Table 6.
Prediction result of toxicity (CC50) using SMILES to ECFP
Embedding method | Classification | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|
word2vec | LR | 0.879 | 0.913 | 0.929 | 0.921 |
LDA | 0.874 | 0.916 | 0.918 | 0.917 | |
KNN | 0.886 | 0.911 | 0.942 | 0.926 | |
CART | 0.858 | 0.915 | 0.897 | 0.906 | |
NB | 0.710 | 0.833 | 0.772 | 0.801 | |
SVM | 0.893 | 0.893 | 0.977 | 0.933 | |
XGBoost | 0.912 | 0.918 | 0.971 | 0.943 | |
RDForest | 0.907 | 0.911 | 0.972 | 0.940 | |
Ising-word2vec | LR | 0.888 | 0.914 | 0.941 | 0.927 |
LDA | 0.883 | 0.921 | 0.925 | 0.923 | |
KNN | 0.884 | 0.910 | 0.940 | 0.924 | |
CART | 0.861 | 0.912 | 0.904 | 0.908 | |
NB | 0.710 | 0.832 | 0.774 | 0.802 | |
SVM | 0.889 | 0.890 | 0.975 | 0.930 | |
XGBoost | 0.912 | 0.916 | 0.971 | 0.943 | |
RDForest | 0.904 | 0.907 | 0.973 | 0.939 |