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ABSTRACT
Background  Effective and safe therapies are needed 
for the treatment of patients with giant cell arteritis 
(GCA). Emerging as a key cytokine in inflammation, 
granulocyte-macrophage colony stimulating factor (GM-
CSF) may play a role in promoting inflammation in GCA.
Objectives  To investigate expression of GM-CSF and 
its receptor in arterial lesions from patients with GCA. To 
analyse activation of GM-CSF receptor-associated signalling 
pathways and expression of target genes. To evaluate the 
effects of blocking GM-CSF receptor α with mavrilimumab 
in ex vivo cultured arteries from patients with GCA.
Methods  Quantitative real time PCR, in situ RNA 
hybridisation, immunohistochemistry, immunofluorescence 
and confocal microscopy, immunoassay, western blot and ex 
vivo temporal artery culture.
Results  GM-CSF and GM-CSF receptor α mRNA and 
protein were increased in GCA lesions; enhanced JAK2/
STAT5A expression/phosphorylation as well as increased 
expression of target genes CD83 and Spi1/PU.1 were 
observed. Treatment of ex vivo cultured GCA arteries 
with mavrilimumab resulted in decreased transcripts of 
CD3ε, CD20, CD14 and CD16 cell markers, and reduction 
of infiltrating CD16 and CD3ε cells was observed by 
immunofluorescence. Mavrilimumab reduced expression 
of molecules relevant to T cell activation (human leukocyte 
antigen-DR [HLA-DR]) and Th1 differentiation (interferon-γ), 
the pro-inflammatory cytokines: interleukin 6 (IL-6), 
tumour necrosis factor α (TNFα) and IL-1β, as well as 
molecules related to vascular injury (matrix metalloprotease 
9, lipid peroxidation products and inducible nitric oxide 
synthase [iNOS]). Mavrilimumab reduced CD34 + cells and 
neoangiogenesis in GCA lesions.
Conclusion  The inhibitory effects of mavrilimumab on 
multiple steps in the GCA pathogenesis cascade in vitro 
are consistent with the clinical observation of reduced GCA 
flares in a phase 2 trial and support its development as a 
therapeutic option for patients with GCA.

INTRODUCTION
Giant cell arteritis (GCA) is a chronic inflamma-
tory condition affecting large and medium arteries 
in individuals older than 50 years. Common mani-
festations include headache, scalp tenderness, poly-
myalgia rheumatica and systemic symptoms.1 2 

Inflammation-induced vascular remodelling results 
in ischaemic complications or aneurysms.3

High-dose glucocorticoids (GCs) dramatically 
improve symptoms of GCA, but relapses occur in 
34%–75% of patients when GCs are tapered,4–6 

Key messages

What is already known about this subject?
	► GM-CSF transcripts were detected in temporal 
arteries from patients with giant cell arteritis 
(GCA) more than two decades ago.

	► More recently, GM-CSF protein has been shown 
to be produced and secreted by peripheral 
blood mononuclear cells from patients with 
active GCA and detected in GCA-involved 
temporal arteries by immunohistochemistry.

	► Expression of GM-CSF receptor and its 
functional role in GCA lesions has not been 
previously explored.

What does this study add?
	► The study demonstrates expression of GM-CSF 
and its receptor in distinct cell subsets in GCA 
lesions.

	► Moreover, GM-CSF receptor signalling is 
activated, and expression of typical target genes 
is increased.

	► Exposure of ex-vivo cultured arteries to 
mavrilimumab reduces CD16 and CD3ε 
cell infiltration and reduces key molecules 
involved in T cell activation and differentiation, 
expression of pro-inflammatory cytokines, 
markers of vascular injury and neoangiogenesis.

	► Taken together, these data point towards a 
relevant role of GM-CSF in the development of 
vascular inflammation and injury in GCA.

How might this impact on clinical practice or 
future developments?

	► The clear impact of mavrilimumab on key 
steps in the pathogenesis of GCA supports its 
further development as a therapeutic option for 
patients with GCA.
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leading to prolonged treatment and frequent GC-associated 
side effects.7 8 Blocking the interleukin 6 (IL-6) receptor with 
tocilizumab (TCZ) demonstrated efficacy in reducing relapses, 
sparing GC,9 10 and improving quality of life.11 However, more 
than 40% of patients treated with TCZ are unable to main-
tain GC-free remission and about 60% of responders relapse 
on discontinuation,12 indicating heterogeneity in response and 
underlining the need for alternative therapeutic options. TCZ 
also inhibits synthesis of acute-phase reactants, even without full 
suppression of disease activity, rendering their use unreliable for 
monitoring of disease flare.13 14

