Table 4.
Prediction result of inhibition (IC50) using SMILES to ECFP
Embedding method | Classification | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|
word2vec | LR | 0.823 | 0.824 | 0.829 | 0.826 |
LDA | 0.823 | 0.831 | 0.818 | 0.824 | |
KNN | 0.828 | 0.825 | 0.841 | 0.833 | |
CART | 0.815 | 0.831 | 0.799 | 0.815 | |
NB | 0.696 | 0.649 | 0.878 | 0.746 | |
SVM | 0.830 | 0.829 | 0.841 | 0.834 | |
XGBoost | 0.836 | 0.826 | 0.860 | 0.842 | |
RDForest | 0.837 | 0.821 | 0.868 | 0.844 | |
Ising-word2vec | LR | 0.825 | 0.827 | 0.830 | 0.828 |
LDA | 0.830 | 0.835 | 0.829 | 0.832 | |
KNN | 0.823 | 0.824 | 0.830 | 0.826 | |
CART | 0.810 | 0.825 | 0.795 | 0.810 | |
NB | 0.699 | 0.653 | 0.873 | 0.747 | |
SVM | 0.832 | 0.830 | 0.842 | 0.836 | |
XGBoost | 0.835 | 0.825 | 0.858 | 0.841 | |
RDForest | 0.837 | 0.820 | 0.871 | 0.845 |