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Abstract
Intertemporal choice requires a dynamic interaction between valuation and deliberation processes. While evidence
identifying candidate brain areas for each of these processes is well established, the precise mechanistic role carried out
by each brain region is still debated. In this article, we present a computational model that clarifies the unique contribution of
frontoparietal cortex regions to intertemporal decision making. The model we develop samples reward and delay information
stochastically on a moment-by-moment basis. As preference for the choice alternatives evolves, dynamic inhibitory
processes are executed by way of asymmetric lateral inhibition. We find that it is these lateral inhibition processes that best
explain the contribution of frontoparietal regions to intertemporal decision making exhibited in our data.
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Introduction
It can be argued that many of society’s ills depend to some extent
on weakness of self-control (Schroeder 2007). Obesity can be com-
batted by suppressing the desire to consume unhealthy but tasty
foods, addiction by overcoming drug craving, and anemic savings
rates by inhibiting the impulse to spend on the latest gadgets and
fashion. Failures of these behaviors are commonly cited instances
where the process of self-control was not used effectively
(Baumeister et al. 1994; Baumeister and Heatherton 1996;
Schroeder 2007; Hofmann et al. 2009; Wagner and Heatherton
2010; Heatherton 2011). In the laboratory, self-control is often
studied using intertemporal choice paradigms. These tasks
require participants to choose between rewards, most commonly
money, of different sizes available either immediately or at some
point in the future. Rates of temporal discounting estimated using
this paradigm differ with obesity (Weller et al. 2008) and drug
addiction (Bickel andMarsch 2001; McClure and Bickel 2014), indic-
ating the real-world validity of derived measures for the study of
self-control. Within commonly used intertemporal choice tasks,

self-control may be conceptualized as the set of processes that
support choosing delayed rewards, particularly in instances when
immediate rewards are subjectively highly valued (Figner et al.
2010; Crockett et al. 2013; but see McGuire and Kable 2013).

Recently, intertemporal choice research has focused on
understanding the neurobiological basis of temporal discount-
ing and the mechanisms by which self-control can be exerted
over impulsive decision making (McClure et al. 2004, 2007a;
Kable and Glimcher 2007; Hare et al. 2009; Figner et al. 2010;
Peters and Büchel 2011). It is now accepted that temporal dis-
counting depends on neural processes in the striatum and the
ventromedial prefrontal cortex (vmPFC) related to the construc-
tion of subjective value (Kable and Glimcher 2007; Peters and
Büchel 2011; Bartra et al. 2013). Similarly, there is considerable
agreement regarding the association of executive brain regions
including the dorsolateral prefrontal cortex (dlPFC), dorsomedial
frontal cortex (dmFC) and posterior parietal cortex (pPC) with
self-control (McClure et al. 2004, 2007a; Hare et al. 2009; Figner
et al. 2010; Peters and Büchel 2011; Essex et al. 2012). However,
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the mechanisms that explain how self-control is implemented
are debated.

At least 2 hypotheses have been proposed to explain the neu-
ral mechanisms of self-control. One hypothesis suggests that
self-control involves dlPFC modulation of temporal discounting
processes in the vmPFC (Hare et al. 2009, 2011, 2014). A logical
consequence of this hypothesis is the prediction that self-control
should necessarily be accompanied by changes in subjective
judgments of value. The second hypothesis suggests that the
dlPFC influences choice behavior without altering temporal dis-
counting processes (Figner et al. 2010). Using transcranial mag-
netic stimulation to disrupt neural activity, the proponents of
this latter hypothesis showed that inhibiting dlPFC increases
impulsive behavior without changing subjective value judgments
(also see Kelley and Schmeichel 2016). Although both hypotheses
have been supported empirically, they are mutually exclusive,
and neither provides detailed insight into how lower-level neural
processes produce self-control. Adjudicating between models is
impeded by the fact that neither hypothesis has been expressed
within a quantitative framework that permits explicit predictions
about the relationship between neural activity and behavior. Our
central aim is to generate a family of self-control models that
incorporates predictions expressed in the literature, situates
these predictions within process models that tie brain activity to
behavior, and permits formal model comparison.

We develop a computational model of the neural basis of
self-control and use it to provide an explanation for the roles
played by the dlPFC, dmFC, and pPC in overcoming impulsivity
in decision making. Our findings leverage evidence from previ-
ous studies implicating the dlPFC, pPC, and dmFC with action
selection during intertemporal choice to show that self-control
can be implemented as a biased form of action selection
(Rodriguez et al. 2015a). To this end, we designed an intertem-
poral choice task that allowed subjects to make decisions
reflecting both self-control and impulsivity. We defined a mea-
sure of self-control and used it to test for dlPFC, pPC, and dmFC
involvement with self-control as observed with functional
magnetic resonance imaging (fMRI). The model we develop
could be used to test and evaluate different formal hypotheses
about the mechanistic role that each brain region of interest
plays during intertemporal choice decision making.

Experimental Procedures
Subjects

A total of 21 healthy, right handed, adults participated in this
study (9 females, ages 18–45 years, mean 24.3 years). The sample
size was determined on the basis of other intertemporal choice
experiments we have reported (Rodriguez et al. 2014, 2015a;
Turner et al. 2016). All participants gave written informed consent
before completing the experiment. All procedures were approved
by Stanford University’s Institutional Review Board. Two partici-
pants were excluded from the behavioral and neuroimaging
analyses because their behavior did not allow us to estimate reli-
able temporal discounting parameters. Specifically, during the
scanning session (but not the preliminary staircasing session), we
obtained estimates of discount rates that suggested that they
always preferred the smaller, sooner (n = 1) or larger, later (n = 1)
rewards. These estimates indicated that the subjects’ behavior
did not permit accurate estimates of their temporal discounting
using our choice set, which made some model-based analyses of
the brain activity impossible. We therefore omitted their data

from several analyses, leaving a total of 19 subjects in these
analyses (7 females, ages 18–45 years, mean 24.8 years). Because
we did not assume a hyperbolic discounting function in the gen-
erative model, we included the data from all 21 subjects when fit-
ting the hierarchical models to data.

Task and Stimuli

Participants completed 2 intertemporal choice tasks. The first
task used a staircase procedure to measure each individual’s
discount rate k, assuming a hyperbolic discounting function

=
+

( )V
r

kt1
, 1

where V is the subjective value of a delayed reward, r is the mon-
etary amount offered, and t is the delay. The staircase procedure
required participants to select between a larger delayed reward
(of r dollars available at delay t) and a smaller but less delayed
reward of $10 or $20, available within 0 or 15 days. We will refer
to the larger and more delayed reward as “larger later” (LL) and
the smaller but less delayed reward as “smaller sooner” (SS). For
any choice, indifference between the LL and SS options implies a
discount rate of = ( − )( )−k r V V tLL SS SS LL

1, where rLL is the amount of
the LL option, tLL is its delay, and VSS is the discounted value of
the SS option after applying Equation (1) to it. We refer to this
implied equivalence point as keq; the procedure we implemented
during the first task amounted to varying keq systematically until
indifference was reached. Specifically, we began with =k 0.02eq . If
the subject chose the delayed reward, keq decreased by a step size
of 0.01 for the next trial. Otherwise, keq increased by the same
amount. Every time the subject chose both a delayed and an
immediate offer within 5 consecutive trials, the step size was
reduced by 5%. Participants completed 60 trials of this procedure.
We placed no limits on the response time, and presented both
offers on the screen, the SS offer on the left, and the LL offer on
the right. We collected fMRI data during the second experimental
session (Fig. 1A). Before the second task began, we fit a softmax
decision function to participants’ choices during the first task. We
assumed that the likelihood of choosing the LL reward was given
by the following equation:

* =
+

( )− ( − )P
1

1 e
, 2LL m V VLL SS

where m accounts for sensitivity to changes in discounted value.
We simultaneously estimated the parameters k and m from
Equations (1) and (2) for each subject using the maximum likeli-
hood function available in MATLAB. As is common in most delay
discounting models, we assumed the responses were indepen-
dent and identically distributed. With the parameters describing
each individual’s discounting behavior, we could evaluate the rel-
ative attractiveness of each choice. Consequently, we could
examine a subject’s ability to exhibit self-control by providing
offers of varying levels of attractiveness.

We develop a conceptual model of self-control for our task
at the beginning of the Results section. In brief, we argue that
self-control is evident when subjects choose larger, later
rewards and increases as the temptation to choose the smaller,
sooner options increases (captured by the estimated probability
of choosing the SS reward for that trial). Mathematically, self-
control exhibited on trial i is therefore equal to

⎧⎨⎩=
( * ) =

=
( )SC

F P if choice LL

undefined if choice SS
, 3i

SS i,
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where F is an unknown, monotonically increasing function,
and * *= −P P1SS i LL i, , . To approximate the shape of F, we assumed
SCi was a first-order linear function of *PSS i, , so that

∝ * ( )SC P . 4i SS i,

For convenience, we further assumed the function F cen-
tered SCi about zero by setting

( ) = − ( )F x x 0.5. 5

Equations (3–5) specify a few noteworthy predictions about
self-control, as measured in this article. First, self-control is
maximized when a LL choice is made and *PSS is largest (i.e.,

=SC 0.5, when * =P 1SS ). Second, self-control is minimized when
*PSS is the smallest (i.e., = −SC 0.5, when * =P 0SS ). Third, when

both options are equally attractive (i.e., * *= =P P 0.5SS LL ) and a LL
choice is made, self-control obtains an intermediate value
(arbitrarily equal to zero in our model). Finally, as self-control is
only defined when LL alternatives are selected (see Equation (3)),
trials in which a SS alternative is chosen cannot be used in our
analyses below.

We also developed a measure of impulsivity to compare
against the specific influence of self-control. To do this, we
defined an orthogonal measure to SCi

⎧⎨⎩=
=

( * ) = ( )I
F P
undefined if choice LL

if choice SS
. 6i

LL i,

Equation (6) captures the intuition that I is (1) greatest when
the SS alternative is chosen and *PLL is maximized, (2) smallest

when the SS alternative is chosen and *PLL is minimized, and (3)
zero when * *≈P PLL SS.

Given these assumptions about how self-control relates to
the relative subjective attractiveness of each offer, self-control
can be studied parametrically by treating *PSS as the independent
variable in our experiment. To maintain balance between the
attractiveness of the SS and LL alternatives, we imposed the fol-
lowing levels of the independent variable * { }P : 0.1,0.4,0.6,0.9LL .
Each level of *PLL can then been treated as a condition in our
experiment, conditions we refer to as PLL.