The search for additional therapeutic targets in GCA is 
hampered by the limited understanding of pathogenesis. Studies 
indicate that genetics, ageing and immune responses against 
unknown antigen(s) likely play a major role.15 16 Dendritic cells 
activated by innate immune mechanisms may drive adaptive 
immunity by stimulating T lymphocytes and promoting their 
differentiation into Th1 and Th17 effector cells.17–24 Concomi-
tant and subsequent activation of macrophages amplifies inflam-
matory loops, leading to vascular injury and remodelling.25–27

GM-CSF is a pro-inflammatory cytokine produced by fibro-
blasts, epithelial, endothelial, myeloid and T cells on stimula-
tion with other cytokines or pathogen-associated molecular 
pattern molecules.28–30 GM-CSF has a seminal role in disease 
progression in animal models of inflammatory conditions.28–30 
GM-CSF receptor is composed of an alpha-chain conferring 
specificity and a signalling beta-chain shared with other cytokine 
receptors (IL-3, IL-5 and IL-34).28–30 On GM-CSF binding, the 
receptor beta-chain predominantly signals through JAK2–STAT5 
pathway. GM-CSF acts primarily on myeloid cells, promoting 
activation of dendritic cells and macrophages and differentia-
tion of monocytes into dendritic cells, but other cell types may 
also respond.28–30 GM-CSF mRNA has been detected in arte-
rial lesions of GCA, and GM-CSF protein production by circu-
lating peripheral blood mononuclear cells from GCA patients 
is increased compared with healthy controls.22 24 According to 
its known biological functions, GM-CSF may have a role in 
promoting and amplifying vascular inflammation and injury in 
GCA.

Mavrilimumab is a fully human IgG4 monoclonal antibody 
able to neutralise GM-CSF effects by binding to the GM-CSF 
receptor alpha chain (GM-CSFRα).31 In a phase 2b trial in 
patients with rheumatoid arthritis, mavrilimumab showed 
comparable efficacy to anti-TNFα blocker golimumab and 
superior efficacy compared with placebo, as well as a good 
safety profile.32–34 The putative role of GM-CSF in critical 
steps of GCA pathogenesis suggests therapeutic potential for 
mavrilimumab in this disease, supported by a recent phase 2 
trial.35

This study aimed to investigate the expression of GM-CSF 
and GM-CSFRα in inflamed arteries from patients with GCA, 
to detect activation of GM-CSFR-related signalling pathways 
and modulation of downstream gene expression, and to inves-
tigate the impact of GM-CSFRα blockade with mavrilimumab 
on inflammation in ex vivo cultured arteries from patients with 
GCA.

PATIENTS AND METHODS
Patients
The study investigated samples from four different patient 
groups according to the processing of their biospecimens (clin-
ical characteristics of patients, controls and their samples: online 
supplemental table S1).

Temporal artery culture
Details have been previously described36 and are available in 
online supplemental methods.

In situ RNA hybridisation
RNAScope (RS) (ACDbio, Abingdon, UK) in situ hybridisation 
was performed on formalin-fixed paraffin-embedded (FFPE) 
sections of GCA and control temporal artery biopsies to detect 
transcripts of specific genes, including GM-CSF, GM-CSFRα, 
CD83 and Spi1 (PU.1). After fixation and sectioning, tissue was 
permeabilised and probed with target-specific double Z probes 
specific to single target mRNA, and hybridisation signals were 
further amplified for detection. Visualised with a microscope, 
each red dot represents a single target mRNA molecule. Expres-
sion score was calculated as RS score (dots/cell) multiplied by 
positivity score (% cells positive with   >1 dot/cell) (online 
supplemental table S2).

Candidate gene expression analysis
Candidate genes relevant to the immunopathogenesis of GCA 
were selected according to the current pathogenesis model15 16 
and known effects of GM-CSF in experimental systems.28 29 
Transcripts were detected by quantitative real-time PCR, details 
of RNA extraction, reverse transcription and fluorescence quan-
tification are provided in the online supplemental methods 
(online supplemental table S3).

Immunohistochemistry
Two micrometre thick temporal artery sections from FFPE 
samples were used for immunohistochemistry. After 20-minute 
antigen retrieval with citrate buffer (pH 6), samples were immu-
nostained with specific antibodies, using the Leica Microsystems’ 
Bond-max automated immunostainer and the Bond Polymer 
Refine Detection System (Leica Microsystems), developed with 
diaminobenzidine and counterstained with haematoxylin (anti-
bodies used, dilutions and optimised incubation times: online 
supplemental table S4-C). Positive and negative control tissues 
for protocol optimisation were selected from Human Protein 
Atlas (www.proteinatlas.org) and obtained from Institut d'Inves-
tigacions Biomèdiques August Pi i Sunyer Biobank.

