Skip to main content
. 2022 Jan 21;23(2):bbab593. doi: 10.1093/bib/bbab593

Table 4.

Prediction result of inhibition (IC50) using SMILES to ECFP

Embedding method Classification Accuracy Precision Recall F1
word2vec LR 0.823 0.824 0.829 0.826
LDA 0.823 0.831 0.818 0.824
KNN 0.828 0.825 0.841 0.833
CART 0.815 0.831 0.799 0.815
NB 0.696 0.649 0.878 0.746
SVM 0.830 0.829 0.841 0.834
XGBoost 0.836 0.826 0.860 0.842
RDForest 0.837 0.821 0.868 0.844
Ising-word2vec LR 0.825 0.827 0.830 0.828
LDA 0.830 0.835 0.829 0.832
KNN 0.823 0.824 0.830 0.826
CART 0.810 0.825 0.795 0.810
NB 0.699 0.653 0.873 0.747
SVM 0.832 0.830 0.842 0.836
XGBoost 0.835 0.825 0.858 0.841
RDForest 0.837 0.820 0.871 0.845