0.026
Train: 546
Test: 218
Val: 328

Shi/Xu 2020 (Shi 
et al. [69])

China Cardiology cGAN Segmentation 
mask 
generation

Angiography Total: 3873 CRA Acc: 83.53
Train: 3486 RIGHT Acc: 80.47
Test: 387

Kugelman/
Collins 2019 
(Kugelman 
et al. [70])

Austraila Ophthalmology GAN Generate images 
to augment data

CT Total: 99 SCI MAE: 5.82
ILM MAE 0.59
RPE MAE:0.51

Hamghalam/
Lei 2020 
(Hamghalam 
et al. [71])

China Neurology Enh-Seg-GAN Generate high 
contrast images 
to segment

MRI Total: 40
Train: 30 Dice: 0.89
Test: 10 Sen: 0.96

Dai/Xing 2018 
(Dai et al. [72])

USA Pulmonology SCAN Segmentation 
mask 
generation

X-ray Total: 247 Dice: 97.3 ± 0.2%
Train: 209
Test: 38

Xu/Li 2019 (Xu 
et al. [73])

Canada Cardiology PSCGAN Generate and 
segment heart 
disease

MRI Total: 280 RMSE:0.14
Acc: 97.17%

Acc accuracy, Sen sensitivity, Spe specificity, Prec precision, Dice Dice similarity coefficient, PSNR peak-signal-to-noise ratio, SSIM structural 
similarity index, MS-SSIM multi-scale SSIM
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mentioned in Table  1 with the default hyperparame-
ters from DCGANs [22]. From our implementation, we 
observed that the more stable an architecture is, the more 
forgiving the hyperparameters such as learning rates, betas, 
and decays of the generator and discriminator networks 
were in the training, e.g., a stable training was achieved 
over a wider range of learning rates. With an unstable 
architecture, the hyperparameters must be fine-tuned such 
for each optimizer so that one network, the weaker net-
work, is preferentially updated more often for a good bal-
ance between the generator and discriminator [80]. How-
ever, this can be rectified to an extent by stabilizing the 
architecture with some best practices such as architectural 
guidelines for DCGANs [22], i.e., using batch normaliza-
tions after convolutional transpose layers, to standardize 
activations from the previous layer and help facilitate the 
flow of gradients during training. Another way to improve 
the stability of GAN training is using different activation 
layers like Scaled Exponential Linear Units (SELU) instead 
of batch normalization and ReLU/LeakyReLU to combat 
the vanishing gradient problem. The benefit of SELUs is 
that it is a self-normalizating activation that is internal, 
which is faster than the external batch normalization, and 
makes vanishing gradients and exploding gradients impos-
sible [81].

Second, the input data itself has a significant effect on 
the architecture, computational load, and stabilization of the 
GANs. Although the overall shape of the GAN architecture 
may be the same, going from 2D images to 3D images poses 
significant challenges in training such as computational load 
and complexity of generator learning [82]. Preprocessing 
images like resizing, cropping, and processing a grayscale 
image to 3 channels for deep learning tasks is common [83], 
due to the availability of many popular pretrained networks 
[84] being trained on ImageNet [9] which has three color 
channels. We have observed that training a GAN using 
highly preprocessed images (e.g., the top performing solu-
tion to the RSNA Intracranial Hemorrhage Detection Chal-
lenge in 2019 that preprocessed the grayscale CT image into 
a 3-channel image that highlighted the brain, subdural, and 
bone regions, respectively [79]) made the training tremen-
dously unstable as the generator had to learn three sample 
spaces (at the same time. Overall, we achieved the optimal 
GAN performance on the RSNA head CT dataset by build-
ing a vanilla GANs, with the DCGAN architectural guide-
lines [22] as well as self-normalizing SELU [81] activations, 
and applying differential update rules for the generator and 
discriminator during training [80].