Immunofluorescence
Immunofluorescence staining and imaging were performed with 
fresh-frozen or cultured temporal artery sections (online supple-
mental methods and online supplemental table S4-A).

Protein detection by western blot
Fresh-frozen temporal artery biopsies (TABs) from three patients 
with GCA and three controls were processed as described in 
online supplemental table S4-B.

Detection of proteins in the supernatants of cultured arteries 
and patient sera
Cytokines, chemokines or membrane-bound molecules released 
into artery culture supernatants were detected by immunoassay 
(online supplemental table S5).

Statistical analysis
Non-parametric Mann-Whitney U test and Wilcoxon matched-
pairs signed rank test were used for unpaired and paired data 
analysis, respectively, using Graphpad Prism software.

https://dx.doi.org/10.1136/annrheumdis-2021-220873
https://dx.doi.org/10.1136/annrheumdis-2021-220873
https://dx.doi.org/10.1136/annrheumdis-2021-220873
https://dx.doi.org/10.1136/annrheumdis-2021-220873
https://dx.doi.org/10.1136/annrheumdis-2021-220873
https://dx.doi.org/10.1136/annrheumdis-2021-220873
https://dx.doi.org/10.1136/annrheumdis-2021-220873
https://dx.doi.org/10.1136/annrheumdis-2021-220873
https://dx.doi.org/10.1136/annrheumdis-2021-220873
www.proteinatlas.org
https://dx.doi.org/10.1136/annrheumdis-2021-220873
https://dx.doi.org/10.1136/annrheumdis-2021-220873
https://dx.doi.org/10.1136/annrheumdis-2021-220873
https://dx.doi.org/10.1136/annrheumdis-2021-220873


526 Corbera-Bellalta M, et al. Ann Rheum Dis 2022;81:524–536. doi:10.1136/annrheumdis-2021-220873

Vasculitis

RESULTS
GM-CSF and GM-CSFRα expression is increased in GCA lesions
GM-CSF and GM-CSFRα transcripts were increased in 
homogenised temporal artery biopsies from patients with 
GCA, whereas GM-CSF mRNA was virtually undetectable, 
and GM-CSFRα expression was very low in control arteries 
(figure 1A,B). Transcripts for GM-CSF or GM-CSFRα mRNA 
were clearly detectable by in situ RNA hybridisation in all arte-
rial layers of GCA biopsies, whereas virtually no signal for either 
gene product was detectable in control arteries (figure 1C–E).

Immunostaining confirmed the presence of GM-CSF and 
GM-CSFRα protein on infiltrating inflammatory cells and endo-
thelial cells in GCA arteries. In contrast, no GM-CSF protein 
and only low levels of GM-CSFRα protein were detected in 
control arteries (figure 1F,G).

Cell subsets potentially expressing GM-CSF and GM-CSFRα 
in GCA lesions were explored. As illustrated by immunofluores-
cence in figure 2, GM-CSF was mainly observed in macrophages 
and luminal endothelial cells and, to a lesser extent, in T cells, 
intimal myofibroblasts, and endothelial cells from vasa vasorum 
and neovessels. GM-CSFRα was detected mainly in macro-
phages, giant cells, endothelial cells and intimal myofibroblasts.

Serum GM-CSF concentration at diagnosis was 0.061±0.02 
pg/mL (average±SEM) in patients with GCA and 0.035±0.02 
pg/mL in controls (p=0.889).

GM-CSF receptor-driven signalling pathways are activated in 
GCA lesions, and expression of molecules regulated by this 
pathway is increased
After observing higher expression of GM-CSF and GM-CSFRα 
in GCA-involved arteries, signalling molecules downstream of 
GM-CSFR were examined. As shown in figure 3A,B and online 
supplemental figure S1, JAK2 and STAT5A, the main signalling 
proteins activated by GM-CSFR engagement, were phosphor-
ylated in GCA lesions, and transcripts regulated by STAT5, 
such as Spi1 (PU.1) and CD83, were significantly increased in 
GCA arteries (figure 3C–G). CD83 and PU.1 protein, absent in 
controls, were clearly expressed in GCA arteries (figure 3H,I). 
PU.1 was detected in the nuclei, consistent with its function 
as transcription factor and suggestive of nuclear translocation 
on activation of upstream signalling. CD83 staining was more 
diffuse, possibly due to detection of its soluble form in addition 
to the membrane molecule.