Trials began with the presentation of an offer of either $20
(available at 0 or 15 days) or $40 (available at 15 or 60 days).
This offer was kept on the screen for 1.5 s. A fixation cross
was then shown for 6 s, followed by a second offer. When the
first offer was $20, the second offer was an LL reward.
Conversely, when the first offer was $40, the second offer was
an SS reward. To establish the imposed PLL conditions, we first
selected a pseudorandom delay and then computed the rLL or
rSS that satisfied Equations (1) and (2) for the intended PLL con-
dition. When the second offer was an LL reward, the delay
was uniformly selected from a range of 16–46 days. When the
second offer was an SS, the uniform delay range was 0–14
days. Subjects completed a total of 160 trials, 40 at each condi-
tion level of PLL. Trial types were randomized and counterba-
lanced over 4 blocks.

Choices for the first offer were indicated by pressing a button
with the right index finger, whereas choices for the second offer
were indicated by pressing a button with the right middle finger.
This procedure naturally counterbalanced the finger used for
selecting SS and LL rewards. We measured RT relative to the
presentation of the second offer. Subjects were given a

Figure 1. Experimental design and results. (A) Offer pairs were presented sequentially. The first offer was presented in red and remained on screen for 1.5 s. After a 6 s

delay, a second reward was presented in green. In half of trials the first offer presented a smaller and more immediate reward. The other half presented a larger but

more delayed reward. The probability of choosing the larger reward was estimated to be 0.1, 0,4, 0.6, or 0.9, using decision parameters obtained from a staircase proce-

dure completed outside the fMRI scanner. (B) Choice probabilities during the fMRI experiment were symmetrically distributed around indifference (i.e., ≈V VLL SS), and

varied systematically with valuation. (C) Response times decrease with increases in valuation differences demonstrating that response times become faster as choice

difficulty is reduced.
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maximum of 5 s to respond. We discarded any trial in which a
response was made in less than 200ms or fell outside the deci-
sion period (1.10% of trials). When subjects made choices in less
than 5 s, the second offer information disappeared and an inter-
trial interval (ITI) was initiated. The ITI was randomly selected
across trials, from a uniform distribution bounded by 2 and 3 s.
In exchange for participation, subjects received a base payment
of $20 cash. In addition, we randomly sampled a trial from the
second task, and provided a bonus payment on the basis the
choice made on that particular trial. If the bonus payment was a
larger later option, we provided a post-dated check, where the
date was determined by the delay information on that trial.

Imaging Procedures

We collected fMRI data using a GE Discovery MR750 Scanner.
fMRI analyses were conducted on gradient echo T2*-weighted
echoplanar functional images with blood-oxygenated-level-
dependent (BOLD) sensitive contrast (42 transverse slices; TR,
2000ms; TE, 30ms; 2.9mm isotropic voxels). Slices had no gap
between them and were acquired in interleaved order. The slice
plane was manually aligned to the anterior–posterior commis-
sure line. The total number of volumes collected per subject
varied depending on random ITIs. The first 10 s (5 volumes) of
data contained no stimuli and were discarded to allow for T1
equilibration. In addition to functional data, we collected
whole-brain, high-resolution T1-weighted anatomical struc-
tural scans (0.9mm isotropic voxels). Image analyses were per-
formed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/).

Behavioral Modeling

In this article, we propose a computational model—illustrated in
Figure 2A,B—equipped with mechanisms for valuation and modu-
lation of choice alternatives in intertemporal choice. Our goal was
to assess the relative importance of each of these mechanisms in
accounting for behavioral data. The model is most similar to the
leaky competing accumulator (LCA) (Usher and McClelland 2001,
2004) model, but is also similar to the multialternative decision
field theory (MDFT) (Roe et al. 2001; Hotaling et al. 2010) model in
terms of its dynamics. Specifically, Usher and McClelland (2004)
extended a perceptual version of the LCA model presented in
Usher and McClelland (2001) by assuming a secondary stochastic
process on the way in which attention is allocated to the attributes
comprising a stimulus. This Bernoulli process used in the LCA
model is equivalent to the process assumed by decision field the-
ory (DFT) (Busemeyer and Townsend 1993) and its extensions (Dai
and Busemeyer 2014). Where appropriate, we relate the assump-
tions in our model to these previously developed models.

Typical intertemporal choice tasks involve the presentation
of 2 alternatives, where one alternative consists of a smaller
reward and smaller time delay, and the other consists of a
larger reward and a longer time delay. As these features com-
prising the choice alternatives vary along 2 dimensions (i.e.,
reward and time), we can conceive of the SS choice as a vector
of inputs such as = [ ]SS r t,SS SS , and the LL choice as

= [ ]LL r t,LL LL . As experimenters, we have control and access to
the objective measures comprising the 2 alternatives. However,
as human observers are prone to computational limitations, it
seems reasonable to allow for the possibility of a distortion of

Figure 2. Details of the model and fitting results. (A) The model takes as inputs information about the rewards (i.e., r1 and r2; blue nodes) and time delays (i.e., t1 and

t2; yellow nodes), and converts these inputs to a subjective representation (i.e., Ir and It , respectively) through with parameters αr and αt . Features are selected with

the parameter ω (i.e., the green node). Deliberation among the SS and LL alternatives is modulated by lateral inhibition parameters βSS and βLL (i.e., the orange node).

Once an accumulator reaches a threshold amount of preference, a decision is made corresponding to the winning accumulator (i.e., the red node). (B) Example of how

the model implements self-control-like behavior through lateral inhibition (β = 0.2SS and β = 0.1LL ) and not valuation ( = =I I 0.5r t ). (C) Model fitting results in terms

of a z-transformed BIC statistic separated by model constraint (rows) and subjects (columns), color coded according to the legend on the right. Empty circles indicate

that a parameter was free to vary, whereas filled nodes indicate that a parameter was fixed. The model structures are grouped by the number of free parameters:

black, blue, green and red indicate that a total of 3, 4, 5, and 6 free parameters were used, respectively. (D) Model fits from each model in (C), aggregated across sub-

jects. For the zBIC, lower values (blue) indicate better model performance.
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the objective attribute space. To build this mechanism into our
model, we assumed a power transformation along both feature
dimensions:

* = αr r ,i i
r

* = αt t ,i i
t

for ∈ { }i SS LL, , where the parameters αr and αt control the shape
of the power functions along the reward and time dimensions,
respectively. The subjective mapping function in Equation (7) is
consistent with Dai and Busemeyer (2014), but inconsistent with
Usher and McClelland (2004) as their model uses a loss aversion
function combined with pairwise differences in the attribute
space (cf. Turner, Schley, et al. 2018, forthcoming). Note that the
power function used here can produce a perfectly objective repre-
sentation when α = 1. While this would be the optimal represen-
tation regarding accuracy, Dai and Busemeyer (2014) have shown
that allowing the power function parameters to vary freely
improved model fit relative to constraining these parameters to
α = 1. We explored the importance of constraining α for reward
and time by assessing model fits to data.

With the subjective representation constructed, the next pro-
cess in the model is determining how attention should be allo-
cated across the reward and time dimensions. In other contexts
(Roe et al. 2001; Usher and McClelland 2004; Bhatia 2013), a
moment-by-moment stochastic oscillation process has been
assumed as a way to integrate the information from multiple fea-
tures into a stable valuation of a stimulus. This process is known
as a Bernoulli process, and is illustrated in Figure 2A as the green
node. The Bernoulli process can be parameterized such that atten-
tion can be biased toward a particular dimension through the
parameter ω. Letting ( )w t denote the dimension to which attention
is allocated at moment t in the deliberation process, we can write

ω( ) ∼ ( )w t Bernoulli .

We can arbitrarily assume that when ( )=w t 1 attention is
directed toward the reward dimension, and when ( )=w t 0 atten-
tion is directed toward the time dimension.

In our model, alternatives are represented as accumulators,
and these accumulators receive different inputs depending on
the features of the stimulus set and the manner in which
attention is allocated. Letting VSS correspond to the input term
for the SS choice, and VLL correspond to the input to the LL
choice, we can write

= ( ) + [ − ( )]α αV w t r w t t1 ,SS SS LL
r t

and

= ( ) + [ − ( )] ( )α αV w t r w t t1 . 7LL LL SS
r t

Note that the arrangement of reward and time is flipped
with respect to the input terms. The reason for this assumption
centers on the framing of the features. Whereas having a larger
reward r is a positive feature, having to wait a longer time t is
considered a negative feature. Because simply flipping the sign
of t in Equation (7) causes some difficulties with interpretation
of the accumulation dynamics, we instead chose to simply
frame differences in t as being “less good.” For example, as tLL

grows for the LL choice, the SS choice becomes more attractive.
Equation (7) shows how discrete values for ( )w t at each

moment in time can cause the valuation V of a particular alter-
native to oscillate, giving rise to a time-varying input signal to
the accumulation process described below. Having a stochastic

attentional mechanism can explain interesting inconsistencies
in choice behavior from one trial to the next (Dai and
Busemeyer 2014; Ericson et al. 2015). For example, on one trial
an observer may focus their attention on the reward dimension
more than the time dimension. In this case, the input term VLL

would be larger on average than VSS because >r rLL SS, causing
the LL choice to gain an advantage. On another trial, an
observer may focus their attention on the time dimension,
causing the SS choice to gain a stronger input term VSS because

>t tLL SS.
Our model assumes that preferences for the alternatives

evolve over time according to 3 dynamics: input, competition,
and noise. Once the alternatives have been presented and input
has been calculated, we assume that the preferences for each
alternative (i.e., the accumulators) race toward a common
threshold amount of preference. At the moment an accumula-
tor reaches the threshold, a decision is made corresponding to
the winning accumulator. During the race, some competitive
dynamics can affect the accumulation process in ways that are
different than the input terms V . Conceptually, the mecha-
nisms corresponding to this competitive dynamic are intended
to mimic concepts such as self-control and impulsivity. In the
model, the parameters that implement competition are
denoted βSS and βLL, and their influence is known as “lateral
inhibition.” To offset the role of lateral inhibition, another term
called “leakage” is often used. These parameters represent the
passive loss of information, and are denoted λSS and λLL. The
final component in the model is valuation noise. Similar to
other sequential sampling models, we incorporate valuation
noise through the Weiner process, by sampling random noise
from a zero-centered Gaussian distribution. Letting δt denote
an instance of valuation noise at time t, we can write

δ σ∼ ( )0, ,t

where ( )a b, denotes a normal distribution with mean a, and
standard deviation b.

With the 3 dynamics in the accumulation process defined, we
can specify the stochastic differential equation we used to gener-
ate predictions for preference over time. Letting ( )P tSS and ( )P tLL

denote the preference states for the SS and LL choices, respec-
tively, preference evolves according to the following equations:

λ β δ( ) = ( − ) + [ ( ) − ( − ) − ( − )] +P t P t V t P t P t dt dt1 1 1SS SS SS SS SS SS LL t

λ β δ( ) = ( − ) + [ ( ) − ( − ) − ( − )] +
( )

P t P t V t P t P t dt dt1 1 1 .

