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Abstract

N6-methyladenine (6mA) is associated with important roles in DNA replication, DNA repair, transcription, regulation of gene
expression. Several experimental methods were used to identify DNA modifications. However, these experimental methods are costly
and time-consuming. To detect the 6mA and complement these shortcomings of experimental methods, we proposed a novel, deep
leaning approach called BERT6mA. To compare the BERT6mA with other deep learning approaches, we used the benchmark datasets
including 11 species. The BERT6mA presented the highest AUCs in eight species in independent tests. Furthermore, BERT6mA showed
higher and comparable performance with the state-of-the-art models while the BERT6mA showed poor performances in a few species
with a small sample size. To overcome this issue, pretraining and fine-tuning between two species were applied to the BERT6mA. The
pretrained and fine-tuned models on specific species presented higher performances than other models even for the species with a
small sample size. In addition to the prediction, we analyzed the attention weights generated by BERT6mA to reveal how the BERT6mA
model extracts critical features responsible for the 6mA prediction. To facilitate biological sciences, the BERT6mA online web server
and its source codes are freely accessible at https://github.com/kuratahiroyuki/BERT6mA.git, respectively.
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Introduction
N6-methyladenine (6mA) is one of the essential epi-
genetic modifications and involves important roles in
DNA replication, DNA repair, transcription, regulation of
gene expression [1–4]. For example, the newly synthe-
sized strands and templates are distinguished with or
without methylation in the DNA mismatch repair [5]
and methylation works as a mark to discriminate self
DNAs from incoming foreign DNAs in the restriction-
modification system [6]. Furthermore, a previous study
reported that 6mA is associated with several diseases
such as cancer [7]. Therefore, the identification of 6mA
is crucial for understanding epigenetic modification pro-
cesses and revealing the epigenetic regulation related to
the diseases.

High-throughput experimental methods, including the
single-molecule real-time (SMRT) sequencing technol-
ogy [8, 9], methyl-DNA immunoprecipitation and liquid
chromatography-tandem mass spectrometry [7, 10, 11],

have been used for identifying the DNA methylation sites.
They provide an efficient way to detect DNA methylation
at a single-nucleotide resolution. However, they cover
only a portion of genomic DNA and have not detected
6mA sites across the whole genome, and some of them
have problems with sequencing quality and signal-to-
noise ratio [12]. In addition, experimental methods are
costly and time-consuming. For this reason, it is valuable
to develop computational prediction models to reduce
the experimental cost and compensate for the shortcom-
ings of experimental methods.

Several machine learning and deep learning-based
models have been developed for the prediction of the
DNA 6mA modification sites. Recently, Lv et al. have
proposed the iDNA-MS that predicted 6mA sites for
11 species using the random forest (RF) model with
the mono-nucleotide binary encoding (MNBE) and
nucleotide chemical property and nucleotide frequency
(NCPNF) encoding methods [12]. Such machine learning
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methods with composition-based and chemical property-
based encoding methods were applied to the prediction
of the modification sites of 4mC and 5mC [12–14].

On the other hand, the overall aforementioned
methods still remain to be improved by using the latest
deep learning. Hence, it is necessary to develop an
effective DNA predictor that can learn the features
buried between 6mAs and non-6mAs in multiple
species, which can be successfully applied to identify
characteristic patterns. In addition to these encoding
methods, embedding techniques in natural language
processing have been used. In particular, the word2vec
is regarded as one of the best embedding methods [15]
and utilized for various classification and predictions in
bioinformatics classifications [16, 17].