GM-CSFRα inhibiting monoclonal antibody mavrilimumab 
reduces lymphocyte and myeloid cell markers in ex vivo 
cultured arteries from patients with GCA
To determine the contribution of GM-CSF to the above results 
and to assess the effects of GM-CSF pathway blockade on 
vascular inflammation, GCA arteries were cultured with anti-
GM-CSFRα, mavrilimumab, for 5 days. Compared with placebo, 
treatment with mavrilimumab resulted in reduced phospho-
STAT5 in lesions (figure 4A,B) and in lower mRNA expression of 
Spi1 (PU.1), a transcription factor that, along with STAT5, medi-
ates GM-CSF effects (figure  4C).28–30 Furthermore, treatment 
with mavrilimumab resulted in significantly lower mRNA levels 
for T cell marker CD3ε, B cell marker CD20, monocyte marker 
CD14 and myeloid cell marker CD16 mRNAs (figure 4D). By 
contrast, no consistent changes were observed with transcripts 
for the macrophage marker CD68. Accordingly, fewer CD16 + 
and CD3ε + infiltrating cells and no change in CD68 + cells 
were observed by immunofluorescence (figure 4F). The reduc-
tion in CD20 transcripts, however, did not result from decreased 

numbers of B cells in tissue during the duration of mavrilimumab 
exposure (figure 4E,F).

Mavrilimumab reduces expression of molecules involved in T 
cell activation and related to the Th1 differentiation pathway 
in ex vivo cultured arteries from patients with GCA
To further delineate the effects of mavrilimumab, expression of 
human leukocyte antigen-DR (HLA-DR) and CD83, relevant 
molecules to antigen presentation and T cell activation, was 
examined. Mavrilimumab significantly reduced HLA-DR and 
CD83 transcripts (figure 5A). Interestingly, concentration of the 
soluble, shed form of CD83, with counter-regulatory functions, 
did not decrease in the supernatant (figure 5A). HLA-DR reduc-
tion was also observed at the protein level (figure 5A).

To determine whether these effects resulted in decreased 
differentiation of T cells towards the Th1 or Th17 lineage, select 
markers were explored. Transcripts of master regulators of Th1 
and Th17 differentiation, TBX21 (T-bet) and RORC (RORγ), 
respectively, trended lower (figure  5B,C). Cytokines/chemok-
ines related to Th1 differentiation pathway (interferon-γ (IFNγ) 
and CXCL10) trended lower (mRNA level) or were significantly 
lower (protein level) (figure  5B). IL-17A mRNA was virtually 
undetected in cultured arteries (data not shown), and IL-23p19 
had disparate response among donors (figure 5C).

Mavrilimumab decreases pro-inflammatory cytokines in ex 
vivo cultured arteries from patients with GCA
Mavrilimumab elicited a significant reduction in the produc-
tion and release of pro-inflammatory cytokines IL-6, TNFα and 
IL-1β, mostly but not exclusively produced by macrophages 
(figure 6A). Mavrilimumab also decreased markers of M2-like 
phenotype, including the mannose receptor CD206 and the 
scavenger receptor CD163 (figure  6B). A trend towards an 
increase in the anti-inflammatory cytokine IL-10 (mRNA and 
protein) was also observed (figure 6B).

Further supporting these results, recombinant human 
GM-CSF increased expression of the main transcripts decreased 
by mavrilimumab (online supplemental figure S2)

Mavrilimumab decreases mediators of vascular injury in ex 
vivo cultured arteries from patients with GCA
Mavrilimumab decreased transcript and protein concentrations 
of the elastinolytic matrix metalloprotease 9 (MMP-9), whereas 
mRNA and protein of its natural inhibitor tissue inhibitor of 
metalloproteinases 1 (TIMP-1) remained unchanged, resulting 
in a significant decrease in proteolytic MMP-9/TIMP-1 balance 
(figure 7A,B). Mavrilimumab also reduced oxidative damage, as 
demonstrated by decreased presence of lipid peroxidation prod-
ucts (4-hydroxynonenal (HNE) protein adducts) in cultured 
arteries exposed to mavrilimumab as compared with placebo 
(figure  7C). NOS2 (inducible nitric oxide synthase [iNOS]) 
mRNA expression also trended lower (figure 7D).