8
LL LL LL LL LL LL SS t

The term dt denotes a time step in the accumulation process.
In our implementation, we used the Euler method (Brown et al.
2006) to approximate the continuous process in Equation (8) by
setting =dt 0.1.

We also assume the presence of a lower bound on the accu-
mulation process such that no accumulator can ever be nega-
tive. To implement this, we apply the following correction at
every moment in time, t:

⎪

⎪⎧⎨⎩( ) =
( ) < ( ) <
( ) ≥ ( ) = ( )

∈ { } ( )P t
P t P t

P t P t P t
i SS LL

if 0 then 0

if 0 then
, . 9i

i i

i i i

The lower bound constraint is commonly used in the LCA
model, and we retain this assumption for our analyses so that we
can appreciate the roles of lateral inhibition and leakage (cf.
Bogacz et al. 2006; van Ravenzwaaij et al. 2012). We also assumed
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that the accumulation process started at a fixed distance away
from the threshold parameter θ . Specifically, we set the starting
point to be θ=z 0.2 . Adding some baseline activation is well justi-
fied from the neuroscience literature where baseline firing rates of
neurons are often some proportion of their maximum firing rate
(i.e., their threshold), varying from 0.20 (Schall 1991; Hanes and
Schall 1996; Hanes et al. 1998; Pouget et al. 2011) to 0.33 (Ditterich
2010) to 0.50 (Roitman and Shadlen 2002; Huk and Shadlen 2005;
Churchland et al. 2008), depending on the brain area. Furthermore,
when a “truncation” rule is used in the LCA model (as we do in
Equation (9)), an equivalence can be established between the LCA
model and the “optimal” diffusion decision model (Ratcliff 1978;
Ratcliff and McKoon 2008) when a baseline level of activation is
assumed and the input terms are large enough (see Bogacz et al.
2006; van Ravenzwaaij et al. 2012; for details).

Figure 2B illustrates the dynamics of Equation (8) for 100 simu-
lations of the model. The blue lines correspond to trials in which
the LL alternative was chosen, and the red lines correspond to
trials in which the SS alternative was chosen. The thick solid lines
represent the grand average across the 100 simulations, whereas
the thinner lines correspond to individual model simulations. In
this simulation, we set the input terms in the model to be equiva-
lent, meaning that both accumulators should have the same
drive to the threshold. However, because we set β = 0.2SS and
β = 0.1LL , the accumulation of the SS alternative gets inhibited by
the LL alternative, causing the SS alternative to be chosen less fre-
quently. This simulation effectively conceptualizes how self-
control can be carried out in our model: even when the options
have equal subjective value, a top-down process can reliably
ensure a particular choice among the alternatives.

Finally, we assume the presence of some nondecision pro-
cesses that are unimportant to the cognitive processes investi-
gated here. We denote this parameter τ , and assume an
additive interaction between the response time predicted by
the process described in Equation (8) and τ .

Simulation Study: Predictions for Discounting
Curves
Temporal discounting is a well-studied behavior. A standard
result in the intertemporal choice literature is that the impor-
tance of reward values decrease as the delay associated with
the reward increases. Despite its robustness, there is little con-
sensus on the exact functional form of the temporal discount-
ing curve (Frederick et al. 2002; van den Bos and McClure 2013;
Cavagnaro et al. 2016). At this point, a number of functional
forms have been proposed such as exponential, hyperbolic,
generalized hyperbolic (Green and Myerson 2004), constant
sensitivity (Ebert and Prelec 2007), double exponential (McClure
et al. 2007b), and several others. At present, the hyperbolic
function is the most widely accepted form of the discounting
curve, perhaps due to its flexibility in fitting individual subjects
and its simple parametric form (van den Bos and McClure
2013). Recently, Cavagnaro et al. (2016) have shown that there
is no functional form that provides a satisfactory account of
the discounting behavior across different individuals and inter-
temporal choice tasks. The failure of the extant forms of the
temporal discounting curve to adequately generalize suggests
that the precise nature of the discounting curve is highly com-
plex, and it may be sensitive to individual differences or the
particular context of the experiment.

Regardless of the precise form of the discounting curve, it is
essential that any new computational model of the intertemporal
choice task be able to produce some form of discounting

behavior. To investigate the types of discounting curves the
model could produce, we performed a simulation study of the
one particular model variant (i.e., the “downstream” model dis-
cussed below). We first assumed that the intertemporal choice
task involved a decision among only 2 offers—a SS offer consist-
ing of reward and delay features rSS and tSS, respectively, and a LL
offer with features rLL and tLL. To isolate the discounting behavior,
we assumed that the SS offer was always fixed to a reference
point of =r 10SS dollars and =t 0SS days. For the LL offer, we sam-
pled a grid across the set of possible offers in the space ( )r t,LL LL .
On the reward dimension, we investigated rewards ranging from
$10 to $50 in increments of $0.50. On the time dimension, we
investigated delays ranging from 0 to 40 days in increments of 0.5
days.

With the stimulus set constructed, we had only to specify val-
ues of the model parameters to perform the simulation. The para-
meters that can modulate the degree of the temporal discounting
are the attention parameter ω, and the lateral inhibition terms for
SS and LL alternatives, βSS and βLL, respectively. Recall that as ω
increases, more attention is directed toward the reward informa-
tion than the delay information, and when ω = 0.5, attention is
equal across the 2 feature dimensions. To investigate the effects
of attention on preference for the LL alternative, we investigated
a range of values for ω = { }0.2,0.5,0.8 . These values of ω allowed
us to explore biased versions of the model where the relative
importance of feature dimensions changed despite a constant
valuation or input from the stimulus set.

Considering lateral inhibition terms, Equation (8) shows that
increases in βSS create greater inhibition on the SS alternative,
meaning that it is less capable of accumulating preference, all
else being equal. Similarly, increases in βLL create greater inhi-
bition of the LL alternative. While our model comparison analy-
sis suggested that freeing both lateral inhibition terms
improved model performance, it was not essential to have both
terms free in our simulation study. Instead, we were only inter-
ested in one lateral inhibition term relative to the other. As
such, we fixed β = 0.5LL , and systematically investigated βSS on
the set { }0.2,0.5,0.8 . These values allowed us to investigate a
range of suppressive behaviors for each SS and LL alternatives,
despite constant valuation from the stimulus set.

Other parameter settings were less influential in the model’s
performance. Namely, we set α α= = 1r t as in the variant exam-
ined in our model evaluation section. These settings allow the
model to produce a veridical representation of the stimulus
features, and this representation is fixed across the levels of
the model parameters. We assumed the noise term σ = 1, the
threshold parameter θ = 50, and the nondecision time parame-
ter τ = 0.1. We set =dt 0.1. We maintained that the starting
point θ= =z 0.2 10, and a floor on activation as in Equation (9).

To obtain an estimate of the relative attractiveness of the LL
alternative, we simulated the model 1000 times for every point
in the reward-delay grid, under every pairwise model configu-
ration for ω and βSS. Following the simulation, we simply calcu-
lated the probability of choosing the LL alternative. Figure 3
shows the results of our simulation study. In each panel, the
probability of choosing the LL alternative is color coded accord-
ing to the key in the right panel, where red colors indicate
greater preference for the LL alternative, and blue colors indi-
cate greater preference for the SS alternative. In each panel, the
set of rewards we investigated appear on the x-axis, whereas
the set of delays appear on the y-axis. Each row in Figure 3 cor-
responds to a different level of the attention parameter ω,
whereas each column corresponds to a different level of βSS.
Comparing across rows and columns, Figure 3 shows that both
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parameters have an effect on PLL, and the parameters interact
in nonlinear ways. Marginalizing across the columns, Figure 3
shows that the attention parameter has a strong effect on PLL,
where larger values of ω correspond to more LL choices across
the reward-delay space. The dynamic that produces this effect
is related to how ω weights the relative importance of the stim-
ulus information. When ω is larger, more emphasis is placed
on the reward dimension, and so the LL alternative—having
more attractive properties on the reward dimension—gains an
advantage in preference relative to the SS alternative. By con-
trast, focusing more on the time dimension gives the SS alter-
native an advantage, as the more immediately available option
is more attractive on the time dimension.

Marginalizing across the rows, Figure 3 shows that the lat-
eral inhibition term also has an effect on PLL. Namely, as βSS

grows, the probability of choosing the LL alternative increases.
Examining Equation (8), this dynamic can be explained by
increases in the amount that is subtracted off of the SS accu-
mulator relative to that of the LL accumulator. Because βLL was
fixed to 0.5, as βSS grows relative to βLL, we should expect that
the SS alternative becomes more inhibited, regardless of the
particular reward-delay inputs comprising the LL choice. The
advantage of the lateral inhibition term is that βSS can actively
suppress the SS alternative in a way that might be consistent
with a goal-directed choice. In other words, despite an subject’s
evaluation of a stimulus, it may not necessarily map onto a
consistent choice, depending on whether or not the subject
decides to invoke the goal of maximizing reward amounts in
the decision-making process.

To relate the model’s predictions to conventional forms of
the temporal discounting function, we also simulated choices
from a hyperbolic discounting model as in Equations (1) and (2)
using =k 0.1 and =m 1. We then determined the values of rLL

and tLL such that the probability of choosing the LL alternative
was equivalent to the probability of choosing the SS alternative.
These values of rLL and tLL comprise a line of indifference in the
hyperbolic model, which is show in the middle panel of Figure 3
as the black line. The values of k and m were chosen to mimic
the behavior of our model to illustrate that some parameter set-
tings of the LCA model closely mimic hyperbolic discounting
behavior.

Fitting the Hierarchical Model to Data
The model has many parameters, which are not all identifiable
simultaneously. As discussed above, some combination of
parameters must be fixed to fit the model to data, and we used
patterns of fixed parameters to test the plausibility of specific
mechanisms. In the presentation of the model below, we spec-
ify the structure with all parameters present, but branches of
the hierarchical structure were removed when specific model
parameters were fixed.

For all models, we assume the presence of a threshold
parameter θj, a moment-to-moment noise parameter σj, and a
nondecision time parameter τj, for the jth subject. We main-
tained that these parameters should be modeled on the log
scale. The log transformation provided 2 benefits. First, it
enforced that all model parameters should be positive once they

Figure 3. Temporal discounting behavior in a mechanistic model. Results of a simulation study showing response probability as a function of different reward

amounts (r2; x-axis) and time delays (t2; y-axis) for different values of the attention parameter ω (i.e., rows) and the lateral inhibition term for the SS alternative βSS

(i.e., columns). In each plot, the probability of choosing the LL choice is color coded according to the key in the right panel. In all simulations, the value of the SS

choice was assumed to be fixed, where =r 101 dollars and =t 01 days. Lateral inhibition for the LL alternative was fixed to β = 0.5LL for comparison. The black line in

the middle panel represents the line of indifference from a hyperbolic discounting model (see Equations (1 and 2 )) with =k 0.1 and =m 1.
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were exponentiated. Second, it facilitated the development of
our hierarchical models. Specifically, with appropriate choices
for priors on the subject-specific parameters, we could establish
a conjugate relationship between the prior and the posterior. A
conjugate relationship makes posterior sampling more efficient,
enabling us to gather high-quality samples at a faster rate.