Deep learning-based models realized robust and accu-
rate predictions by capturing the features significantly
related to 6mA from input sequences. Wahab et al. pre-
dicted 6mA sites in rice and Mus musculus by using a
1-dimensional convolutional neural network (1D-CNN)
[18] and obtained the area under the ROC curve (AUC)
of greater than 0.9 in both species. A long- and short-
term memory (LSTM)-based [15] and gated recurrent
units (GRU)-based model [19] presented stable perfor-
mances by extracting information regarding the order of
nucleotides with the memory mechanism. Recently, Li et
al. [20] have introduced a combining model of CNN and
LSTM that outperformed previous state-of-the-art mod-
els. In addition, Bidirectional Encoder Representations
from Transformers (BERT) is one of the most powerful
predictive models and it can achieve faster inference
because BERT does not require the continuous recursive
computations that are executed on recurrent neural net-
work (RNN)-based models like LSTM and GRU. Devlin et
al. first proposed a BERT model and trained their model
on pretraining and fine-tuning to construct models with
high generalization performance by using less data [21].
Zhang et al. used a BERT-based model and identified
the 6mA sites in Escherichia coli and Homo sapiens [22]
with high performances. Yu et al. have developed the
iDNA-ABT that predicted 6mAs using BERT and adaptive
embedding method [23] and compared it with previ-
ous models including SNNRice6mA [24] and DeepTorrent
[25].

In this study, we proposed the BERT6mA (BERT with
word2vec), a novel, deep leaning approach that identifies
6mA sites, as shown in Figure 1. We combined seven
encoding methods including the DNA sequences compo-
sition [26, 27], nucleotide chemical property [28–30] and
word2vec with eight deep learning models to compare
the performance of Lv et al.’s iDNA-MS and Yu et al’s
iDNA-ABT. In addition, we generated two novel encoding
schemes of contextual- nucleotide chemical property
and nucleotide frequency (C-NCPNF) and contextual-
mono nucleotide binary encoding (C-MNBE). For many
species, the BERT6mA outperformed the iDNA-MS, iDNA-
ABT and other deep learning-based models, but per-
formed poorly for the species with fewer 6mA data. To

construct the BERT with fewer 6mA data, we employed
the pretraining and fine-tuning methods. In addition to
the prediction, we challenged the black box problem of
deep learning. We analyzed the BERT-generated attention
weights to identify some nucleotide distributions closely
associated with 6mA modification. The BERT6mA is use-
ful not only for predicting 6mA but also for revealing
mechanisms by which BERT6mA discriminates 6mA and
non-6mA. To the best of our knowledge, this is the first-
time study that employs multiple deep learning algo-
rithms for constructing a learning framework in 6mA
prediction, which is potentially useful for assisting DNA
epigenetics research.

Materials and methods
Datasets
To compare the performance of deep learning with that
of machine learning in multiple species with different
data sizes, the benchmark datasets were taken from the
recently published article of iDNA-MS [12]. The datasets
of the 6mA site were obtained from several published
references and databases including the MethSMRT
database, MDR database, GEO database and NCBI
Genome database [7, 31–34]. They contain 6mA and non-
6mA data in 11 species including Arabidopsis thaliana (31
873 6mAs and non-6mAs), Caenorhabditis elegans (7961
6mAs and non-6mAs), Casuarina equisetifpolia (6066 6mAs
and non-6mAs), Drosophila melanogaster (11 191 6mAs and
non-6mAs), Fragaria vesca (3102 6mAs and non-6mAs),
H. sapiens (18 335 6mAs and non-6mAs), Rosa chinensis
(599 6mAs and non-6mAs), Saccharomyces cerevisiae (3786
6mAs and non-6mAs), Thermus thermophilus (107 600
6mAs and non-6mAs), Ts. SUP5–1 (3379 6mAs and non-
6mAs) and Xoc. BLS256 (17 215 6mAs and non-6mAs).
The 6mA samples of the employed 11 species were
measured at a single-nucleotide resolution mainly by
the SMRT. The length of sequence windows was set to
41 bp, which showed the highest performance in the
previous study of 6mA prediction [26]. The methylated
adenine is located at the center in 6mA samples,
while that in non-6mA samples is not confirmed to
be methylated by experiments. The datasets in each
species were divided into training and independent
test data at a ratio of 1:1. The curated datasets can be
downloaded from the web application developed by Lv
et al. [12].

Feature encoding methods
Feature encoding is associated with the performance
of prediction models [35]. We transformed the DNA
sequences into feature matrixes by five single encod-
ing methods (NCPNF, MNBE, C-NCPNF, C-MNBE and
word2vec) and two combined encoding methods.