Mavrilimumab reduces tissue angiogenesis in ex vivo cultured 
arteries from patients with GCA
Mavrilimumab reduced vascular endothelial growth factor A 
(VEGFA) mRNA in cultured arteries and VEGFA protein expres-
sion in tissue by immunofluorescence (figure 8A–C). However, 
no changes in VEGFA protein in the supernatant was observed, 
possibly due to its matrix-binding capacity and its autocrine/
paracrine function.37 Based on the reduction of this important 
angiogenic factor, we explored the effects of mavrilimumab on 
endothelial cell markers and angiogenesis. Mavrilimumab did 
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Figure 1  Granulocyte-macrophage colony stimulating factor (GM-CSF) and GM-CSFRα expression in GCA lesions. Concentrations of GM-CSF (A) 
and GM-CSFRα mRNA (B) measured by qRT-PCR in fresh-frozen histologically negative arteries (controls) (n=10) vs GCA-positive arteries (n=10). 
Results are expressed in relative units normalised to the housekeeping transcript GUSB. GM-CSF (C) and GM-CSFRα (D) RNA hybridisation signals 
(red dots) on control temporal arteries and GCA-involved arteries. (E) Quantitation of RS signal (expression score) in different arterial layers in 6 
GCA-involved and 5 control arteries. Immunostaining with anti-GM-CSF (F) and anti-GM-CSFRα (G) antibodies (brown colour) of FFPE normal or 
GCA-involved arteries (representative of 5 controls and 12 GCA arteries). A, adventitia layer; FFPE, formalin-fixed paraffin-embedded; GCA, giant cell 
arteritis; GM-CSFRα, GM-CSF receptor alpha chain; I, intima layer; M, media layer; qRT-PCR, quantitative real-time PCR; RS, RNAScope.
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Figure 2  GM-CSF and GM-CSFRα expression by immune and resident cells. Merged double immunofluorescence staining with anti-GM-CSF (A) or 
anti-GM-CSFRα (B) antibodies (both in green) and cell surface markers CD68 (macrophages), CD31 (endothelial cells), CD3 (T lymphocytes), CD20 (B 
lymphocytes) and SMA (identifying vascular smooth muscle cells and myofibroblasts) (all in red) of fresh-frozen temporal arteries from patients with 
GCA or controls (first panel). Nuclei are stained with DAPI (blue). Co-expression (orange/yellow) is pointed with arrows and insets show magnified 
double-positive cells (scale bars in figures measure 100 μm and 15 μm for insets). (C) Summary panel of GM-CSF and GM-CSFRα expression by 
different cell types in three GCA-involved temporal arteries detected by immunofluorescence as in A and B. +++: 50%–100% positive cells; ++: 20%–
40% positive cells; +: less than 20% positive cells; +/−: scattered cells; −: negative. DAPI, 4′,6-diamidino-2-phenylindole; GCA, giant cell arteritis; GM-
CSF, granulocyte-macrophage colony stimulating factor; GM-CSFRα, GM-CSF receptor alpha chain; SMA, smooth muscle actin; TAB, temporal artery 
biopsy; VSMC, vascular smooth muscle cells.
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not elicit changes in constitutive endothelial cell marker vWF 
or CD31 mRNAs but a decrease in CD34 mRNA, expressed by 
neovessels and haematopoietic stem cells (HSC) was observed 

(figure  8D).38 39 Immunofluorescence showed a reduction in 
CD31  + and CD34+ neovessels within inflammatory lesions 
on exposure to mavrilimumab (figure 8E,F). Scattered CD34 + 

Figure 3  Activation of GM-CSFR-driven signalling pathways and target gene expression in GCA lesions. Immunostaining of histologically negative 
temporal artery biopsies (control) and GCA-involved arteries with anti-phospho-JAK2 (A) or anti-phospho-STAT5 (B) antibody (brown colour). 
Representative of 12 GCA and 5 control arteries. mRNA concentrations of PU.1 (C) and CD83 (D), in fresh-frozen control and GCA arteries (n=10 
each group). PU.1 (E) and CD83 (F) RS images with positive red staining on control (n=5) and GCA temporal arteries (n=6), with their corresponding 
quantitation (G) in the intima, media and adventitia layers of the artery wall. Immunohistochemistry with anti-PU.1 (H) and anti-CD83 (I) antibodies 
on FFPE control and GCA arteries (brown). Representative of 12 GCA arteries and 5 controls. Magnification of each figure is indicated individually. 
FFPE, formalin-fixed paraffin-embedded; GCA, giant cell arteritis; GM-CSF, granulocyte-macrophage colony stimulating factor; GM-CSFRα, GM-CSF 
receptor alpha chain; RS, RNAScope.
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cells not aligned around a lumen were also observed in lesions 
and were reduced by mavrilimumab.