Different models were comprised of different configurations
of mechanistic parameters: power function mapping para-
meters αr j, and αt j, for reward and delay, respectively, an atten-
tion bias parameter ωj, and lateral inhibition terms βSS j, and βLL j,

for the SS and LL alternatives, respectively (i.e., see
Equation (8)). To build the hierarchical model, we assumed

θ θ θ( ) ∼ ( )μ σlog , ,j

σ σ σ( ) ∼ ( )μ σlog , ,j

τ τ τ( ) ∼ ( )μ σlog , ,j

α α α∼ ( ) ( )μ σ I, 0,1 ,r j
r r

,

α α α∼ ( ) ( )μ σ I, 0,1 ,t j
t t

,

ω ω ω∼ ( ) ( )μ σ I, 0,1 ,j

β β β∼ ( ) ( )μ σ
( ) ( ) I, 0,1 ,SS j
SS SS

,

and

β β β∼ ( ) ( )μ σ
( ) ( ) I, 0,1 ,LL j
LL LL

,

where ( )a b, denotes a normal distribution with mean a and
standard deviation b, and ( )I a b, denotes an indicator function on
the interval ( )a b, . Lognormal priors were used for θ , σ , and τ to
acknowledge the lower bound constraint of zero on these model
parameters. For the rest of the model parameters, because the
estimates regularly concentrated at their extremes (e.g., 0 or 1),
we chose to censor their priors as a way to enforce constraint.

For the group-level mean parameters, we specified informa-
tive priors, after several simulation studies that investigated
the prior predictive distribution (Vanpaemel 2010, 2011;
Vanpaemel and Lee 2012):

θ ∼ ( )μ 4,0.5 ,

σ ∼ ( )μ 2,0.5 ,

τ ∼ (− )μ 1,0.5 ,

α α ∼ ( )μ μ, 0.6,0.7 ,r t

and

ω β β ∼ ( )μ μ μ
( ) ( ), , 2,0.5 .SS LL

For the group-level standard deviation parameters, we sup-
plied similarly informative, but somewhat generic priors based on
previous research on the spread of subject-to-subject parameters
for other cognitive models (Turner, Sederberg, et al. 2013):

θ σ τ α ω β ∼ Γ( )σ σ σ σ σ μ
( ), , , , , 4, 10 ,k l

where Γ( )a b, denotes the Gamma distribution with shape
parameter a, and rate parameter b, and ∈ { }k r t, and

∈ { }l SS LL, .

As discussed above, the model is unidentifiable when all
parameters are left free to vary. Considering this, we investi-
gated different configurations of the model structure by sys-
tematically fixing and freeing differing combinations of model
parameters. When a parameter was fixed, the corresponding
hierarchical structure discussed above was unnecessary, and
so it was eliminated from the estimation procedure. When the
shape parameters were fixed, we set α = 1r for rewards, and
α = 1t for delays. When the attention parameter was fixed, we
set ω = 0.5. When the lateral inhibition parameters were fixed,
we set β = 0SS for SS alternatives, and β = 0LL for LL alterna-
tives. The leakage terms were never freely estimated, and were
set to λ = 0SS and λ = 0LL .

As the stochastic process described in Equation (8) is intracta-
ble, we required an approximation technique to estimate the
parameters from each hierarchical model. To this end, we used
the Gibbs ABC algorithm (Turner and Van Zandt 2014) in conjunc-
tion with the probability density approximation (PDA) (Turner
and Sederberg 2014) method. The details of how to use the PDA
algorithm to fit models of choice response time are described in
Turner and Sederberg (2014), and so we will not describe them
here. Essentially, we rely on numerous simulations of the model
for a candidate set of parameters to approximate the likelihood
function through a kernel density estimation procedure (Silverman
1986). The degree of mismatch in the simulated data and the
observed data can then be calculated, and the relative probabili-
ties of proposed parameter values can then be evaluated (see
Turner and Van Zandt 2012; for a tutorial). For a given candidate
parameter value, we simulated the model 100 times for every
trial for a given subject. For each simulation, we used the true
values of the reward ( )r r,SS LL and delay ( )t t,SS LL information pre-
sented to the subject on a given trial. The simulated data were
then collapsed to form choice response time distributions for
each of the PLL conditions.

With a suitable approximation for the likelihood in hand,
we used differential evolution with Markov chain Monte Carlo
(DE-MCMC) (ter Braak 2006; Turner, Sederberg, et al. 2013) to
sample from the joint posterior distribution. We used 24
chains, and ran the algorithm for 4000 iterations following a
burnin period of 3000 iterations, resulting in 24 000 samples of
the joint posterior. A migration step was used (Turner and
Sederberg 2012; Turner, Sederberg, et al. 2013) with probability
0.1 for the first 250 iterations, after which time the migration
step was terminated. We also used a purification step every 10
iterations to ensure that the chains were not stuck in spuri-
ously high regions of the approximate posterior distribution
(Holmes 2015).

Estimating Single-Trial Parameters
To derive estimates of the single-trial parameters for the model,
we used an empirical Bayesian procedure to isolate the contribu-
tion of the parameters ω, βSS, and βLL, using an analytic strategy
similar to van Maanen et al. (2011). First, we calculated the maxi-
mum a posteriori (MAP) estimates of each subject’s threshold,
within-trial variability, and nondecision time parameters (i.e., θ ,
σ , and τ , respectively), and assumed α α= = 1r t , as assumed
when fitting the model hierarchically. We then fixed these para-
meters to their MAP value for each subject, to limit the total num-
ber of parameters that were to be freely estimated. Second, for a
given subject on a given trial, we simulated the model 1000 times
using the offer information for each trial, and the MAP estimates
for that particular subject. Third, we adapted the probability den-
sity approximation (Turner and Sederberg 2014) method to
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construct an estimate of the joint probability distribution (i.e., the
likelihood) for choice and response time from the simulated data.
In addition to the likelihood, we added another form of constraint
on the model parameters in the form of a prior. The prior was
chosen on the basis of summary statistics from the posteriors of
the hierarchical model. For each single-trial parameter, we used
the following priors:

ω ∼ ( ) ( )I0.7,1.2 0,1 ,

and

β β ∼ ( ) ( )I, 0.55,1.2 0,1 .SS LL

The prior, combined with the approximated likelihood,
served as the posterior probability we wished to optimize.
Fourth, we used the “burnin” mode of the approximate
Bayesian computation with differential evolution (ABCDE)
(Turner and Sederberg 2012) algorithm to obtain the values of
ω, βSS, and βLL that optimized the posterior probability of
observing each data point (i.e., the choice and response time)
on that particular trial. To do this, we ran the algorithm for 150
iterations, following a burnin period of 50 iterations. We
repeated this process for every trial and for every subject, until
single-trial estimates for each of the key model parameters had
been obtained.

As the parameter estimates for the model well characterized
the choice response time data for each subject, our empirical
Bayes procedure could not provide worse fits to the single-trial
data when ω, βSS, and βLL were allowed to vary by trial, when
the prior constraints were imposed. This was ensured by fixing
3 of the parameters (i.e., θ , σ , and τ) to the best-fitting values
obtained during the hierarchical analysis. As the fixed para-
meters were common to all model variants we investigated
(e.g., see Fig. 2), it was assumed that these parameters did not
directly produce the intended self-control behavior observed in
the neural data (also see Fig. 3). By allowing the key self-control
parameters to vary on each trial, we could investigate the mod-
el’s best account of the behavioral data to our ontological defi-
nition of self-control.

fMRI Preprocessing

During preprocessing, we first performed slice-timing correc-
tion and realigned functional volumes to the first volume. We
then co-registered the anatomical volume to the realigned
functional scans and performed a segmentation of grey and
white matter on the anatomical scan. Segmented images were
then used to estimate nonlinear Montreal Neurological
Institute (MNI) normalization parameters for each subject’s
brain. Normalization parameters estimated from segmented
images were used to normalize functional images into MNI
space. Finally, normalized functional images were smoothed
using a Gaussian kernel of 8mm full-width at half-maximum.

fMRI Statistical Analysis

Self-Control and Impulsivity General Linear Model Analysis
Our first goal with respect to the fMRI data was to test whether
variability in self-control would be reflected by brain activity
within frontoparietal regions. To this end, we built a general
linear model (GLM) that predicted BOLD responses on the basis
of self-control. For this and all other fMRI analyses based on
self-control, we relied on parameter estimates derived from
behavior observed during the fMRI part of the experiment. This
allowed us to minimize any potential measurement error

induced by behavioral changes between the staircase task and
the second part of the experiment.

The self-control GLM specified the onset of the first offer pre-
sentation and the delay period together, modeled by a 7.5 s box-
car function. Onset regressors for the second offer and response
were modeled separately as impulse gamma functions. The
model also included a self-control measure (see Results) as a
parametric modulator of BOLD responses during the time of the
response. In addition, the model included an impulsivity mea-
sure that is orthogonal to self-control (see Results) as a second
regressor of interest. Finally, the model specified 6 regressors
corresponding to the motion parameters estimated during data
preprocessing and 4 constants to account for the mean activity
within each of the 4 sessions over which the data were col-
lected. These additional regressors were included as control
variables of no interest. Every other GLM model estimation we
performed also included 6 motion regressors and 4 session con-
stants as regressors of no interest. Every regressor in the GLM
was convolved with the canonical hemodynamic response func-
tion (HRF) during model estimation.

The group-level contrast for the above specified GLM was
calculated as a one-sample t-test on the beta coefficients
obtained from the subject-specific self-control modulatory
regressor. We used tools from AFNI to determine the minimum
cluster size necessary to give a corrected significance of P < 0.05
at the cluster level. First, 3dFWHMx was used to calculate the
spatial autocorrelation of the residuals using the autocorrela-
tion function (ACF) option. Second, we ran 3dClustSim to iden-
tify a minimum cluster size of 23 voxels. All brain regions
reported were significant using this criterion. For determining
ROIs for subsequent analyses, we identified voxels at an uncor-
rected P < 0.001. We used P < 0.001, uncorrected to illustrate
ROIs in the figures as well (Fig. 4).