Nucleotide chemical property and nucleotide frequency

NCPNF feature matrixes are generated by chemical prop-
erties and density of each nucleotide [12]. The chemical
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Figure 1. The overall flow of analysis in the present study. Our workflow was composed of feature encoding, deep learning-based prediction,
evaluation, cross-species validation, pretraining and fine-tuning, observation of nucleotides around 6mA, analysis of attention weights and web-server
implementation.

properties of the ith nucleotide in a DNA sequence are
represented by a combination of three different features
(xi, yi, zi), xi, yi and zi are related to ring structure, hydro-
gen bonds and chemical functionality, respectively. In
terms of the ring structure, nucleotides are grouped into
purines and pyrimidines. In terms of hydrogen bonds,
they are classified according to whether they form strong
or weak hydrogen bonds. In terms of chemical func-
tionality, they are divided into amino and keto groups.
According to the above classification, each feature is
represented by:

xi =
{

1 if si ∈ {
A, G

}
0 if si ∈ {

C, T
} , yi =

{
1 if si ∈ {A, T}
0 if si ∈ {

C, G
} ,

zi =
{

1 if si ∈ {
A, C

}
0 if si ∈ {

G, T
} , (1)

where chemical feature vectors of A, T, G and C corre-
spond to (1,1,1), (0,1,0), (1,0,0) and (0,0,1), respectively. The

density of the ith nucleotide is calculated by:

Di = 1∣∣∣Nj

∣∣∣
∑L

j=1f
(
nj

)
(2)

f
(
nj

) =
{

1 if nj = q
0 otherwise

,

where L, Nj and q are the length of the DNA sequence,
the length of the ith prefix string in the sequence and
the concerned nucleotide, respectively. A feature vector
of the ith nucleotide is generated by arranging chemical
properties and density as follows:

Fi = (
xi, yi, zi, Di

)
(3)

Finally, the feature vectors in a DNA sequence are
concatenated and each DNA sequence is represented by
a 41 × 4 matrix.
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Mono-nucleotide binary encoding

MNBE encodes the exact nucleotide position of a given
sequence as a binary vector as follows:

n =

⎧⎪⎪⎨
⎪⎪⎩

(1, 0, 0, 0) , when n = A
(0, 1, 0, 0) , when n = T
(0, 0, 1, 0) , when n = G
(0, 0, 0, 1) , when n = C

(4)

The vectors of each nucleotide in a DNA sequence are
concatenated and each DNA sequence is represented by
a 41 × 4 matrix.

Contextual-NCPNF and contextual-MNBE

Furthermore, we generated two novel encoding methods
of C-NCPNF and C-MNBE to predict 6mAs. As shown in
Figure S1, available online at http://bib.oxfordjournals.
org/, we arranged the vectors of consecutive k nucleotides
of the NCPNF and MNBE-based feature matrixes in line
and concatenated them to create the contextual NCPNF-
and MNBE-based feature matrixes. Thus, each vector in
the matrix includes information of consecutive multiple
nucleotides. In this study, since k is set to 25, the sequence
window was represented by a 17 × 100 matrix.

Word2vec

Word2vec is one of the powerful embedding methods
in the field of natural language processing [36]. It
encodes diverse linguistic regularities and patterns into
distributed representations by learning word context
[37]. There are two methods for learning the context
of words: the Continuous Bag-of-Words Model (CBOW)
and the Continuous Skip-Gram Model (Skip-Gram). In
the learning process, CBOW predicts the current word
based on the context, while Skip-Gram predicts the
context from the current word. We used the Skip-Gram
because Skip-Gram showed much better performance
than CBOW [36].

In the encoding of DNA sequences using word2vec, the
consecutive 4-mers were regarded as words, as shown
in Figure S2 available online at http://bib.oxfordjournals.
org/. The word2vec model was trained on the training
data of all species to produce 100-dimensional vectors
per each 4-mer. Feature matrixes were generated by con-
catenating them, thus each nucleotide sequence window
is represented by a 38 × 100 matrix.

Deep learning models
Eight deep learning models including LSTM [38],
bidirectional-LSTM (Bi-LSTM) [39], GRU [40], bidirectional-
GRU (Bi-GRU), BERT [21], 1D-CNN, BERT with Bi-LSTM,
and 1D-CNN with Bi-LSTM were constructed. We used
pytorch of the python package to build the deep learning
models. Each deep learning architecture is described
below. All the parameters regarding the network struc-
ture are summarized in Table S1 available online at
http://bib.oxfordjournals.org/.

