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Abstract

Protein turnover is vital for cellular functioning and is often associated with the pathophysiology of a variety of diseases. Metabolic
labeling with heavy water followed by liquid chromatography coupled to mass spectrometry is a powerful tool to study in vivo protein
turnover in high throughput and large scale. Heavy water is a cost-effective and easy to use labeling agent. It labels all nonessential
amino acids. Due to its toxicity in high concentrations (20% or higher), small enrichments (8% or smaller) of heavy water are used with
most organisms. The low concentration results in incomplete labeling of peptides/proteins. Therefore, the data processing is more
challenging and requires accurate quantification of labeled and unlabeled forms of a peptide from overlapping mass isotopomer
distributions. The work describes the bioinformatics aspects of the analysis of heavy water labeled mass spectral data, available
software tools and current challenges and opportunities.

Keywords: protein turnover, evolution of deuterium-enriched mass isotopomers, nonlinear models of time course data, rate constant
estimation from metabolic labeling with heavy water followed by liquid chromatography – mass spectrometry (LC–MS)

Introduction
The cellular proteome is in dynamic equilibrium –
proteins are continuously synthesized and degraded. The
equilibrium is sustained by the proteostasis network,
which maintains proteins in the appropriate abundance,
folding state, concentration and location [1]. The network
contributes to a cell’s ability to respond to external and
internal stimuli. Proteostasis is essential for healthy
cellular functioning, and it is often associated with
ageing [2] and disease states such as nonalcoholic fatty
liver disease, neurodegenerative diseases [3] and cancers
[4]. Protein turnover has been studied for decades using
various techniques such as radioactive labeling [5], small
molecule inhibitors of synthesis or degradation and
fusion proteins tagged with constructs such as green
fluorescent protein (GFP) [6].

Metabolic labeling with isotope tracers has historically
been used to study protein turnover [7, 8]. Advance-
ments in high resolution and accuracy mass spectrom-
etry (MS) have turned proteomics into a powerful tech-
nique to study protein turnover in large scale [9]. Studies
using cell cultures and stable isotopic labeling by amino
acids in cell culture (SILAC) [10] labeling can produce
turnover rates of several thousand proteins [11]. The pro-
teome dynamics of several cell cultures have been stud-
ied using this approach [12–14]. The studies have greatly
contributed to the wealth of information on proteome
dynamics and its regulation. However, the inference of

in vivo protein turnover from that of cell cultures is not
straightforward [15, 16]. As discussed below, heavy amino
acids have also been used to label living organisms.
Protein turnover studies using SILAC-based labeling have
recently been reviewed [17].

Two types of stable isotope tracers have been often
used for in vivo [18–21] protein turnover studies: heavy
(nonradioactive) essential amino acids, such as 13C6-Lys,
13C6-Leu, 2H3-Leu and atom-based tracers, such as 15N
and 2H. For bioinformatics purposes, metabolic labeling
with heavy amino acids has advantages. The labeling
results in predictable shifts in masses of peptides. The
isotope profiles of labeled and unlabeled peptides are
well separated, thus readily allowing the determination
of their relative abundances (RAs). The approach has
been successfully applied in a number of in vivo studies
analyzing protein turnover in zebra fish [22], Caenorhabdi-
tis elegans [23], Drosophila [24] and mice [25, 26]. The label-
ing with 13C6-Leu has recently been used to study protein
turnover in human ventricular cerebrospinal fluid of
patients who suffered a subarachnoid hemorrhage [27].
In labeling with heavy amino acids, the quantification
is only possible for peptides that contain the labeled
amino acid. Often, organisms recycle the essential amino
acids from the catabolism of proteins. A recent study
developed a mathematical model that accounted for
the reusage (from protein degradation) of an essential
amino acid, Lys, in metabolic labeling with 13C6-Lys diet
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[25]. A longer time period may be required for reach-
ing an equilibrium of labeling precursors (free Lys). In
addition, labeling with the amino acid diet is expen-
sive, and additional time is necessary to adapt to the
diet.

The labeling with atom-based agents such as 2H or
15N often results in composite isotope profiles of labeled
and unlabeled species. Therefore, the computational and
mass informatics techniques for the data analyses from
these labeling approaches are more complex. Stable iso-
tope labeling of mammals uses a 15N-enriched diet such
as blue-green algae Arthrospira platensis (also referred to
as spirulina) for labeling [19, 28, 29]. Protein turnover
of the murine liver, blood and brain proteins has been
analyzed [30] using this labeling method. The analysis
of rat brain proteome turnover has identified extremely
long-lived proteins [31, 32].

Labeling with deuterium in heavy water supplied in
drinking water is cost-effective and easy to use. Heavy
water in concentrations that lead to >20% enrichment (in
body weight) is toxic for many species [33]. Until recently,
the concentration of deuterium was chosen such that to
result in 8–10% body water enrichment (BWE) [34]. These
enrichment levels were required for the quantification of
labeling in liquid chromatography and mass spectrome-
try (LC–MS). However, the recent advances in mass ana-
lyzers and bioinformatics data analysis techniques allow
the detection and quantification of labeling resulting
from only 2–3% BWE. Since heavy water labeling is also
used in clinical settings, the development of techniques
using lower deuterium concentrations and shorter label-
ing duration is ongoing. In heavy water labeling, deu-
terium is incorporated into C–H bonds of nonessential
amino acids (NEAAs) [35], which are synthesized endoge-
nously. Since essential amino acids are obtained from
the diet, they are largely unlabeled. Therefore, to observe
protein turnover in an isotope profile, a peptide that con-
tains NEAAs should be chosen. Since several ubiquitous
amino acids (such as Ala or Gly) are NEAAs, practically
all peptides resulting from a tryptic digest can be used in
quantification.

Recent reviews have discussed analytical [36], instru-
mentation [37] and practical [38] aspects of experiments
using metabolic labeling followed by LC–MS to study
in vivo protein turnover. This review focuses on recent
developments of bioinformatics techniques and tools
for the analysis of mass spectral data from heavy
water metabolic labeling. It emphasizes techniques for
time course modeling, peak detection and integration,
variance estimation and settings for peptide identifi-
cations from MS/MS and protein sequence databases.
Current bioinformatic and technical challenges are also
discussed.