To compare self-control and impulsivity effects, we performed
paired sample t-tests between mean ROI coefficients from the
self-control and impulsivity modulators specified in the self-
control GLM. To test for RT confounds, we performed a mixed-
effects GLM analysis on median RTs. This analyses specified 2
factors of interest, choice (LL or SS) and accuracy (correct or error).
Trials in which subjects chose the reward associated with less
discounted value were classified as errors, whereas trials in which
they chose the reward associated with more discounted value
were classified as correct trials. This GLM tested for the interac-
tion between choice and accuracy as well as both simple effects.

Single-Trial Parameter GLM Analysis
Our second goal with respect to the fMRI data was to test
whether variability in the single-trial parameter values would
be reflected by brain activity within frontoparietal regions as
we have found in testing self-control modulator. So we built a
GLM that predicted BOLD responses on the basis of single-trial
parameter values and their combinations. Similar with self-
control and impulsivity GLM analysis, the single-trial parame-
ter GLM specified the onset of the first offer presentation and
the delay period together, modeled by a 7.5 s boxcar function.
Onset regressors for the second offer and response were mod-
eled separately as impulse gamma functions.

The model included 3 single-trial parameter values as the
parametric modulator of BOLD responses during the time of the
response separately. While in the self-control and impulsivity
GLM analyses we used 2 parametric modulators (i.e., the self-
control and impulsivity measures) within the same GLM, we
included only one parametric modulator in the GLM at a time.
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For the LCA analyses, in the first GLM, we included single-
trial parameter estimates βSS as the parametric modulator. In
the second GLM, we included single-trial parameter estimates
βLL as the parametric modulator. In the third GLM, we created
another transformed parameter β β−SS LL by subtracting these 2
and used it as the parametric modulator. In each of the 3 mod-
els, we only included trials of LL choice.

Finally, the model specified 6 regressors corresponding to
the motion parameters estimated during data preprocessing
and 4 constants to account for the mean activity within each of
the 4 sessions over which the data were collected. These addi-
tional regressors were included as control variables of no inter-
est. Every other GLM model estimation we performed also
included 6 motion regressors and 4 session constants as regres-
sors of no interest. Every regressor in the GLM was convolved
with the canonical HRF during model estimation.

The group-level contrast for the above specified GLM was
calculated as a one-sample t-test on the beta coefficients
obtained from the subject-specific single-trial parameter value
modulatory regressor. We used significance level =P 0.05 to
test beta coefficients for 5 ROIs. We chose to use this liberal
threshold to compensate for the random variability in the
single-trial parameter estimates we obtained that is not sys-
tematically related to the variability in the brain data.

Results
Participants completed 2 intertemporal choice tasks in separate
sessions. In the first session, individual rates of delay discounting
were estimated using a titration task that automatically created
choices to progressively converge to subjects’ indifference points
(see Experimental Procedures and Rodriguez et al. 2015b; for
details). Using estimated discount rates, the second experimental
session was designed to offer smaller, sooner (SS) rewards and
larger, later (LL) rewards so that the probability of choosing the
larger, later reward (PLL) approximated a set of target values sym-
metrically spanning indifference (i.e., 0.1,0.4,0.6, and 0.9). The
second task was completed while fMRI BOLD data were collected
to assess neural processes related to self-control.

Identifying Self-Control: Behavioral Analyses

Self-control in intertemporal choice is an instance of cognitive
control that supports goal-directed behaviors particularly when
tempting rewards conflict with one’s goal (Miller and Cohen 2001;
Figner et al. 2010). In intertemporal choice tasks, participants gen-
erally behave as though their goal is to maximize earnings.
Depending on details of the experiment, maximizing total earn-
ings can require preferentially choosing SS or LL outcomes
(McGuire and Kable 2013). For most tasks, including the para-
digms we employ, maximizing earnings is accomplished by
selecting LL outcomes that have greater absolute value (Hare
et al. 2009, 2011; Figner et al. 2010; Crockett et al. 2013; Ballard
et al. 2017). Hence, self-control is associated with selecting
delayed rewards in this study. It is possible that participants exert
self-control in trials where the SS reward is chosen; however, for
these decisions we may only conclude that the amount of control
exerted was at most insufficient to select the LL outcome.

For LL choices, we can make use of the fact that control is
costly to define the degree of control more precisely (Holroyd and
McClure 2015). Contingent on choosing LL rewards, self-control
should increase monotonically as SS rewards are more tempting.
Intuitively, if the long-term benefits of an outcome drastically
outweigh immediate gratification, then self-control is not
required for the far sighted choice. As the value of near-term
rewards increase, then self-control processes become more criti-
cal for suppressing impulsivity. The relative attractiveness of
near-term rewards can be approximated by the probability that
the LL outcome will be selected: PLL. As the value of near-term
rewards increases, PLL should decrease. We can therefore perform
an initial test for brain processes related to self-control by testing
for regions where activity decreases with PLL in trials where the LL
outcome was selected (see Experimental Procedures for a more
formal mathematical argument).

Our task manipulated behavior so that we could measure
various degrees of self-control. We aimed to elicit choices of LL
rewards while varying the relative value of the SS reward. The
first analyses we completed tested whether our manipulation
was effective. We tested whether PLL was reliably altered in our

Figure 4. Self-control and impulsivity in the brain. (A) The top row shows the results of the self-control GLM analysis, where 4 prominent regions of interest emerge:

dmFC (superior frontal gyrus/supplementary motor area; [4, 28, 46]), the right pPC (inferior parietal lobule; [39, −41, 51]) and the bilateral dlPFC (middle frontal gyrus;

left: [−52, 28, 24], right: [22, 38, 41]). The middle row shows the results of the impulsivity GLM analysis, and the bottom row shows the results of a contrast analysis.

(B) Estimated coefficients of the GLM analysis performed in (A). For each of the 4 frontoparietal regions of interest, the red bars correspond to the self-control analysis,

the blue bars correspond to the impulsivity analysis, and the orange bars correspond to the contrast between self-control and impulsivity.
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different task conditions. Next, we note that choice difficulty
should increase as choices become closer to indifference. We
test for this by determining whether reaction times (RT) were
greatest near indifference.

To ensure response consistency across the staircasing and
fMRI tasks, we first compared discount parameters (k) observed
during the titration procedure with the re-estimated parameters
derived from the scanning session. We found that discount
rates derived from the first session were highly correlated with
(ρ( )=18 0.70, <P 0.001) and did not significantly differ from esti-
mates derived from the behavior observed during the scanning
session (paired t-test: ( )=−t 18 0.15, =P 0.88). Next, we used the
discounting parameters k obtained during the scanner session
to test whether choice probabilities were distributed as
intended. To do this, we calculated the probability of choosing
the LL alternative for each subject in each PLL condition (i.e.,

= { }P 0.1, 0.4, 0.6, 0.9LL ). A word about notation is in order here.
We use the notation PLL when referring to the 4 discrete condi-
tions in the experiment, ( )P LL when referring to the empirical
estimate of the probability of a LL response, and we use the
notation *PLL when referring to the theoretical probability of a LL
response, generated from the hyperbolic discounting model
used to establish the PLL conditions. Figure 1B visually shows
that the choice probabilities spanned the intended range and
are approximately symmetrically distributed around =P 0.5LL .
As a formal test, we performed a mixed-effects logistic regres-
sion to predict choices, using the difference in subjective values
( −V VLL SS) as a predictor. Differences in estimated subjective val-
ues were highly predictive of choices ( ( )=t 18 9.72, <P 0.001).
Thus, SS and LL alternatives were both chosen with expected
frequency and the probability of making either choice depended
on the subjective valuation of that choice as expected.

We next tested whether the absolute value of the difference in
subjective values in a choice, | − |V VLL SS , had a systematic effect on
response time. Choice difficulty should decrease as the difference
in subjective values increases; we therefore expected a negative
correlation between the RT and | − |V VLL SS . A regression analysis
indicated that response times increased with decreased valuation
differences (Fig. 1C; ( ) = −t 18 3.51, =P 0.003). Together, our behav-
ioral results confirm that our task systematically manipulated
choice probabilities and response time as intended to measure
various degrees of self-control.

In addition to the relationship between the independent vari-
able (i.e., valuation), and the behavioral variables (i.e., response
probability and response time), we were also concerned with the
specific shapes of the response time distributions, as they have
been particularly useful in dissociating various theories about
how preference states evolve over time (Ratcliff 1978; Ratcliff
et al. 1999; Ratcliff and Smith 2004; Dai and Busemeyer 2014).
Figure 5A shows the response time distributions for each PLL con-
dition in the experiment, aggregated across subjects. In each
panel, the distribution of response times is shown as a histogram
with response times for the SS choice shown on the negative
axis, and the response times for the LL choice shown on the posi-
tive axis. By comparing the areas of the 2 responses time distribu-
tions, we can get a sense of the relative probability that a choice
was made for each PLL condition. In general, as PLL increases, the
height of the LL response time distribution increases relative to
the SS distribution, a trend that is corroborated by Figure 1B.

Neural Basis of Self-Control: Neuroimaging Analyses

Because our experimental manipulation showed consistent patterns
with subjects’ choice probabilities, we can use the probabilities

predicted from the hyperbolic discounting model (i.e., *PLL) to
investigate the neural basis of self-control (SC; defined by
Equation (3)). To this end, we tested for brain areas in which
activity increased with increasing attractiveness of the SS alter-
native, but only on trials in which the LL alternative was chosen.
The top row of Figure 4A shows the results of a whole-brain
GLM analysis. The GLM analysis revealed that several frontopar-
ietal regions may be involved in self-control: the dorsal medial
frontal cortex (dmFC; superior frontal gyrus/supplementary
motor area; [4, 28, 46]), the right pPC; inferior parietal lobe; [39,
−41, 51], and the bilateral dorsal lateral prefrontal cortex (dlPFC;
middle frontal gyrus; left: [−52, 28, 24], right: [22, 38, 41]).
Figure 4B shows the estimated coefficients from the GLM analy-
sis corresponding to the 4 prominent ROIs in Figure 4A (i.e., red
bars). Previously, we have found these regions to be involved in
the accumulation of evidence for action selection in a different
intertemporal choice task (Rodriguez et al. 2015a).

Impulsivity and Error Detection
One possible objection to our definition of self-control may be
that it is confounded with error severity. When the expected
probability of choosing the LL alternative (i.e., *PLL) is low, sub-
jects behave as expected and often choose the SS alternative.
The relatively infrequent trials in which *PLL is low but the LL
alternative is chosen could be due to lapses in attention or
some other task failures. If the mechanism for these failures
were consistent across trials, trials associated with more severe
task failures would be misidentified as higher self-control in
the analysis above. In fact, there is a considerable literature
that associates error detection with the frontoparietal network
our analysis revealed (Botvinick et al. 2004; Eichele et al. 2008;
Cavanagh et al. 2009).