DISCUSSION
This study demonstrates expression of GM-CSFRα, the target 
of mavrilimumab, within the lesions of GCA-affected arteries 
and confirms the increased production of GM-CSF previously 
reported.24 40 41 Macrophages were the main cell type immunos-
tained for GM-CSF and GM-CSFRα in inflamed arteries. Luminal 
endothelial cells and, to a lesser extent, intimal myofibroblasts and 
endothelial cells from vasa vasorum and neovessels also expressed 

GM-CSF along with a small subset of T cells, presumably 
ThGM-CSF cells.30 GM-CSFRα was expressed mainly by macro-
phages, endothelial cells and intimal myofibroblasts, suggesting 
that these cell types would be the most responsive to GM-CSF.

Contrary to a report in granulomatosis with polyangiitis,42 
but similar to findings in other inflammatory conditions,28–30 
GM-CSF was barely detectable in serum from patients with 
GCA, with no differences from healthy individuals. This 
supports a paracrine function of GM-CSF in the inflammatory 
microenvironment and limits the utility of serum GM-CSF as a 
biomarker of disease activity.

Figure 4  Effect of mavrilimumab on inflammatory infiltrates in ex vivo cultured arteries from patients with GCA. (A) Immunofluorescence staining 
with anti-phospho-STAT5 antibody (green) of a GCA artery cultured with placebo or mavrilimumab. (B) Quantification of positive cells per field A; 
this experiment was performed three times with similar results. (C) mRNA Spl1/PU.1 transcripts in 11 cultured GCA-affected temporal arteries in the 
presence of placebo or mavrilimumab. (D) Transcript levels for cell markers CD3ε, CD20, CD14, CD16 and CD68 in 11 cultured GCA-involved temporal 
arteries exposed to placebo or mavrilimumab. (E) Quantification of cells per field that are positive for anti-CD16, anti-CD3Ɛ, anti-CD68, and anti-
CD20. (F) Immunofluorescence staining of cultured GCA-involved arteries in the presence of placebo or mavrilimumab with anti-CD16, anti-CD3Ɛ, 
anti-CD68, and anti-CD20 (red colour) and DAPI (blue). Representative of 3 GCA cultured arteries. Panel E is the quantification of panel F. DAPI, 
4′,6-diamidino-2-phenylindole; GCA, giant cell arteritis.
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Figure 5  Mavrilimumab decreases molecules related to T lymphocyte activation and differentiation. (A) mRNA transcripts of CD83 (left) and HLA-
DR (right) expressed in relative units and normalised to housekeeping gene GUSB in GCA-positive temporal arteries (n=11) cultured with placebo or 
mavrilimumab. Soluble CD83 measured (pg/mL) in supernatants of nine GCA cultured arteries exposed to placebo or mavrilimumab (central panel). 
Image shows HLA-DR expression by immunofluorescence in a GCA artery cultured with placebo or mavrilimumab. Images show detailed zoom 
amplification by confocal microscope with arrows indicating green HLA-DR-positive cells. Nuclei are stained with DAPI (blue). The graph on the right 
show the number of HLA-DR-positive cells per field in 9 fields per section. Immunofluorescence was performed in two GCA cultured arteries, with 
consistent results. (B) mRNA transcripts of TBX21 (T-bet), IFNG (IFNγ) and CXCL10 in GCA arteries cultured with placebo or mavrilimumab (n=11). 
IFN-γ and CXCL-10 proteins were also measured in artery culture supernatants of the same specimens. Results are expressed in pg/mL. (C) RORC 
(ROR-γ) and IL-23A mRNA measurement in cultured GCA arteries treated with placebo or mavrilimumab. DAPI, 4′,6-diamidino-2-phenylindole; GCA, 
giant cell arteritis; HLA-DR, human leukocyte antigen-DR; IFN, interferon.
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Detection of JAK2 and STAT5A phosphorylation in GCA 
lesions, along with increased expression of paradigmatic STAT5-
regulated molecules, such as CD83 and transcription factor Spi1/
PU.1,43 suggested activation of GM-CSF receptor-driven signal-
ling pathways. Increased expression of additional relevant STAT5 
or PU.1 regulated molecules, including major histocompatibility 
complex (MHC) class II molecule HLA-DR, adhesion molecules 
intercellular adhesion molecule 1 (ICAM-1) or vascular cell 
adhesion molecule 1 (VCAM-1), macrophage marker CD163, 
pro-inflammatory cytokines, such as IL-1 and TNFα, and metal-
loproteases such as MMP-9, has been previously demonstrated 
in GCA.44–48 Although these pathways can be activated by other 
cytokines, these data suggest active GM-CSF signalling in GCA 
arteries and a contribution of GM-CSF to the increased expres-
sion of key molecules involved in the pathogenesis of GCA.