Throughout the text, protein turnover rate, degrada-
tion rate constant and fractional synthesis rates will
be used interchangeably. Briefly, protein turnover rate
is defined as the time necessary for both degradation
and synthesis of half of the present protein pool. Under

the steady state assumption (used in discussions here),
protein turnover rate is determined from the degradation
rate constant, kdeg. The fractional synthesis rate, which
will be defined below, is obtained from the depletion of
the RA of the monoisotope, normalized to the asymptotic
enrichment.

Methods
Figure 1 shows a general workflow of labeling, data
acquisition and analyses to extract protein degradation
rate constants. After initial intraperitoneal (IP) injection
with heavy water (the IP dose is determined from body-
weight), living organisms are provided with deuterium-
enriched water. The IP injection rapidly (within hours
[39]) raises deuterium enrichment in the body water
to about 3–4%. A continuous supply of drinking water
enriched with deuterium maintains the BWE. The
deuteriums are incorporated into amino acids and subse-
quently into proteins. At specific time points of labeling,
tissue samples are collected. For a baseline comparison,
tissues from unlabeled animals are also collected. At
each time point, the tissues are processed using a routine
MS-based proteomics workflow: protein extraction/sep-
aration, protein digestion, peptide separation, LC–MS–
MS/MS and peptide/protein identification from tandem
mass spectra and protein sequence databases [19]. BWE
levels are determined from blood serum. As proteins
are degraded and resynthesized, they incorporate
deuterium-enriched NEAAs. The enrichment leads to
a change of isotope envelopes of intact peptides in MS1.
Traditionally, the time course of the label incorporation is
modeled using the evolution (from unlabeled to plateau
enrichment) of the isotope profiles of peptides [35, 39–
41]. Alternatively, the deuterium incorporation can also
be monitored in the isotope profiles of fragment ions [42,
43] or immonium ions [44].

Data set
Unless stated otherwise, this work uses a publicly avail-
able data set [45] obtained from murine liver labeled
with heavy water. Normal diet-fed LDLR−/− (low-density
lipoprotein receptor) mice were labeled with heavy water
for up to 21 days. Liver tissues were collected at 0, 3, 7, 11,
15, 21 days of labeling. The time point selection was made
based on empirical observations. Recently, we have devel-
oped a time point selection algorithm to achieve optimal
sampling for proteins in a sample [46]. At each label-
ing time point, one mouse was sacrificed. Proteins were
extracted and fractionated using SDS-PAGE. The proteins
of Band 4 were used in this work. Tryptic peptides were
separated using reversed-phase liquid chromatography
and analyzed in Q Exactive™ Plus Mass Spectrometer
(Thermo Scientific, CA). The mass profiles of intact pep-
tides (MS1) were recorded in Orbitrap at the resolution of
70 000 (200 m/z). The peptides were fragmented in a data-
dependent mode (DDA) using high-energy collision. The
resulting fragment ions were recorded at a resolution of
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Figure 1. A workflow of rate constant estimation. After initial IP injection, mice are provided deuterium-enriched drinking water. At predefined durations
of labeling, mice are sacrificed, tissues and blood are collected. BWE is determined from the enrichment of free amino acids in blood serum. Proteins
are extracted, digested, and peptides are analyzed in LC–MS–MS/MS. MS/MS spectra are searched to identify peptides. Peptide sequences, elution times,
m/z and charge state are used to detect and quantify isotope envelopes. The time course of label incorporation into peptides (MS1) or (less frequently)
into fragment ions (MS/MS) is used to extract peptide/protein degradation rate constants.

15 000. Further details of the experimental data are in the
original publication [45].

Database search for peptide/protein
identification
Mascot [47] database search engine for peptide/protein
identification from tandem mass spectra was used.
The search parameters were as follows: the fixed
modification of Cys carbamidomethylation and variable
modifications of Met (oxidation) and Lys (acetylation);
tryptic enzymatic specificity with two missed cleavages;
the mass accuracies of precursors and fragments were
15 ppm and 40 ppm, respectively. Importantly, the
precursor mass accuracy tolerance included up to two
13C peaks. This setting specifies that a precursor chosen
for fragmentation could potentially be from the monoiso-
tope, first, or the second heavy mass isotopomers. As a
result of labeling, heavy mass isotopomers become more
abundant, and the monoisotope becomes depleted. In
these cases, often, a 13C peak (a heavy mass isotopomer)
is chosen for fragmentation in a mass spectrometer in
the DDA mode.

Other database search engines such as SEQUEST [48],
ProLuCID [49] or MS-GF+ [50] may be used. The ability to
search peptide sequences based on the precursor mass

of a heavy mass isotopomer (often referred to as 13C
peak) is important and present in these algorithms. It
should, however, be noted that except for the precursor
mass shift, the algorithms do not seem to account for
fragmentation patterns (product ions) generated from
heavy mass isotopomers of a peptide.

Extracting degradation rate constants from
deuterium incorporation
This and the next sections describe theoretical tech-
niques used to extract protein rate constants from LC–
MS data of heavy water metabolic labeling. This section
summarizes approaches that model the time course of
the monoisotopic RA. As the proteins incorporate deu-
terium from the heavy water, monoisotopic RA depletes.
The time course is modeled as an exponential decay to
yield the decay (rate) constant. These approaches work
with RAs, and they require complete isotope profiles. The
next section addresses the time dynamics of ratios of
abundances of mass isotopomers. Using a probabilistic
framework of isotope distributions, time courses of sev-
eral ratios can be obtained via closed formulas [51]. The
results allow characterizing heavy water incorporation
dynamics using partial isotope profiles.
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The time course of mass isotopomer profiles of pre-
cursor ions as they incorporate the labeling agent was
originally modeled in mass isotopomer distribution anal-
ysis (MIDA) [52]. It was suggested that the fractional
synthesis, f (t), can be described as:

f (t) = In (t) − In(0)

Iasymp
n − In(0)

= 1 − e−kt (1)

where In(t) is the RA of the nth mass isotopomer (n = 0
for the monoisotope) at time point t, Iasymp

n is the RA of
the nth isotope at the plateau of enrichment. k is termed
as a fractional synthesis rate and also as the degradation
rate constant. Equation (1) is fit to the experimental data
of RAs to determine the rate constant. A derivation of
Equation (1) for the monoisotopic RA is provided in the
Supplementary File.