Our task design allows us to test whether SC is associated
with error severity. Recall that we obtained an approximately
equal probability of each choice, symmetric about the indiffer-
ence point of = =P P 0.5LL SS . For example, in the =P 0.1LL condi-
tion, we should expect about 90% SS choices, and 10% LL
choices, where these LL choices can be thought of as possible
“errors.” Symmetric about =P 0.5LL , in the =P 0.9LL condition
we should expect about 10% SS choices and 90% LL choices. On
this side of the independent variable, SS choices correspond to
“errors.” If the brain areas we identified in the SC analysis are
purely associated with error severity, then they should be asso-
ciated with both LL choice errors and SS choice errors. Hence,
an equivalent but orthogonal measure of self-control, a mea-
sure we call impulsivity (I), should be an equally strong predic-
tor of dmFC, pPC and bilateral dlPFC activity as the SC measure
(see Equation (6)).

To test this possibility, we mirrored our definition of self-
control and tested for brain areas where activity increased with

*PLL on trials where the SS reward was selected. If SC measured
error severity, then I should predict approximately the same
degree of dmFC, pPC and bilateral dlPFC activity as SC. To test
this prediction, we performed a GLM analysis including the
variables SC (see Equation (3)) and I (see Equation (6)) as regres-
sors. The resulting estimate of the SC coefficient were reported
above. The middle row of Figure 4A shows the voxels associ-
ated with the I coefficient in our whole-brain GLM analysis.
Figure 4A shows that only voxels in the dmFC area are corre-
lated with I, but not significantly so ( ( )=t 18 1.88, =P 0.076).

We then performed a contrast analysis by comparing activ-
ity associated with SC to I, shown in the bottom panel of
Figure 4A. We find that all frontoparietal regions identified in
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the self-control analysis are significant when directly contrast-
ing activity related to self-control and activity related to impul-
sivity (i.e., −SC I). Figure 4B shows the estimated beta
coefficients for self-control (red bars), impulsivity (blue bars),
and the contrast between them (orange bars) for each of the 4
prominent ROIs in Figure 4A. Our results show that the self-
control measure (i.e., SC) was a stronger predictor of neural
activity than the impulsivity measure (i.e., I) in all 4 ROIs
(dmFC: ( ) =t 18   2.49, =P 0.02, left-dlPFC: ( )=t 18 3.81, =P 0.001,
right-dlPFC: ( ) =t 18   3.10, =P 0.006; right pPC ( ) =t 18   4.07,

<P 0.001; all paired t-tests). Moreover, the impulsivity measure
I was not a significant predictor of neural activity in any of the
4 regions (all >P .07). These results confirm that activity in the
dmFC, pPC, and dlPFC areas are associated with LL choices
when * *>P PSS LL in a way that is asymmetric about * =P 0.5LL . We
conclude that the activity in these brain regions cannot be
interpreted as error severity.

Response Time
Another objection may be that the differences between the SC
and I measures could be explained by differences in response
time. If response times for trials with high values of SC were
slower than response times for trials with high values of I, we
might expect greater activity in frontoparietal regions that are
associated with value accumulation (Rodriguez et al. 2015a). To
test whether the difference between SC and I effects on fronto-
parietal activity could be due to differences in response time,
we performed multiple tests. First, we performed a mixed-
effects GLM to predict median response time on the basis of
choice (LL or SS), accuracy (correct or error) and their interac-
tion. Errors were defined as trials in which the subject chose a
subjectively lower valued alternative, according to their dis-
counting behavior. This GLM showed no effect of choice
( ( ) =t 18   0.77, =P 0.45), and no significant interaction ( ( ) =t 18   1.63,

=P 0.12). There was an effect of accuracy, such that errors were

slower than correct choices ( ( ) =t 18   3.50, =P 0.003). Next, we
explicitly compared median response time for LL choice errors
(i.e., when self-control was executed) and SS choice errors (i.e.,
when impulsivity was executed). The difference in RT between
the 2 errors was not significant ( ( )=t 18 1.43, =P 0.17), nor was the
difference between correct LL and SS choice RTs ( ( ) = −t 18  0.92,

=P 0.37).
We also performed a GLM analysis involving SC, I, and

response time as single-trial regressors to test whether or not
our results from Figure 4 were affected by the additional
response time regressor. The results were qualitatively identi-
cal, suggesting that response time does not explain the differ-
ences between the SC and I measures. Together, our behavioral
and neural data analyses suggest that the difference between
the SC and I effects cannot be explained by the differences in
response time alone.

Mechanisms of Self-Control: Behavioral Analyses

Having identified the neural basis of self-control, we sought to
determine what mechanisms might give rise to the observed
pattern of behavioral data. Our approach was to develop a
computational model that could explain the self-control behav-
ior in a variety of ways, such as (1) modification of the valua-
tion of the presented offers, (2) directed attention toward a
particular feature dimension (i.e., either delay or reward infor-
mation), or (3) the active inhibition of one or more choice alter-
natives. By having multiple mechanisms that can produce
patterns of data that resemble self-control, we could directly
test which mechanism(s) provide the best account of behav-
ioral data, and subsequently use these mechanisms to explore
neural correlates of self-control processes.

Figure 2A shows an illustrative path diagram of the model
we developed to capture both choice and response time. The
model is based on computations central to both the LCA (Usher

Figure 5. Predictions from the downstream model against the observed data. (A) Choice response time distributions as shown as histograms for each value condition:

=P 0.1LL (blue; top left panel), =P 0.4LL (green; top right panel), =P 0.6LL (yellow; bottom left panel), and =P 0.9LL (red; bottom right panel). In each panel, response

time distributions are separated by their choice, where shorter sooner choices appear on the negative axis, and larger later choices appear on the positive axis.

Predictions from the best-fitting model (i.e., the last row of Fig. 2C) are shown as black densities overlaying the observed data. (B) Mean choice probabilities (top panel)

and mean response times (bottom panel) are shown for the observed data (x-axis) against the model predictions (y-axis). The summary statistics are shown for each

individual subject in each of the 4 PLL conditions, color coded according to the legend in the top panel.
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and McClelland 2004) model, and DFT (Busemeyer and
Townsend 1993; Roe et al. 2001; Hotaling et al. 2010). We
assume that valuation is produced by the weighted combina-
tion of reward amount and delay, as in recent process models
of delay discounting (Dai and Busemeyer 2014; Ericson et al.
2015). At the processing stage (i.e., blue and yellow nodes for
reward amount and time dimensions, respectively), the model
conceives of the 2 alternatives as being comprised of 2 features:
the reward value and the delay length. The model contains
parameters αr and αt that allow the objective values presented
in the experiment to be mapped to a subjective representation
that might be used by observers in the task. For these transfor-
mations, we assumed a power function where αr and αt are the
exponents as in Dai and Busemeyer (2014). Hence, αr and αt are
parameters that compress larger numerical values of the
reward or delay information into a subjective representation
(i.e., αr and αt were assumed to be larger than or equal to one).
At the feature-selection stage (i.e., green node), the model pos-
sesses a feature dimension weight parameter ω that allows it to
attend selectively to either the reward (i.e., when ω is large) or
delay (i.e., when ω is small) information. For example, when
selecting delay features, the SS alternative will become more
attractive because delay is shorter when compared with the LL
alternative. On the other hand, when reward features are
selected, the LL choice will become more attractive because the
LL alternative possesses a larger reward amount. Finally, at the
preference accumulation stage (i.e., orange node), the SS and LL
alternatives compete via a stochastic process involving lateral
inhibition and leakage (see Equation (8)). Effectively, the lateral
inhibition terms in the model can allow either the SS or LL
alternatives to be selectively suppressed, despite the valuations
arising from the processing stage.

To illustrate the behavior of the model, Figure 2B shows
example trajectories of the preference accumulation process
for the SS (red) and LL (blue) alternatives. In this simulation, we
set the input of both accumulators to be equal (i.e., =V 0.5SS

and =V 0.5LL in Equation (8)), but set the lateral inhibition terms
to be asymmetric (i.e., β = 0.2SS and β = 0.1LL in Equation (8)).
Under this parameter setting, the lateral inhibition terms pro-
duce an active suppression of the SS alternative, causing LL
choices to be made more frequently. In this way, the model can
produce behavior that resembles our definition of self-control
that is not based on altering the subjective valuation of the
alternatives.

To investigate the relative fidelity of the mechanisms in our
model, we performed a combinatorial analysis that tested vari-
ous configurations of model mechanisms. To this end, we fit
hierarchical versions of our model that selectively manipulated
whether sets of parameters were fixed to specific values or
were free to vary across subjects. This analysis is intended to
reveal the most influential set of parameters in accounting for
choice behavior, while still penalizing for model complexity rel-
ative to the data. All model variants contained a threshold
parameter θ , a within-trial variability term σ , and a nondecision
time parameter τ . All models also received the objective values
of the features (i.e., the reward and delay information) from
every trial of the experiment as input, in the same way that
subjects from the experiment did. Beyond this, each subject
was allowed to have a set of freely varying parameters, and
these subject-level parameters were further constrained and
informed by a hierarchical structure across subjects.

Figure 2C,D shows the results of our analyses. The left-most
panel of Figure 2C illustrates the particular model structure
that was fit to the data. In this panel, each column corresponds

to a parameter, and the circles in each column indicate
whether that parameter was fixed (i.e., filled circles) or free to
vary (i.e., empty circles) across subjects. The model structures
are grouped by color to represent the number of free para-
meters. The black, blue, green, and red colors indicate families
of models that contained 3, 4, 5, and 6 free parameters, respec-
tively. The middle panel shows the model fit results in terms of
a z-transformed Bayesian information criterion (BIC) (Schwarz
1978) statistic, where the measure of model fit in the BIC calcu-
lation was the largest log likelihood value obtained during the
sampling process. For the BIC (and the resulting zBIC), lower
values indicate better model performance, balancing model
complexity relative to model fit. Each element in the matrix
corresponds to a particular model fit (rows) and a particular
subject (columns), and is color coded according to the legend
on the right side. Figure 2D shows zBIC scores for the model fits
aggregated across subjects.