To confirm the participation of GM-CSFR-mediated signal-
ling in the increased expression of these and additional relevant 
molecules and inflammatory cell markers, cultured temporal 
arteries from patients with histopathologically proven GCA 
were exposed to mavrilimumab. Treatment with mavrilim-
umab resulted in significantly decreased transcripts of lymphoid 
markers, including B lymphocyte surface molecule CD20 and T 
lymphocyte surface glycoprotein CD3ε. A significant decrease in 
classical monocyte marker CD14 and myeloid cell marker CD16 

mRNAs was also observed. In contrast, there was no consistent 
change in the expression of CD68, a scavenger receptor widely 
expressed by macrophages.

Mavrilimumab decreased expression of molecules produced 
by dendritic cells and B cells, which are essential for antigen-
presenting function/T cell activation, such as CD83 and HLA-
DR.49 50 This likely resulted in decreased Th1 differentiation, 
as indicated by reduced expression of Th1-related molecules, 
including IFNγ, TNFα and IFNγ-induced molecules such as 
CXCL10. Molecules related to Th17 differentiation, IL-1β and 
IL-6 were also decreased, but a more direct impact on IL-17 
production could not be assessed. Although we and others 
have previously shown increased IL-17 expression in affected 
temporal arteries from patients with GCA,18 21–23 baseline 
expression of IL-17 was very low in cultured arteries, possibly 
related to previous GC treatment in the majority of patients18 or 
to the possible impact of culture on certain molecules.36

Mavrilimumab had a significant impact on pro-inflammatory 
functions of macrophages and endothelial cells, including 
expression of IL-1β, TNFα and IL-6, and expression of adhesion 
molecules for leucocytes. It also tended to increase expression 
and release of the anti-inflammatory cytokine IL-10, produced 
by regulatory T cells and B cells and M2-type macrophages.51 
Mavrilimumab reduced MMP-9 expression with no change in 

Figure 6  Mavrilimumab impacts macrophage functions. (A) Transcript levels of IL-6 (left), TNFα (central) and IL-1β (right) in GCA-positive arteries 
(n=11) exposed to placebo or mavrilimumab (mRNA, relative units). IL-6, tumour necrosis factor α (TNFα) and IL-1β proteins (pg/mL) were also 
measured in GCA artery culture supernatants of the same samples. (B) CD206, CD163 and IL-10 mRNA transcript levels in the same GCA arteries 
exposed to mavrilimumab or placebo. IL-10 protein (pg/mL) was also detected in the supernatant (right panel). GCA, giant cell arteritis; IL, interleukin.
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expression of its natural inhibitor TIMP-1, thereby suggesting 
a shift in the MMP-9 proteolytic balance.47 Proteolytic enzyme 
MMP-9 has elastinolytic activity and may contribute to elastin 
degradation since it is expressed and activated in GCA lesions 
and in aortic tissue.52 MMP-9 may also contribute to GM-CSF-
induced aneurysm formation, shown in an animal model.53 
Macrophages present in GCA lesions have oxidative capacity as 
indicated by the presence of lipid peroxidation products (HNE) 
in GCA lesions.27 Treatment with mavrilimumab decreased 
HNE presence in cultured arteries indicating that mavrilimumab 
decreases oxidative damage in inflamed arteries.

The tuning in macrophage function induced by mavrilim-
umab does not parallel classical M1 (pro-inflammatory) or 
M2 (anti-inflammatory, reparative) phenotypes. Mavrilim-
umab reduced M1 markers, including HLA-DR and iNOS, and 
tended to increase M2 cytokine IL-10. However, mavrilimumab 
also reduced CD206 and CD163, which have been considered 

markers of M2 phenotype.54 It is important to remark that this 
distinction has been established mostly in in vitro differenti-
ated macrophages or in murine models. In humans, plasticity of 
macrophages is far more complex.54 For example, macrophages 
co-expressing CD206 and MMP-9 have been observed in GCA 
lesions41 and a population of pro-inflammatory CD14+ HLA-
DRhigh CD206+ macrophages has been identified in human viral 
hepatitis.55 Overall, mavrilimumab decreased the inflammatory 
and destructive potential of macrophages.