In metabolic labeling with heavy water, there are a
certain number of hydrogens (mostly in sidechains of
NEAAs) for a peptide that are available for deuterium
substitution (NEH). The RA of the monoisotopic peak, I0(t),
is expressed as [51]:

I0 (t) = I0(0)

(
1 − pX (t)

1 − pH

)NEH
(2)

pH is the natural abundance of deuterium, pX(t) is the
enrichment of the peptide with deuterium (in excess of
the natural abundance), atom percent excess (APE) [53],
at the labeling duration time t. When the labeling of a
protein reaches its plateau, (pX(t) + pH) becomes equal to
the BWE, pW. Hence:

Iasympt
0 = I0(0)

(
1 − pW/

(
1 − pH

))NEH (3)

Equations (1) and (3) provide the time course equation
for the monoisotopic RA:

I0 (t) = Iasymp
0 +

(
I0(0) − Iasymp

0

)
e−kt (4)

Equation (4) assumes that the label incorporation into
NEAAs is faster than protein synthesis [54]. Equation (4)
can also be obtained as a solution to a one-compartment
kinetic model of labeling [55].

The experimental units (e.g. mice) are not expected to
have the same BWE levels. The dependence on the BWE is
in the asymptotic term, Iasympt

0 . The data are transformed
to the same asymptote. For example, if at labeling time
point t, the observed RA is I1

0(t), and the corresponding
BWE level results in asymptotic enrichment Iasymp

1 , then
normalization to a different BWE with an asymptotic

enrichment level of Iasymp
2 is:

I2
0 (t) = Iasymp

2 +
(
I1
0 (t) − Iasymp

1

)
×

(
I0(0) − Iasymp

2

)
/
(
I0(0) − Iasymp

1

)

As is seen from the formula, for I2
0(t), which replaces

I1
0(t) in data analysis, the asymptotic enrichment is Iasymp

2 .
It is assumed that the degradation rate constants are
the same in two subjects. The result is obtained using
Equation (1).

The variance of the rate constant from Equation (4) is
estimated using the Delta method [56]. If a homoscedas-
tic variance, σ2

0 = Var(I0(t)) is assumed in measuring I0(t)
at all-time points, then the variance of the estimated rate
constant is [57]:

Var
(
k
) = σ2

0/

N∑
i=1

t2
i

(
I0 (ti) − Iasymp

0

)2
(5)

σ2
0 is related to the experimental error of measuring

mass isotopomer abundances. It is estimated from the
mean squared error (MSE) of the fit.

Another form of transformation of Equation (1) leads
to a linear regression fit for the log of the fractional
synthesis rate [58]:

kt = − log

(
I0 (t) − Iasymp

0

I0(0) − Iasymp
0

)

The linear least squares solution of the above equation
from a sample with N number of time points is:

k =
N∑

i=1

ti log

(
I0(0) − Iasymp

0

I0 (ti) − Iasymp
0

)
/

N∑
i=1

t2
i (6)

The variance of the rate constant from the linear
regression is given by Equation (5), as well. In the lin-
ear model, the variance of the measurements of I0(ti),
σ 2

0 , is also determined from the MSE. The variance will
determine the confidence interval of the estimated value.
Both models (linear and nonlinear regression fits) are
known to be sensitive to outliers. For model comparison,
correlations, R2 coefficient of determination and residual
sum of squares are used.

A stochastic, data-driven model, Gaussian process for
extracting peptide/protein turnover rates [59] has been
developed. In this model, the RA is modeled as a mul-
tivariate Gaussian random variable with exponentially
decaying mean,−→μ and variance–covariance matrix,

∑
:

−→
I0 ∼ MVN

(−→
μ , �

)
;
−→
I0 , −→μ ∈ RN;

where MVN stands for multivariate normal distribution,
N is the number of data points (time points at which
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heavy isotope levels have been measured). The compo-
nents of −→

μ are determined from the following equation:

μ (ti) = Iasymp
0 +

(
I0(0) − Iasymp

0

)
e−kti

The covariance matrix,
∑

, is an N by N matrix defined
as: ∑ (

i, j
) = K

(
i, j

) + σ2
ε δ

(
i, j

)
where δ is the Kronecker’s delta, σ2

ε is the variance of
white Gaussian noise. K(s, t) is the Ornstein–Uhlenbeck
kernel:

K
(
i, j

) = σ2
γe

(
−

∣∣∣ti−tj

∣∣∣k)
/k

σ2
γ is the variance of the model fluctuations. The

parameters of this empirical Bayes model are determined
via maximization of the log-likelihood function, L(

−→
θ ),−→

θ = (k, σγ, σε):

log
(
L

(−→
θ

))
= − 0.5 ∗

{
ln

(
det (�)

) −
(−→y − −→

μ
)T

× �−1
(−→y − −→

μ
)

− n ∗ ln (2π)
}

(7)

−→y denote the actual experimental data of RA of the
monoisotope. This model accounts for the correlations
between observations that are present in time course
data (measurements at nearby time points are expected
to be correlated more than those at the far time points).
The rate constant in this model is obtained by the maxi-
mization of log(L(

−→
θ )).