Figure 2C,D shows that on average, the attention parameter ω
has the strongest effect on model performance. For example, the 4
best-performing models are the ones allowing only ω (i.e., row 2),
ω and either βSS or βLL (i.e., rows 6 and 7), or ω and both βSS or βLL

to vary (i.e., row 12). The aggregation result in Figure 2D allows
us to conclude that these 3 parameters are most important in
capturing the patterns of individual differences observed in the
data, as they play a larger role in determining model perfor-
mance (i.e., model fit penalized for model complexity) than do
the subjective valuation parameters α. The best-performing
model was Model 12 (i.e., row 12), which permitted variation in
what could be conceptualized as “downstream” processes (i.e.,
postvaluation). Model 12 freely estimates the following para-
meters: the feature-selection parameter ω, the 2 lateral inhibi-
tion parameters βSS and βLL, the nondecision time parameter τ ,
the threshold parameter θ , and the within-trial noise parameter
σ . Parameters that correspond to “valuation” processes such as
the parameters corresponding to the mapping from the objec-
tive values of the offers to the subjective values used as input to
the accumulators were fixed to one, indicating that no transfor-
mation occurred. Under this parameter regime, no mechanisms
in the model directly affect the valuation of the features (i.e.,
they have no relevance in the calculation of the input to the
accumulator). For example, the feature-selection weight param-
eter ω determines the strength of input only by specifying which
features should be considered at a given moment in time—it
does not determine the input strength of features themselves.
What the model fitting results suggest is that the preliminary
subjective mapping step is not as essential in predicting model
performance as the manner in which the offers are contrasted
during action selection. Hence, this particular model variant is
closely related to the verbal model suggested by Figner et al.
where dlPFC areas serve to modulate action selection rather
than valuation of the stimulus values. As Model 12 relies on
indirect valuations of the offers, we refer to Model 12 as the
“downstream model” henceforth.

Although Figure 2 shows the relative performance of the
models, it does not show how well the models fit in an absolute
sense. To evaluate absolute fit, we can generate predictions
from the downstream model and compare them to data. To do
this, we constructed the posterior predictive distribution (PPD)
by randomly sampling a parameter from the estimated joint
posterior distribution for each subject, and generating 1000
choice response times. To generate predicted data for each sub-
ject, we simulated the model with the actual offers that the sub-
ject was given during the experiment. We repeated the PPD
construction process for each subject individually, but then
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collapsed across each set of predicted data to create an aggre-
gated PPD from the downstream model. Figure 5 shows the
model fits against the observed data. Figure 5A shows the aggre-
gated PPD (black lines) against the observed data (histograms)
for each value condition in the experiment. Figure 5B shows the
average model predictions (i.e., y-axis) against the observed data
(i.e., x-axis) for the response probabilities (top panel) and the
response times (bottom panel). In Figure 5B, the summary sta-
tistics are shown separately for each subject in each value con-
dition, color coded according to the key in the top panel. In
general, there is close agreement between the model predictions
and the observed data, assuring us that the downstream model
fits in both an absolute and relative (Fig. 2) sense.

Neural Correlates of the Mechanisms of Self-Control:
A Model-Based Analysis

Having confirmed that the downstream model provided the
best fit in the suite of models we investigated, we examined
the neural basis for the mechanisms assumed by the down-
stream model. There are many ways to link the abstractions
assumed by cognitive models to the neural responses observed
in an experiment (cf. Turner, Forstmann, et al. 2017). We chose
a two-stage correlation procedure to relate single-trial esti-
mates of the model parameters to single-trial measures of the
BOLD response (O’Doherty et al. 2007; van Maanen et al. 2011).
We used an empirical Bayesian procedure to estimate the lat-
eral inhibition terms for SS and LL choices (i.e., βSS and βLL,
respectively), and the feature-selection parameter ω for every
subject and every trial. As a method of constraint, we fixed
other parameters for a given subject to the best-fitting values
obtained from our hierarchical estimation procedure in the
model comparison section above.

With single-trial measures of the parameters in hand, we
then used the parameters as regressors in a whole-brain GLM
analysis to examine the neural basis for the inhibition process
used in the model. Based on our conceptual definition, self-
control is greatest when a LL choice is made despite the subjec-
tive valuation of the SS alternative being larger than the LL
alternative. Within the model, the lateral inhibition terms in
the model are the mechanisms in which self-control is elicited.
Because the downstream model allows for an asymmetric inhi-
bition process over the 2 alternatives (i.e., β β≠SS LL), a interest-
ing interaction occurs between these 2 parameters that gives
rise to the choice behavior elicited in the model. Figure 6A
shows the joint distribution of the maximum a posteriori esti-
mates for βSS (i.e., x-axis) against the estimates for βLL (i.e.,
y-axis) across all trials and subjects. Each estimate in Figure 6A
is illustrated to represent whether a LL (circles) or SS choice
(“+” symbols) was made, and color coded to reflect the specific
condition according to the legend on the right. Figure 6A illus-
trates the tendency for the model to produce a LL choice when
β β>SS LL. In this regime, the inhibition of the SS alternative is
stronger, causing the LL alternative to win the race toward
threshold more often (Figure 2C). Although not visually appar-
ent in Figure 6A, the mean differences between βSS and βLL

when SS choices were made was also systematically related to
the PLL condition; specifically, the mean differences for the PLL

conditions 0.1, 0.4, 0.6, and 0.9 were 0.244, 0.217, 0.196, and
0.145, respectively. Undoubtedly, the decrease in the mean dif-
ferences is related to the relative inputs of the SS and LL alter-
natives across the conditions, where larger degrees of lateral
inhibition for the SS alternative are necessary to produce a LL
response when the SS alternative is more attractive (e.g., in the

=P 0.1LL condition). Together, these results suggest that the lateral
inhibition dynamic in the downstream model can produce higher
probabilities of LL choices despite larger valuation of the SS alterna-
tive—a dynamic that corresponds to our definition of self-control.

We next investigated whether or not the lateral inhibition
terms in our model were related to the self-control areas identi-
fied above. Figure 6C–E shows areas of the brain that are signifi-
cantly related to different combinations of the lateral inhibition
terms: lateral inhibition of the SS alternative (i.e., βSS) in Fig. 6C,
lateral inhibition of the LL alternative (i.e., βLL) in Fig. 6D, and the
difference between the 2 terms (i.e., β β−SS LL) in Fig. 6E. Across
all panels (i.e., Fig. 6C–E), brain areas associated with significant
correlations (i.e., <P 0.01) of a lateral inhibition term are shown
as either green (i.e., for positive) or blue (i.e., for negative) voxels,
positive correlations with our self-control measure (Fig. 4A) are
shown as red voxels, and overlap across these metrics are shown
as yellow (i.e., for positive correlations) or magenta (i.e., for nega-
tive correlations) voxels. Figure 6C shows that when βSS is large
and the SS alternative is actively suppressed, activation of several
frontal areas is significantly higher (represented as green voxels).
Less frontal activation was observed for the βLL coefficient, with
the exception of the right dlPFC area. For the difference in inhibi-
tion terms, we observed strong negative correlations with right
pPC (represented as blue voxels).

To better elucidate the role that the lateral inhibition terms
play, we performed an ROI analysis by correlating the 3 combi-
nations of lateral inhibition terms to 5 key brain areas: dmFC,
bilateral dlPFC, rpPC, and the vmPFC [3, 62, −3]. The first 4
regions were defined by our self-control analyses from above,
and the vmPFC area was defined by the vmPFC mask identified
in Bartra et al. (2013).

Figure 6B shows the estimated coefficient for inhibition of
SS alternative (βSS; red), inhibition of LL alternative (βLL; blue),
and their difference (i.e., β β−SS LL; green). Inhibition of the SS
alternative (βSS) was significantly related to activity in the
dmFC ( ( )=t 18 2.64, =P 0.017, Cohen’s =d 0.79) and the left dlPFC
( ( )=t 18 2.21, =P 0.040, Cohen’s =d 0.49), whereas inhibition of
the LL alternative (βLL) was significantly related to activity in
the left ( ( )=t 18 2.42, =P .026, Cohen’s =d 0.63), and right dlPFC
( ( )=t 18 2.25, =P 0.037, Cohen’s =d 0.42). However, the difference
between the lateral inhibition terms was only significantly
related to the right pPC ( ( ) = −t 18  2.42, =P 0.027, Cohen’s

=d 0.60). Importantly, none of our lateral inhibition regressors
significantly correlated with vmPFC.

We also investigated single-trial correlations of the parame-
ter ω. Although we examined linear and quadratic relations of
ω to the neural data, we found no significant correlations in our
whole-brain GLM analyses. As such, we did not perform any
ROI-based analyses involving ω.

General Discussion

In this article, we have taken a computational approach to iden-
tify brain regions that are collectively involved in processes
related to intertemporal choice and self-control. Each of our
analyses associated regions of medial and lateral prefrontal cor-
tex with self-control. These regions are commonly identified in
intertemporal choice decision making, but their specific contribu-
tion to the choice process has not yet been unraveled. To dissoci-
ate the effects of self-control and impulsivity, our task design
relied on presenting choice offers that were directly related to
each individual’s temporal discounting behavior, assessed in a
separate session. Furthermore, our task design presented subjects
with multiple shorter sooner (i.e., impulsive) choice options,
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unlike other studies investigating intertemporal choice decisions
(McClure et al. 2004, 2007a; Kable and Glimcher 2007; Ballard and
Knutson 2009; Hare et al. 2014). Our first analysis established that
the self-control processes engage brain areas very differently
compared with impulsivity. Specifically, our analyses revealed
that when LL choices are made, activity in the left and right
dlPFC, right pPC, and dmFC is significantly positively correlated
with the attractiveness of the SS alternative. Yet when SS choices
are made, activity in these areas does not significantly correlate
with the attractiveness of the LL alternative. Conceptually, our
preliminary analyses revealed a clear asymmetry in the brain
when we make decisions that maximize long-term rewards com-
pared with decisions that minimize delay.

However, we argue that simply knowing that an asymmetry
exists does not contribute to our understanding of the mecha-
nisms that produce LL choices. To investigate the mechanisms
of self-control, we developed a computational model of the
intertemporal choice task equipped with a variety of different
mechanisms that could potentially explain how self-control mani-
fests in behavioral data. Taken together, the set of mechanisms in
the model are not uniquely identifiable, so we instead investigated
a factorial subset of the mechanisms by fitting several variants of

the model to the data (Fig. 2C). Ultimately, we found that models
that allow for feature-selection biases and lateral inhibition pro-
vided the best account of behavioral data, suggesting that a sub-
jective mapping of objective rewards and delays (i.e., αr and αt)
were not essential to explain data from our intertemporal choice
task, as has been suggested previously (Hare et al. 2009, 2011).

Finally, we obtained single-trial estimates of the feature-
selection parameter ω and the 2 lateral inhibition parameters
βSS and βLL. We performed whole-brain GLM analyses on differ-
ent combinations of the lateral inhibition terms. Most impor-
tantly we found that the lateral inhibition of the SS alternative
(i.e., βSS) overlapped with frontal areas (i.e., left dlPFC and
dmFC) that we identified as carrying out self-control in our first
analysis. These results point to a potential explanation of how
self-control processes are executed in intertemporal choice
tasks: self-control may be related to the ability of frontal areas
to (laterally) inhibit selection of the SS alternative.