Finally, the applications of the output generated images 
are a key component of consideration in designing the GAN 
architectures. Most GAN architectures are trained and tested 
on 3 channel images with low bit-depth like ImageNet [9] 
and celebA [10]. However, in medical imaging, there are 

no color channels and the intensity ranges are significantly 
larger than the traditional 8-bit images such as CT images’ 
Hounsfield units (HU) ranging from − 2000 to 2000. While 
subjectively “good” medical images can be generated, if the 
goal of the image generation is for clinical use, the inverse 
transformation of the generated image to the raw HU in CT 
must be considered carefully as HU values are critical in 
radiotherapy planning [85]. As such, the GAN architecture 
must be adjusted to generate one channel images as three-
channel generation of a one channel image may not be as 
simple as an average of the channels or single selection. 
However, as mentioned above, while highly processed and 
3-channel images may lead to unstable training, it might 
be worth the effort in finetuning hyperparameters as the 
addition of three-channel images allows for a significant 
improvement in the desired task [79].

Limitations of the Review

Even though GANs have wide-ranging applications in vari-
ous fields, the scope of this review is limited to application 
of GAN for selected medical imaging tasks. We have also 
limited ourselves to papers published from January 2015 
to August 2020, while GANs were formally introduced in 
2014. We established a 1-year buffer for the development 
and testing of meaningful GAN-based models for medi-
cal images. To limit the scope of this review, we stopped 
reviewing papers published after May 2020. We also limited 
ourselves exclusively to radiological medical images, even 
though GANs have been used to process cell-phone images 
of skin or cervix [86]. The scope was also limited by focus-
ing on popular imaging tasks like segmentation, classifica-
tion, and data generation. Although GANs have been used 
for other tasks such as super-resolution, image denoising, 
and image modality translation, at the time our review, these 
tasks were rare and considered to be under the umbrella of 
the three main tasks through image translation such as PET, 
MR, or CT super-resolution Mahapatra et al. [87, 88, 89] 
and object detection and localization through the differences 
between the translated images, e.g., brain lesion and pulmo-
nary embolism localization in fixed-point GAN [28].

Reliability of Review

Our review is the first-of-its-kind systematic review focused 
on medical imaging–related application of GAN. Previously, 
GANs have been surveyed from the perspective of loss and 
optimization functions, state-of-the-art identification, super-
resolution, image denoising, etc. Publications selected for our 
review went through two filters. The first filter being a sys-
tematic process of searching through keywords among known 
medical imaging research databases. The second filtering 
was performed by three reviewers with very high inter-rater 
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reliability, i.e., Fleiss’ kappa of 86.67%. We also requested 
an independent reviewer to go through our selected publica-
tions to resolve any conflict. Therefore, the observations and 
results collected from our review are highly reliable.

Conclusion

In summary, the use of GANs in medical imaging applica-
tions has exponentially risen in the last few years. Over the 
course of our review, we have focused on the use of different 
variants of GANs to augment, balance the training of, or 
improve two main tasks: classification and segmentation. We 
have summarized their applications by task and description 
of their usage in Table 5.

Historically, the primary methods of addressing the class 
imbalance problem or lack of training data within deep 
learning have been image transformation methods such as 
flipping, rotation, blurring, and adding noise or increas-
ing the weights of the training images by class. However, 
while these traditional methods of augmentation increase 
the training sample space, it does not actively explore the 
true sample space like GANs. It has been demonstrated in 
our review that the GAN training and augmentation allow 
us to explore, interpolate between, and generate realistic 
but unseen samples. These generated samples still need to 
undergo strict testing and verification as one of the main 
concerns for the use of GANs in medical imaging is the 
realism or veracity of these images in clinical use. Initial 
studies have shown that GANs can fool radiologists [11], 
and papers discussed in our review have shown that GAN 
generated images do improve deep learning models. But the 
fundamental question of if these generated images that are 
actually or could be true, unseen samples in the real space 
remain. As such, more extensive verification of generated 
GAN images, other than visual verification by an expert, 
must be inquired for the state-of-the-art GAN methods for 
medical images such as testing the generalizability of GANs 
in real, out-of-distribution datasets. However, even with all 
this in mind, our review has shown that GANs have tre-
mendous potential in addressing many of the problems in 
medical imaging tasks.
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