Often, protein half-lives (τ ) are used in the analysis. It
is defined as:

τ = ln(2)/k

The variance of the half-life is obtained from that of
the rate constant using Delta method:

var (τ) = var
(
k
)

ln2
(2)/k4

Isotope patterns and deuterium incorporation
A recent study [51] has shown that protein turnover
can be obtained from the abundances of only two mass
isotopomers. The ratio of the abundances of the first
heavy mass isotopomer, A1(t), to that of the monoisotope,
A0(t), is:

A1 (t)
A0 (t)

= NEH
pX (t)(

1 − pH
) (

1 − pH − pX (t)
) + A1(0)

A0(0)
(8)

The corresponding ratio of the abundances of the sec-
ond heavy mass isotopomer, A2(t), and the monoisotope,

A0(t) is:
A2 (t)
A0 (t)

= A2(0)

A0(0)
− A1(0)

A0(0)

pHNEH(
1 − pH

) +
(

pH

1 − pH

)2

× NEH (NEH + 1)

2
−

(
pX (t) + pH

1 − pH − pX (t)

)2 NEH (NEH + 1)

2

+ NEH
(
pX (t) + pH

)
(
1 − pH − pX (t)

) A1 (t)
A0 (t)

(9)

The APE, pX(t), can be determined from the raw abun-
dances of two mass isotopomers e.g. from Equation (8):

pX (t) = (A1 (t) /A0 (t) − A1(0)/A0(0))
(
1 − pH

)2

NEH + (
1 − pH

)
(A1 (t) /A0 (t) − A1(0)/A0(0))

(10)

From pX(t), it is possible to reconstruct the time course
using Equation (2), and then determine the rate constant,
Equation (4). Equations (8) and (9) can also be used for the
simultaneous determination of pX(t) and NEH.

It should be noted that fast-Fourier transforms
and binomial distributions are also used to estimate
deuterium APE in hydrogen–deuterium exchange exper-
iments to study protein structure [60–62]. However, in
these experiments, enrichment in deuterium is high, and
they result in separated isotope profiles. The techniques
presented in this section apply to the cases, when on
average less than one hydrogen in a peptide may be
exchanged with deuterium.

Results and discussions
Proteins/peptides are identified from tandem mass
spectra LC–MS experiments using database search
engines. For time course modeling, proteins that have
been observed in at least four different time points of
labeling are recommended [63]. Peptide sampling in DDA
is semi-stochastic. In replicate experiments, peptides
are chosen for fragmentation in some but not in all
experiments. In addition, in heavy water metabolic
labeling, it is observed that the number of identified
proteins/peptides declines with the increased duration of
labeling. This is shown in Figure 2, which depicts the total
number of spectra and those peptide-spectrum matches
that passed the homology and identity thresholds. The
results are from Mascot [47]. Shown are the averages
from two technical replicates at each labeling time. As
seen from the figure, the number of identified peptides
steadily declines with the increased labeling duration.
This result has consistently been observed in other
studies. The reasons for this phenomenon are unclear.
It does not seem to be explainable only by the higher
abundances of the heavy mass isotopomers after the
labeling.

Peptide identifications that pass the false discovery
rate (FDR) [64] thresholds are used for quantifica-
tion. Each peptide identification item provides peptide
sequence, identification score(s), elution time, charge
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Figure 2. The number of PSMs passing the FDR threshold tends to
decrease with the increased incorporation of deuterium. Shown are the
statistics from Mascot for six labeling durations with the average of two
technical replicates at each duration. The blue and red columns are the
(averaged number of) PSMs that passed Mascot’s identity and homology
thresholds, respectively. The gray columns are the number of unidentified
spectra.

state and peptide mass-to-charge ratio, m/z. Targeted
feature detection is performed using the m/z, elution
time, charge state and peptide sequence. Figure 3 shows
the isotope envelopes (at the apex of the elution profile)
of LNEINEK, a peptide of mouse CPSM (carbamoyl-
phosphate synthase [ammonia], mitochondrial) protein,
at four different labeling durations. As the peptide
incorporates deuterium, its isotope envelope changes.
The time course of the RA of monoisotope of this peptide
is used in the exponential decay model to extract the
degradation rate constant, Equation (4). The time course
of the RAs of this peptide is shown in Figure 4 (empty
black circles).

The dependence of the label incorporation on the
essential amino acids is modeled using a concept
of a number of hydrogens available for deuterium
substitution in metabolic labeling with heavy water, NEH.
The number is assumed to be the sum of numbers of
hydrogens sites that are accessible to the deuterium for
each amino acid. The NEH numbers of amino acids have
been experimentally determined only for mouse [65]. The
same numbers have been used in the analysis of data
from other species e.g. in the analysis of human plasma
protein turnover [63]. In general, it can be expected
that the NEH numbers will differ between organisms
and possibly for the same organism but under different
conditions/environments. The recent developments
[51] allow the simultaneous determination of relative
labeling and NEH numbers from raw abundances of three
mass isotopomers of a peptide, Equations (8) and (9).

Table 1 shows the rate constant estimations using
three approaches aforementioned for 10 CPSM peptides,
each of which has 13 hydrogens available for deuterium
substitution (NEH = 13). As seen from the table, the results

from various rate constant estimation techniques are
close. However, it should be noted that the linear model
will have invalid results for some data points. It happens
when the measured monoisotopic RA is less than the
asymptotic RA, which is determined theoretically. These
data points occasionally occur, and they are omitted
in the rate constant calculations in the linear model.
The nonlinear models are more flexible, and these data
points are included. The linear model has been employed
in experiments that estimated the rate constants from
one metabolic labeling point [66].

As seen from Table 1, the rate constants for peptides
exhibit variability. For all but one (LTSIDKWFLYKmR,
which exhibited low abundance in MS1) of the peptides
shown in the table and Figure 4, isotope envelopes
are well isolated and without interferences from the
co-eluting contaminants. The goodness-of-fit param-
eters (such as the Pearson correlation and MSE) of
the time course model [Equation (4)] are high. Two
potential reasons for this outcome are the spectral
accuracy (SA) of mass analyzers and the accuracy of
the applied NEH parameter. The SA (the accuracy in
the determination of RAs of mass isotopomers [67,
68]) of modern mass analyzers is affected by various
factors. Thus, in Orbitrap mass analyzers, trap overfilling
(space charge effect) may lead to systematic errors in
spectral patterns [69]. It has also been reported that the
SA is affected by ion losses that occurred during the
long scan times required for high mass resolution [67].
The RAs of mass isotopomers exhibit variations during
the chromatographic elution. The RAs measured from
samples of unlabeled experimental units often disagree
with corresponding theoretical values. The insufficient
accuracy of SA contributes to the variability in rate
constant estimations. The NEH parameter is another
factor potentially contributing to the variabilities in the
rate constant estimations. It has been experimentally
determined only for mouse.