The Impetus for Self-Control

In our computational model, there are 2 mechanisms that can
give rise to behavioral data that satisfy our conceptual

Figure 6. Neural correlates of the model’s inhibition process. (A) The scatter plot shows joint distribution of single-trial estimates βSS (x-axis) and βLL (y-axis) under

different choices and conditions, according to the legend on the right side. (B) Barplots of the estimated coefficient of BOLD response signal for inhibition of SS alter-

native (βSS; red), inhibition of larger later (LL) alternative (βLL; blue), and their difference (i.e., β β−SS LL; green) across 5 regions of interest: dmFC, right and left dlPFC,

rpPC, and the ventromedial prefrontal cortex (vmPFC; frontal lobe/bottom of the cerebral hemispheres; [–3, 3, 62]). The red star indicates estimated coefficients that

are significantly different from zero (i.e., <P 0.05). (C, D, E) Whole-brain GLM correlation results using (C) lateral inhibition of SS alternative (i.e., βSS), (D) lateral inhibi-

tion of LL alternative (i.e., βLL), and (E) the difference between the 2 terms (i.e., β β−SS LL) as trial-level regressors. Red areas represent voxels found in our self-control

analysis above (Fig. 4), green voxels are associated with positive correlations, blue areas are associated with negative correlations, and yellow and magenta voxels are

associated with the overlap between 2 corresponding GLM analyses.
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definition of self-control. Recall that self-control was defined to
scale with the relative attractiveness of the SS alternative for
trials in which the LL alternative is selected. In our “down-
stream” model, self-control can be carried out in 1 of 2 ways.
First, the valuation process can be altered by increasing the
feature-sampling parameter toward the value of the reward
information. Since the LL alternative always has larger reward
value than the SS option, increased weighting of reward
amount necessarily increased the attractiveness of the LL
option. This creates a larger probability of a LL response across
the space of the independent variable in our task (i.e., ( )P LL ; see
Fig. 3). Second, the downstream action selection process can be
altered by increasing the lateral inhibition term corresponding
to the SS alternative (relative to the LL alternative). This alters
the preference accumulation dynamics to produce a larger pref-
erence for the LL alternative (Figs 2B and 3). Given that there
are 2 routes to produce higher probabilities of LL responses,
one may wonder whether this feature of the model is problem-
atic, as the model could be too flexible relative to the data.

Although the “feature-selection” regime in the downstream
model can produce increases in the probability of LL responses
(see our simulation study in the Experimental Procedures), in
our view, this configuration of the model is inconsistent with
our definition of self-control. Within the feature-selection
regime, the ω parameter increases toward one, causing reward
information to be sampled more often than the delay informa-
tion. When this occurs, the input that drives the accumulators,
VSS and VLL, changes such that the LL alternative receives more
input (i.e., VLL increases) and the SS alternative receives less
input (i.e., VSS decreases), by virtue of rLL being larger than rSS.
When assuming that all other parameters are inconsequential
(e.g., β β= = 0SS LL ), the most direct way the feature-selection
regime generates more frequent LL responses is when <V VSS LL.
However, this inequality implies that the subjective valuation
of the LL alternative is already larger than the SS alternative,
and this fact is at odds with the concept of self-control. Self-
control should be minimally necessary when the subjective val-
ues of the LL option dominates that of the SS option.

By contrast, as we explained in the results section, the “inhi-
bition” regime can produce increases in the probability of a LL
response regardless of how the features of the offers are com-
bined in the valuation process. Even when the reward informa-
tion is preferentially weighted over the time information, the
lateral inhibition terms can be adjusted to overcome the differ-
ences in the inputs for the 2 alternatives. As we show in our
simulation study, the model can produce increases in the prob-
ability of a LL response even when reward information is pref-
erentially sampled over delay information.

Despite these arguments, we did not rule out the feature-
selection regime as one possible explanation for self-control in
our analyses. When fitting our model variants hierarchically to
data, we allowed for the possibility of only feature-selection,
only lateral inhibition, or both mechanisms to vary freely. We
ultimately found that the best-fitting model variant was one
that allowed all 3 terms to vary freely, suggesting that these
parameters tradeoff in some way to better capture the complex
patterns of choice response time in our data. In this down-
stream model, we found that the mean of the group-level pos-
terior distribution for the feature-selection parameter ω
parameter was 0.707, suggesting that most subjects preferen-
tially weighted reward information over delay information. We
also found that the mean of the group-level posterior distribu-
tions for the βSS and βLL parameters were 0.540 and 0.556,
respectively. Taken by themselves, these means suggest that

the LL alternative was suppressed more than the SS alternative.
However, noting that attention was oriented toward the reward
information implies that the input term VLL was, on average,
larger than VSS. To accommodate these differences in the
inputs, the lateral inhibition term βLL needed to increase to
slow the accumulation of preference so that both alternatives
could be considered. Furthermore, the increase in βLL helped
the model match the spread of the response time distributions.
When one feature is sampled more often than another, the
input terms VLL and VLL become large enough to dominate the
stochastic process in Equation (8), causing a lower mean and
significantly lower standard deviation for the predicted
response time distribution.

Perhaps more revealing was the tradeoffs that appeared
when analyzing the single-trial parameter estimates. For exam-
ple, Figure 6A shows that under some parameter settings, such
as when β β>SS LL, LL choices become more likely, suggesting
that trial-level information may have better resolution com-
pared with the subject-level information in answering ques-
tions about trial to trial engagement of self-control processes.
We also observed strong correlations between the lateral inhi-
bition terms and the feature-selection parameter ω, and these
interactions were systematically related to the probability of a
LL response, but they were not systematically related to the
value condition PLL. Taken together, these results suggest that
while ω played an important role at the subject-level analyses,
the lateral inhibition parameters played a more important role
at the trial-level analyses.

However, when investigating the neural basis for these
model parameters, we found strong relationships between the
lateral inhibition parameters and key brain areas involved in
our initial self-control GLM analysis. Specifically, we found
interactions with dlPFC, dmFC, and even right pPC. We did not
find significant correlation results for the ω parameter directly.
Part of this failure is likely due to the complexity of the inter-
pretation of ω relative to what is traditionally explained as
value encoding. When ω increases, reward information is sam-
pled more often, whereas when ω decreases, delay information
is sampled more often. Although we tested different parametric
forms of the brain’s relation to ω (e.g., quadratic), we did not
find any convincing result that would elucidate its neural basis.

Given the strong relationships between lateral inhibition and
feature selection in our model, it would seem to be a worthwhile
endeavor to establish some link between these mechanisms. For
example, Hotaling et al. (2010) used a “dominance” space to con-
vert differences in the values of features comprising a stimulus to
lateral inhibition terms in an accumulator model (Roe et al. 2001).
More recently, Bhatia (2013) used the sum of the values of stimu-
lus features to specify how attention should be allocated on a
moment-by-moment basis (i.e., through a Bernoulli process). As
we take inspiration from these previous efforts to commit mecha-
nism to a particular theory, future work on the LCA model pre-
sented here could establish a theoretical link between feature
selection and lateral inhibition. For now, we emphasize that there
are complex tradeoffs between feature-selection and inhibition,
but the mechanisms of inhibition are more directly mapped to
brain activity in our study.

Joint Modeling

In our analysis above, we treated the single-trial parameters as
a regressor in a GLM as a way to try and understand the neural
bases for the mechanisms corresponding to the parameters.
This method of linking neural and behavioral data has been
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referred to as a “two-stage” analysis (Turner, Forstmann, et al.
2017). The two-stage approach has limitations in that the neural
data do not provide any real statistical constraint on the behav-
ioral model; instead, the neural data only help to give us a con-
ceptual link of where a mechanism is carried out in the brain.

Recently, new approaches have been developed for formally
linking neural data to the parameters of cognitive models in a
way that enforces a reciprocal relationship between these ran-
dom variables (Turner, Forstmann, et al. 2013; Turner et al.
2015, 2016; Turner, Wang, et al. 2017). The benefit of using this
“joint modeling” approach is that the information contained in
either stream of data provides an extra layer of constraint in
one formal model, and so the model’s suitability is evaluated
with respect to both the behavioral and neural data, usually
through model fit statistics or cross-validation tests. While we
do advocate for these joint models, they require complex algo-
rithms for estimating the model parameters, which is further
complicated in the current computational model because the
likelihood function is intractable. Furthermore, because we had
not yet established (1) which mechanisms in the model pro-
vided the best account of the behavioral data or (2) what brain
regions were likely candidates for carrying out self-control,
many new models would need to be developed and fit to data.
As such, we elected to first determine the best-fitting model
variants as a way to ascertain the plausibility of each model
mechanisms. From there, we performed a simple exploratory
procedure for relating the estimates of the model parameters
to the voxel-level activity for each trial by subject combination.
Future research will take a more confirmatory approach by
using the neural activity to directly constrain and guide the
estimation of the model parameters.

Another limitation with our analyses is the way in which
single-trial parameter estimates are obtained in 2 steps. Ideally,
we would have devised a 3-layer hierarchical model to simulta-
neously infer estimates at the trial-, subject-, and group-levels.
While this type of analysis is of course possible, it would
require that an even more sophisticated estimation procedure
be applied to each model variant we tested (Fig. 5). We chose to
use our two-stage empirical Bayesian approach to limit the
number of free parameters that needed to be estimated at a
given stage (also see van Maanen et al. 2011). Future work will
take a more confirmatory approach where the parameters cor-
responding to all 3 levels are estimated simultaneously.

Conclusions
In this article, we have developed a computational model that
can be used to better understand the neural and mechanistic
bases of self control. Our model relates to extant theories about
how brain areas related to self-control modulate areas related
to valuation (Hare et al. 2009, 2011, 2014), as well as theories
about how self-control can be inhibited without affecting valu-
ation (Figner et al. 2010). Although the model assumes a
dynamic integration process between the valuation of the
offers and the action selection process, the model has para-
meters designed to relate directly to valuation and self-control.
As such, our model could be used as a theoretical tool to test
specific assumptions about the previously stated opposing
interactions between self-control and valuation, as a measure-
ment tool to assess the degree of self-control exhibited by cer-
tain patient populations (Bickel and Marsch 2001; Weller et al.
2008; McClure and Bickel 2014), or as a prediction tool for
whether certain incentive programs could be used to either
focus attention toward one dimension (e.g., the attention

parameter ω) or impose inhibition (e.g., the lateral inhibition
parameter βSS) of a tempting, but ultimately inferior option
(Hare et al. 2009; Peters and Büchel 2010; Maier et al. 2015).
Future work will further commit the mechanisms and para-
meters assumed by our model directly to neurophysiological
information.
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Supplementary material is available at Cerebral Cortex online.
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