Skip to main content
. 2022 Feb 20;23(2):bbac022. doi: 10.1093/bib/bbac022

Table 1.

Results of classification of AD from CN

Top Random forest XGBoost CNN
Accuracy STD(±) AUC STD(±) Accuracy STD(±) AUC STD(±) Accuracy STD(±) AUC STD(±)
100 66.46 7.79 0.7137 0.0576 70.24 2.80 0.7266 0.0281 68.29 2.87 0.7216 0.0603
200 67.18 3.88 0.7175 0.0386 67.99 1.52 0.7166 0.0245 69.52 5.08 0.7182 0.0494
300 66.26 3.80 0.7098 0.0377 68.20 3.32 0.7029 0.0272 70.64 2.20 0.7250 0.0585
400 67.58 4.67 0.7074 0.0428 69.42 3.43 0.7177 0.0234 67.99 4.65 0.7167 0.0412
500 67.59 7.79 0.7111 0.0457 71.05 2.56 0.7381 0.0325 71.56 6.58 0.7411 0.0614
1000 68.31 5.22 0.7178 0.0445 73.08 2.89 0.7407 0.0372 73.91 3.87 0.7741 0.0444
2000 68.70 3.13 0.7372 0.0424 72.48 2.61 0.7509 0.0365 73.29 2.77 0.7782 0.0409
3000 67.78 3.59 0.7282 0.0351 69.62 4.27 0.7376 0.0328 73.80 2.40 0.7862 0.0282
4000 68.19 4.69 0.7263 0.0469 71.15 4.07 0.7412 0.0368 75.02 3.17 0.8157 0.0261
5000 66.25 5.41 0.7105 0.0399 70.74 3.14 0.7330 0.0305 73.19 4.72 0.8003 0.0506
10 000 66.26 5.59 0.6919 0.0528 69.63 3.27 0.7248 0.0211 71.05 6.57 0.7083 0.1424

Notes: The table shows the number of top SNPs selected based on phenotype influence score for AD classification and the accuracy and AUC of 10-fold cross-validation. Our CNN-based approach yielded the highest accuracy and AUC of 75.02% and 0.8157, respectively, for 4000 SNPs. In all cases, our CNN models outperformed two traditional machine learning models, random forest and XGBoost