A potential source of variability in peptide degradation
rate constants may be the amino acid composition
and differences in the biogenesis of NEAAs. NEAAs
can be grouped into families based on the first amino
acid synthesized in each family. Correlations between
the number of amino acids from each family and
the rate constants were small and mostly positive,
Supplementary Table S2. Thus, data from more than
950 proteins and 13 000 peptides (LDLR−/− mouse strain)
showed that the highest median value (from proteins),
0.23, of correlations was observed for peptides that
contained at least one of Glu or Gln amino acids. Thus,
peptides that contained the mentioned amino acids
tended to have higher rate constants than the median
(protein) rate. The results for other combinations of
amino acids are presented in Supplementary Table S2.
The absolute values of the median correlations were
small.

Although the recent improvements in increased
mass accuracy and resolution have improved peptide

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab598#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab598#supplementary-data
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Figure 3. Deuterium incorporation during metabolic heavy water labeling leads to the increase in RAs of heavy mass isotopomers. Shown (from MS1
spectra) are the abundances of the first four mass isotopomers (M0 through M3) of CPSM peptide, LNEINEK, at three time points of labeling, 3, 7 and
15 days and the natural isotope distribution (time points are shown on the figure). An increase in the RAs of the heavy mass isotopomers can be seen
from the figure. Mn refers to the nth mass isotopomer.

Table 1. Linear and nonlinear least squares fits produce close results of rate constants

Peptide Equation (4), rate
constant/SD

Equation (6), rate
constant/SD

Equation (7), rate
constant/SD

Figure 4 symbols∗

LNEINEK 0.095/0.008 0.088/0.01 0.096/ 0.025 ◦

YMESDGIK 0.134/0.02 0.150/0.026 0.136/ 0.039 ×
RTSVNVVR 0.066/0.012 0.059/0.014 0.071/ 0.019 �

YmESDGIK 0.136/0.017 0.118/0.025 0.139/ 0.035 +
MRDILNMDK 0.074/0.006 0.072/0.006 0.075/ 0.023 �

mRDILNMDK 0.11/0.007 0.107/0.007 0.112/ 0.017 ∇
mRDILNMDK+3 0.111/0.003 0.108/0.004 0.113/ 0.006 �

mRDILNmDK 0.117/0.012 0.128/0.016 0.119/ 0.028 �
TLGVDFIDVATK 0.173/0.032 0.049/0.051 0.170/ 0.028 �
LTSIDKWFLYKmR 0.146/0.175 0.057/0.187 0.042/ 0.848 ⊕

Shown are the amino acid sequences, model fit results from 10 peptides of murine CPSM protein. All peptides have 13 hydrogens available for deuterium
substitution in metabolic labeling. Shown are the rate constants in the units of day−1. Peptide+3 – the peptide is +3 charged, the rest of the peptides are +2
charged. m denotes oxidized methionine. ∗Symbols used to designate the experimental data for peptides in Figure 4. The peptides are listed in the order of the
RAs of their monoisotopes from Figure 4.

identifications, the increased resolution has not improved
the SA in MS1. The high mass resolution separates
mass profiles of the co-eluting species with close m/z
values. Therefore, the high mass resolution reduces the
ambiguity in assigning peaks. However, for quantitative
techniques using metabolic stable isotope labeling, an
important quantity is the SA. It has been reported that
the increase in mass resolution of popular mass analyzer,
Orbitrap, leads to a decrease in SA [70, 71]. The reduction
in SA results from the increased transient times in which
the lower abundance signals decay faster than the high
abundance signals [71]. Recent analyses of heavy water
labeling data from two different bioinformatics tools
revealed that the accuracy of rate constant estimation

with the increased mass resolution consistently reduces
after the resolution of 60 000–70 000 [70, 72]. In addition,
as a result of the longer scanning times, the number of
identified peptides, the first step in the data analysis,
also decreases. These factors should be considered in
setting parameters of mass analyzers in experiments for
measuring protein turnover rates.

The biological variability is inherent in the rate
constant estimations as animals are sacrificed at each
labeling time point to collect tissues (Figure 1). How-
ever, the biological variability does not seem to cre-
ate systematics shifts in rate constants. Figure S1 of
the Supplementary file shows this. For a protein, it
was assumed there is a distribution (Normal) of rate

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab598#supplementary-data
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Figure 4. Time courses of label incorporation for well-quantified peptides
are similar. Shown are the time courses of the monoisotopic RAs for
10 peptides (Table 1) of protein CPSM. For all peptides, the number of
hydrogens available for deuterium substitution in metabolic labeling with
heavy water is 13. Solid lines are theoretical fits. The experimental data
points for each peptide are denoted by symbols designated in Table 1.
The crossing of fitting curves was caused by the inconsistency in the
estimation of monoisotopic RA of unlabeled RTSVNVVR (data points
marked with red triangles).

constants for biological units. For each time point of
labeling, the Normal distribution was sampled for a
rate constant. The rate constant was used to generate
I0(t) for the labeling time point t. The simulated time
course data were used to ‘estimate’ the rate constant.
The rate constant was then compared with the mean of
the Normal distribution. The standard deviation (SD)
of the normal distribution was equal to 25% of the
mean. As Supplementary Figure S1 shows, there was no
systematic bias between the computed and ‘true’ rate
constants.

In addition to the variability in protein turnover rates
between biological units, potentially technical variability
may be introduced because of the different BWE levels.
Differences in BWEs can be theoretically modeled as was
shown above in the formula for I2

0(t). Normally, BWEs
between different biological units are close. Large differ-
ences in BWEs may affect rate constant estimations, as
small values of BWE result in subtle changes, especially
for slow turnover proteins at shorter labeling durations.
The quantification of these changes will be more affected
by the SA of mass analyzers.