GM-CSF influences endothelial cell behaviour and stimulates 
angiogenesis in experimental systems.56 Accordingly, mavrilim-
umab reduced microvessel density in GCA lesions. In addition 
to its potential direct effects, our results indicate that GM-CSF 
regulates VEGFA production. Since CD34 is expressed not only 
by endothelial cells from neovessels but also by HSC, which have 
recently been identified in chronic inflammatory lesions and 
promoted by GM-CSF,57 58 we cannot exclude the possibility 

Figure 7  Effect of mavrilimumab on molecules related to vascular injury. (A) Transcripts of MMP-9, tissue inhibitor of metalloproteinases 1 
(TIMP-1) and MMP-9/TIMP-1 mRNA ratio in 8 GCA-positive temporal arteries cultured with placebo or mavrilimumab. (B) MMP-9, TIMP-1 protein 
concentration and MMP-9/TIMP-1 protein ratio in the corresponding supernatants (ng/mL). (C) Immunofluorescence staining of HNE (green) 
with nuclei (in blue) in a GCA-involved artery cultured with placebo or mavrilimumab, and its quantitation (right panel). Immunofluorescence 
was performed in two GCA cultured arteries, with consistent results. (D) NOS2 transcripts in 11 cultured GCA arteries exposed to placebo or 
mavrilimumab. GCA, giant cell arteritis; HNE, 4-hydroxynonenal; MMP-9, matrix metalloprotease 9.
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that some detected CD34 + cells were ectopic HSC. Mavrilim-
umab reduction of ectopic HSC may be a potential new relevant 
effect of mavrilimumab. Since neoangiogenesis is prominent in 
GCA lesions, and newly formed capillaries express adhesion 

molecules and recruit inflammatory leucocytes into arteries,45 57 
mavrilimumab could indirectly reduce leucocyte recruitment by 
decreasing neoangiogenesis in addition to its direct effects on 
myeloid and other cells

Figure 8  Mavrilimumab effect on angiogenesis. (A) Detection of vascular endothelial growth factor A (VEGFA) transcripts in 11 GCA-positive 
temporal arteries cultured with placebo or mavrilimumab. (B) Detection of VEGFA protein (pg/mL) in supernatants of eight respective arteries cultured 
with placebo or mavrilimumab. (C) Immunofluorescence with anti-VEGFA antibody of a GCA artery cultured with placebo or mavrilimumab (I, intima; 
M, media; A, adventitia). The graph on the right shows quantification of mean fluorescence intensity of the entire artery wall. (D) Measurement of 
PECAM-1 (n=8), vWF (n=8) and CD34 (n=11) transcripts in GCA cultured temporal arteries treated with placebo or mavrilimumab (relative units, 
normalised to housekeeping GUSB). (E) Quantification (positive cells per field) of immunofluorescence. Immunofluorescence was performed on 
two cultured biopsies with consistent results. (F) Immunofluorescence with anti-CD31 or anti-CD34 antibody of a GCA artery cultured with placebo 
or mavrilimumab. Inset images show zoom amplifications of positive (red) cells in areas of interest across the neointimal layer. Panel E is the 
quantification of panel F. GCA, giant cell arteritis.
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Our study has limitations, including the relatively small 
number of cases investigated, inherent to the low incidence of 
GCA and the need of viable fresh tissue. In addition, our model 
explores changes induced by mavrilimumab in a target organ 
isolated from a functional immune system. However, the effects 
of mavrilimumab observed were consistent with the known 
functions of GM-CSF obtained in a variety of experimental 
systems. Furthermore, due to the small amount of available 
tissue, our experiments were limited to a single time-point. We 
cannot exclude that effects could be more prominent at other 
time points. Finally, most arteries were obtained from patients 
who had previously received GC treatment, as currently advised 
by international guidelines on GCA suspicion.59 Previous GC 
exposure reduces baseline expression of a variety of mole-
cules, including GM-CSF.36 60 It would be possible that using 
treatment-naïve samples, changes would have been more prom-
inent. However, this setting better reflects the real world and 
mavrilimumab still adds to potential GC effects on key inflam-
matory molecules.

In summary, this study reveals for the first time, functional 
changes induced by mavrilimumab in a classical target tissue of 
GCA. Mavrilimumab impacts inflammatory pathways consid-
ered relevant to the pathogenesis of vascular inflammation 
and injury, and the results from a recent phase 2 trial in which 
mavrilimumab was superior to placebo (both with 26-week pred-
nisone taper) in reducing the risk of GCA flare and maintaining 
sustained remission35 validated the role of GM-CSF in GCA.
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