Skip to main content
. 2022 Jan 11;23(2):bbab551. doi: 10.1093/bib/bbab551

Table 3.

A comprehensive list of the reviewed methods/tools for prediction of prokaryotic and eukaryotic promotersa

Method type Toolb Year Webserverc Features/Motifs Scoring function /Algorithm Evaluation strategy Species and promoter type Sequence length (bp)
Deep learning–based CNNProm [30] 2017 Yes CNN 70% train, 20% test, 10% validation H. sapiens (TATA-containing and TATA-less), M. musculus (TATA-containing and TATA-less), A. thaliana (TATA-containing and TATA-less), E. coli (Inline graphic) and B. subtilis 81, 251
Traditional machine learning–based Rani et al.-I [132] 2007 No DNC ANN 5-fold CV and independent test E. coli (Inline graphic), and D. melanogaster 80, 241
Rani et al.-II [133] 2009 No n-gram (n=2,3,4,5) ANN 5-fold CV and independent test E. coli (Inline graphic) and D. melanogaster 80, 300
iProEP [31] 2019 Yes PseKNC and PCSF SVM 5, 10-fold CV D. melanogaster, H. sapiens, C. elegans, E. coli (Inline graphic) and B. subtilis (Inline graphic) 81, 300
Scoring function–based IPMD [134] 2010 No PCSF and ID Modified MD 10-fold CV and independent test D. melanogaster, H. sapiensC. elegans, E. coli (Inline graphic) and B. subtilis (Inline graphic) 81, 300

aAbbreviations: CNN—convolutional neural network; DNC—dinucleotide composition; ANN—artificial neural network; CV—cross-validation; PseKNC—pseudo–K-tuple nucleotide composition; PCSF—position-correlation scoring function; SVM—support vector machine; ID—increment of diversity; MD—Mahalanobis Discriminant.

cYes—The approach is accompanied with a webserver/tool and it is still working; Decommissioned—The webserver/tool is no longer available; No—The approach has no webserver or tool.