Bioinformatics tools for analyses of heavy water
labeling data
Currently, there are three freely available bioinformatics
tools for estimating proteome dynamics from metabolic
labeling with heavy water and LC–MS, Table 2. ProTurn
[73] is a Java-based software. It also uses R environ-
ment for statistical computing [74]. It is available online.
DeuteRater [72] is developed in Python and is freely
available via GitHub. It uses combinatorial distribution

analysis originally developed in MIDA [52]. The latter is
proprietary software [75].

Our lab has developed (in C/C++ language) a freely
available (via GitHub) algorithm, d2ome [45]. For the
peptides/proteins that pass the user-defined stringency
thresholds, the algorithm performs a mass accuracy-
based peak detection and integration using the chro-
matographic elution profiles of peptides [76]. Theoret-
ically, computed isotope distributions [77] are used to
model incorporation at the initial and asymptotic time
points.

A recent report [78] used a Dirichlet distribution to
model a composite spectrum of labeled and unlabeled
peptides. The mixing coefficient was determined using a
Bayesian approach. In this approach, a peptide’s isotope
distribution is assumed to be a mixture of unlabeled and
fully labeled (obtained by convolving isotope distribu-
tions of free amino acids) peptides. The coefficient is used
to compute the ratio of the heavy to light peptides. The
isotope distributions of labeled amino acids were deter-
mined from the free amino acids in blood. The model was
implemented in the environment of Stan probabilistic
programming language [79].

The algorithms can be viewed as assembled from
three modules: data preprocessing, peak detection and
integration and rate constant estimation. ProTurn and
d2ome use the standard input files (mzid and mzML)
to read sequence, m/z, charge, elution times of protein-
s/peptides that pass identification thresholds such as
protein/peptide FDRs. DeuteRater uses a user-defined
input to specify protein, peptide sequence, precursor m/z
and elution time window. Using a statistical control (FDR)
ensures that only peptides/proteins that are confidently
identified will be processed for protein turnover in
high throughput experiments. On the other hand,
user-selected input of peptides/proteins provides more
flexibility for the analyses of chosen peptides/proteins.

As seen below, an important element of the algorithms
is peak detection and integration. IsotoQuant [39] module
of ProTurn extracts ion chromatograms of peptides using
retention time and mass isolation window of ±100 ppm.
d2ome detects peaks based on the monoisotopic mass
and the isotope profile. It determines the apex of the elu-
tion profile of the monoisotope. Peaks that are larger than
20% of the apex abundance are retained. DeuteRater uses
a vector-based approach for isotope profile representa-
tion. It starts with the user input elution scan. It retains
scans that differ from the neighboring scan by no more
than log10 (1.2). The angle between the vectors (from two
consecutive scans) is defined as the differences. DeuteR-
aters integrate the peaks in the user-defined elution
window. Both DeuteRater and d2ome allow the user to set
mass accuracy for peak detection. The option is useful
as the mass accuracy of the mass analyzers continues
to improve. d2ome computes and reports the statistics
on the mass accuracy distribution of identified peptides.
The information may guide to setting the mass accuracy
for each experiment.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab598#supplementary-data
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Table 2. Software tools for rate constant estimation using LC–MS data of metabolic labeling with heavy water

Software Availability Programing language Input data

MIDA [51] Proprietary – –
ProTurn [79] http://heartproteome.org/proturn Java and R mzid and mzml
DeuteRater [59] GitHub Python user chosen peptide list and mzML
d2ome [44] GitHub Visual Studio C/C++ mzid and mzML

All three algorithms use nonlinear least squares [80]
to fit the label incorporation to an exponential function.
It has been reported that the choice of the optimization
algorithm does not affect the results of rate constant
extraction [73]. ProTurn and DeuteRater generate plots
of experimental data and the corresponding theoretical
fit. ProTurn and d2ome determine the median of rate
constants of peptides as a protein turnover rate. DeuteR-
ater uses the combined time courses of the fractional
synthesis of all peptides of a protein to determine protein
turnover rate. The computation of the rate constant of
each peptide explicitly reveals the variability in the pro-
tein turnover rate. Using a combined fractional synthesis
of all peptides at each time point of labeling may poten-
tially increase the number of quantified proteins when
peptides are identified in some but not in all time points.
DeuteRater can also use the mass shifts instead of RAs.

Observation of label incorporation into fragment
ions in MS/MS
As aforementioned, most current techniques for deter-
mining protein turnover use the isotope profiles of intact
peptides in MS1. However, it is also possible to monitor
label incorporation into fragment ions in MS/MS. It has
been demonstrated [42, 43] that label incorporation into
a single amino acid (Arg) can qualitatively be monitored
as a function of the labeling duration. Another study
[44] showed that it is possible to quantitatively estimate
protein turnover rate from the labeling dynamics of an
immonium ion of Pro. Figure 5 shows the violin plot of
RAs of the monoisotope of y6 ion of peptide YMESDGIK.
The distributions are from RAs of multiple fragmentation
events of the peptide during its chromatographic elution.
The RAs exhibit considerable fluctuations. Applying the
current quantitative modeling techniques to extracting
rate constants from fragment ions produced results that
underestimated those from the isotope distribution of
intact peptides [42]. There are potential advantages of
signal estimation in MS/MS. The technique obviates the
need for peak detection and quantification in MS1; there-
fore, interferences from co-eluting species are negligible.
It also avoids effects from space charging.

Techniques using amino acid-based stable isotope
tracers have employed fragment ion-based quantifica-
tion for rate constants [3, 81, 82]. The quantification
utilizes labeled and unlabeled fragment ions from
different tandem mass spectra to estimate the rate
constant. Recently, selected reaction monitoring has

Figure 5. The monoisotopic RA of a fragment ion shows a characteristic
depletion of metabolic labeling with heavy water. Violin plot of the RA of
the monoisotopic peak of y6 fragment ion of the peptide, YMESDGIK, at
six time points of labeling. The white circles are the median values of RAs
at specific time points.

been applied to study protein turnover by quantifying
fragment ions. [83–85].

