Skip to main content
. 2022 Jan 21;23(2):bbab593. doi: 10.1093/bib/bbab593

Table 6.

Prediction result of toxicity (CC50) using SMILES to ECFP

Embedding method Classification Accuracy Precision Recall F1
word2vec LR 0.879 0.913 0.929 0.921
LDA 0.874 0.916 0.918 0.917
KNN 0.886 0.911 0.942 0.926
CART 0.858 0.915 0.897 0.906
NB 0.710 0.833 0.772 0.801
SVM 0.893 0.893 0.977 0.933
XGBoost 0.912 0.918 0.971 0.943
RDForest 0.907 0.911 0.972 0.940
Ising-word2vec LR 0.888 0.914 0.941 0.927
LDA 0.883 0.921 0.925 0.923
KNN 0.884 0.910 0.940 0.924
CART 0.861 0.912 0.904 0.908
NB 0.710 0.832 0.774 0.802
SVM 0.889 0.890 0.975 0.930
XGBoost 0.912 0.916 0.971 0.943
RDForest 0.904 0.907 0.973 0.939