The number of peptide entries reduces after the
goodness-of-fit filtering
Despite ubiquitous deuterium incorporation into pep-
tides, only a fraction of the available peptide entries
is useful for rate constant extraction [73]. Only 43%
of peptides were retained after the filtering based on
the goodness-of-fit metric for mouse strain, C57BL/6JRj
strain (control group) [73]. The results are similar to those
that were observed in another study [45] in a smaller
data set. From the experience of data analyses, one of
the main reasons for the poor goodness-of-fit metrics
is the co-elution of the target peptides with the con-
taminants. Bioinformatic approaches for rate constant
estimations from partial isotope profiles have the poten-
tial to improve rate constant estimations by obviating
the necessity to quantify the complete isotope profile
[43, 51]. Theoretically, it is possible to estimate the label
incorporation from RAs of two mass isotopomers [51].

Detection of RA changes
Accurate estimation of the rate constant from mass
spectral data requires adequate sampling of time points
on the axis of the metabolic labeling duration. The mag-
nitude of changes in isotope profiles of a peptide is the-
oretically determined by four factors: BWE, NEH, protein
turnover rate and labeling duration. The higher the rate,
the earlier (the metabolic labeling time) are the isotope
profile changes. Also, high levels of BWE lead to faster

http://heartproteome.org/proturn
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Figure 6. Three days of labeling result in measurable changes of isotope
profiles. Boxplots of fractional syntheses of three proteins after three days
of labeling are shown. Shown are the fractional syntheses for several
peptides of each protein. For the same labeling duration, proteins with
faster degradation rate constants (shorter half-lives) such as Vigilin (80
unique peptides) exhibit substantially higher fractional synthesis and
measurable (by MS) changes in the isotopic profiles. For peptides of
hemoglobin subunit beta-1, HBB1 (20 unique peptides), small changes are
observed for isotope distributions of most of its peptides. Most of peptides
of CPSM (324 unique peptides) also exhibit measurable fractional synthe-
sis rates.

changes in the isotope profiles of peptides. However,
mass spectrometers have their own specifics. As was
noted, the SA of modern mass spectrometers does not
allow accurate measurements of small changes in iso-
tope profiles. In addition, the signal-to-noise ratio of MS
is often dependent on the protein/peptide abundance. It
is shown with the example of three proteins in Figure 6.
The figure shows the boxplots of the fractional synthesis
of three proteins: CPSM, high-density lipoprotein binding
protein (VIGLN) and hemoglobin subunit beta-1 (HBB1).
As seen from the figure, although the first two pro-
teins show large fractional syntheses after three days of
labeling, the last protein incorporates small amounts of
deuterium. Using Equation (10), the estimate of the APE
for CPSM peptides is 0.0039 after three days of labeling
(pW = 0.0302). The RA of 2H in nature is approximately 1.5
× 10−4. Thus, with the current SA of mass spectrometers,
it is possible to estimate deuterium incorporations about
25 times that of the natural abundance. The calculated
half-lives of the above proteins are (7.1 ± 2.1), (1.9 ± 0.5)
and (48 ± 11) days, respectively.

Results from murine heart proteome studies
using other labeling techniques and software
This section presents the results of murine proteome
turnover studies using two different labeling techniques
and analysis tools. A recent study [25] analyzed mouse
(C57BL/6JRj strain) heart proteome turnover using 13C6-
Lys labeling. Previously, murine heart proteome from this
mouse strain was analyzed using heavy water labeling
and ProTurn [73]. The data were also analyzed with

d2ome. Supplementary Figure S2 shows the scatter plot
of protein turnover rates from d2ome and ProTurn.
Pearson’s and Spearman’s correlations between the
rates from the two methods for proteins quantified by
three or more peptides (in both tools) were 0.73 and
0.93, respectively. Data points for these proteins are
shown in blue in Supplementary Figure S2. Among these
proteins, the biggest relative difference was observed for
long-chain fatty acid transport protein 1 (Uniprot iden-
tification, Q60714, Uniprot entry name S27A1_MOUSE).
The computed rates were 0.054 (d2ome) and 0.234 (Pro-
Turn). The basic element of quantification is the deter-
mination of monoisotopic RA. Supplementary Table S1
shows the quantitative information for peptides of the
protein S27A1_MOUSE from two software tools. It is
noted that due to different peptide identification engines,
the number of identified peptides was larger in ProTurn
(the study used ProLuCID [49]). The table only shows
the peptides that have been quantified in both tools.
The time course of monoisotopic RAs of one peptide
from the two bioinformatics tools and their fits are
shown in Supplementary Figure S3. The figures show
that the main reason for the different rates is the peak
quantification in MS1. It should be noted that in d2ome,
the high variability of peptide rate constants results in a
high SD of protein rate constant. Thus, the SD of the rate
constant of S27A1_MOUSE was 0.044, which resulted in a
high coefficient of variation (CV), 82%. The corresponding
CV from ProTurn was high as well and equal to 70%.

Three proteins (from 7 interacting proteins with scores
above 0.7 in STRING [86]) that strongly interact with
S27A1_MOUSE were also quantified in the sample.
The interacting proteins are shown in Supplementary
Figure S4. CPT1B_MOUSE (Q924X2), ACSL1_MOUSE
(P41216) and CD36_MOUSE (Q08857) had similar turnover
rates computed in d2ome and ProTurn. The computed
turnover rates (in units of day−1) for these proteins were
(0.047; 0.055), (0.036; 0.046) and (0.147; 0.128), respec-
tively. Turnover rates from d2ome (the first number) and
ProTurn (the second number) are shown in parenthesis
for each protein. Since the rate constants between
proteins differed, it was not possible to hypothesize about
a possible rate constant of S27A1_MOUSE based on those
of its interacting proteins.

Protein turnover of heart proteome of C57BL/6JRj
mouse strain using 13C6-Lys metabolic labeling has quan-
tified 1164 proteins [25]. The scatter plot of turnover rates
from heavy water labeling [73], and 13C6-Lys labeling
[25] is shown in Figure 7. Pearson’s and Spearman’s
correlations between the turnover rates were 0.64 and
0.90, respectively. The turnover rates obtained with 13C6-
Lys labeling tended to be higher in general. The medians
of computed half-lives were 9.3 and 4.4 days for heavy
water labeling and 13C6-Lys labeling, respectively. The
medians of half-lives of proteins (719 proteins) that were
common from quantification with heavy water labeling
(estimated using d2ome) and 13C6-Lys labeling were 9.3
and 5.4 days, respectively.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab598#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab598#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab598#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab598#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab598#supplementary-data
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Figure 7. Turnover rates of murine (C57BL/6JRj strain) heart proteins
measured using 13C6-Lys labeling were, in general, higher than those
computed using heavy water labeling. The x- and y-axes show the
turnover rates obtained using heavy water labeling (computed using
d2ome) and 13C6-Lys labeling, respectively.

The median of the half-lives in the original publication
of heavy water labeling [73] (computed using ProTurn) for
this mouse strain in the control sample was 5.8 days. The
scatter plot of rate constants between ProTurn and 13C6-
Lys labeling results is shown in Supplementary Figure S5.
As seen from the plot, the rate constants computed from
13C6-Lys labeling were higher in general. The median
half-lives of proteins common (913 proteins) to heavy
water labeling (ProTurn) and 13C6-Lys labeling were 6.6
and 4.6 days, respectively. It is noted here that a study
[87] of murine heart proteome (C57BL/6 strain) using
metabolic 2H3-Leu labeling reported median half-live of
9.1 days (5-month-old female mice). The comparisons of
turnover rates in the above-mentioned experiments are
confounded by biological (such as age and gender) and
environmental (housing and diet) factors.

Perspectives
Heavy water is inexpensive and easy to use labeling
agent to study protein turnover in vivo. Dynamics of
thousands of proteins of liver [39, 45, 88], heart [34,
73, 89], skeletal muscle [2, 58] and blood [90] has been
reported. Heavy water is toxic in high concentrations
(>20%); therefore, low concentrations (2–3% BWE) are
often used. Deuterium from heavy water is incorporated
into NEAAs and labels virtually all peptides/proteins. Due
to the low enrichment, the labeling generates composite
isotope profile – an overlap of labeled and unlabeled
peptides. This is different from labeling with heavy amino
acids, which result in well-separated isotope profiles.
Therefore, SA of mass analyzers is particularly important
for accurate measurements of deuterium incorporation.
Bioinformatics techniques [43, 51] have been devel-
oped to accurately model the enrichment. Accurate

estimation of label incorporation from semi-quantitative
isotope profiles will increase the output of protein
turnover studies.

Bioinformatics methods that estimate rate constants
from two or three mass isotopomers will reduce the
need to detect and quantify mass isotopomers from
the entire isotope envelope. Furthermore, the develop-
ments of techniques that can estimate the number of
hydrogens available for deuterium substitution on the fly
will make it possible to apply the technology to a broader
spectrum of species rigorously. One potential approach
for this problem is to use the systems of two equations
for two variables (deuterium enrichment and NEH) that
are provided from the time courses of abundances of
heavy mass isotopomers [51].

The number of identified proteins/peptides decreases
with the increased labeling duration, even when the pos-
sible fragmentations from heavy mass isotopomers are
included in database search engines. Sample processing
and bioinformatics techniques that provide relatively
consistent protein/peptide identification numbers from
heavy water labeled samples will increase the proteome
coverage.

Protein turnover rates obtained with applications of
heavy water labeling and LC–MS generally agree with
typical values in literature. However, it has been sug-
gested that the precursor pool of amino acids may be
diluted [35] due to the amino acid recycling. The dilution
of labeled amino acids by the amino acids of catabolized
tissue proteins has been modeled for experiments using
stable isotope-labeled essential amino acid, Lys [25, 91,
92]. In the case of the NEAAs, the effect has not been
studied. It cannot be ruled out that the recycling con-
tributes to the variability observed in estimations of rate
constants of peptides from the same protein.

Rate constant estimations from the fragment ions pro-
vide information about label incorporation into individ-
ual amino acids. It potentially provides data for study-
ing specific metabolic pathways. Technique potentially
avoids the contaminations from the co-eluting species
and charge spacing.

Only a portion of the identified peptides currently pro-
duces results that pass the thresholds of the goodness-
of-fit of time course models. It is similar to techniques
that use heavy amino acids for labeling [87, 91]. Enhance-
ments in SA, protein/peptide separation techniques
and bioinformatics will improve the protein turnover
estimations.

Conclusion
This review discussed bioinformatics aspects of the data
processing for the estimation of protein degradation rate
constants. Three modeling techniques have been com-
pared. The nonlinear least squares model is more flexible
for fitting data than the linear model. For the interpreta-
tion of the data, it was emphasized that the SA of the
current mass spectrometers is still improving.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab598#supplementary-data
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New bioinformatics techniques are needed to improve
the efficiency of peptide data usage. Currently, only a
portion of the identified peptides produces quantifica-
tion results that pass the threshold of data analysis.
New technical developments that allow rate constant
estimation from partial isotope profiles will be helpful
in the analyses of overlapping spectral profiles resulting
from co-elutions.

Key Points

• Heavy water metabolic labeling followed by LC–MS is
an easy to use, cost-effective, safe and powerful tool for
high-throughput and large-scale studies of in vivo protein
turnover.

• Incomplete labeling with heavy water results in a com-
posite spectrum of labeled and unlabeled forms of a
peptide. Accurate formulas provide the time evolution of
mass isotopomer abundances.

• Linear, nonlinear and stochastic models produce similar
rate constants for protein turnover.

• Calculated peptide degradation rate constants show
variabilities, even for the same value of the parameter:
the number of hydrogens accessible to deuterium in
metabolic labeling.

• As the label duration (incorporation) increases, the num-
bers of identified and quantified peptides decrease.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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All data used in this study are available in Supplemen-
tary data and referenced publications.
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