LSTM and Bi-LSTM

RNN is useful for predictions of data with interdependen-
cies among features, such as time-series data. However,
RNN cannot learn long-term dependencies due to gradi-
ent disappearance and explosion. LSTM introduces gate
structures and memory cells to solve this problem. The
advantage of LSTM contributed to various classification
and predictions. Bi-LSTM expands the LSTM units in two
directions. As shown in Figure S3, available online at
http://bib.oxfordjournals.org/, the feature vectors involv-
ing a nucleotide or multiple nucleotides were inputted
to LSTM units at each step. The output vector from the
LSTM unit at the final step is applied to a fully connected
layer to generate a final output. In the Bi-LSTM, the out-
puts from LSTM units at the final step in the forward and
reverse directions are concatenated and the final output
was generated by applying the concatenated vector to
a fully connected layer (Figure S4 available online at
http://bib.oxfordjournals.org/). To obtain a value between
0 and 1 as the final output, the sigmoid function is used
as an activation function at the fully connected layer. In
the present study, the hidden size of the LSTM unit is set
to 128.

GRU and Bi-GRU

LSTM overcomes the shortcomings of RNN to enable
learning of long-term dependencies. On the other hand,
LSTM has the problem of increasing computational cost.
GRU is able to learn long-term dependencies with lower
computational costs and fewer parameters than LSTM by
using two gates. In several studies, the GRU-based model
has shown higher performance than the LSTM-based
model in some previous studies [41, 42]. Bi-GRU propa-
gates the information in the forward and reverse direc-
tions in the same manner as Bi-LSTM. The GRU-based
networks are constructed by substituting GRU units for
the LSTM units in the LSTM-based network (Figures S3
and S4 available online at http://bib.oxfordjournals.org/).
In the present study, the hidden size of the GRU unit is
set to 128 in the same manner as LSTM.

Bidirectional encoder representations from transformers

BERT has received much attention in recent years
because of its state-of-the-art technology applicable to
a wide range of tasks in various fields. It consists of
multiple encoder layers of Transformers, developed by
Vaswani et al. in 2017 [43], and learns not only unidirec-
tional dependencies but also bidirectional dependencies.
The encoder part includes multihead attention and a
feed-forward network. As shown in Figure S5, available
online at http://bib.oxfordjournals.org/, the feature
matrixes are inputted into BERT. The outputs from the
BERT network are concatenated and transferred to a fully
connected layer with a sigmoid function to produce the
final output. As in the previous study [22], the number
of layers, the number of attention heads and the hidden
size are set to 3, 4 and 100, respectively.
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One-dimensional convolutional neural network

CNNs are mainly composed of two types of layers:
convolutional and pooling layers. In the convolutional
layer, significant features necessary for prediction are
extracted by the use of filters. The pooling layer provides
robust prediction against pattern modification and
suppresses overfitting by compressing information. We
use the CNN model developed by Wahab et al. [18].
This CNN is composed of two convolutional layers and
two max pooling layers (Figure S6 available online at
http://bib.oxfordjournals.org/). The outputs from each
convolutional layer with the ReLU function are sent
to the max pooling layer. The outputs from each max
pooling layer are applied to the dropout layers with
a probability of 0.4. The output from the second max
pooling layer is flattened and sent to the fully connected
layer to generate the final output. A sigmoid function is
used as the activation function. In the same manner as
Wahab et al., the number of filters, filter size and stride
of the filters in the convolutional layer are set to 32, 5
and 1, respectively, and the pool-size and stride of max
pooling layers are 2 and 2, respectively.

Hybrid models

We constructed the hybrid models including the BERT
with Bi-LSTM (Figure S7 available online at http://bib.
oxfordjournals.org/) and the 1D-CNN with Bi-LSTM
(Figure S8 available online at http://bib.oxfordjournals.
org/). In both the hybrid models, the feature matrixes
were firstly processed by BERT and 1D-CNN, respectively.
Then the intermediate vectors from the third encoder
layers in the BERT and the second max pooling layer in
the 1D-CNN are inputted into the Bi-LSTM unit at each
step, respectively. The outputs from forward and reverse
LSTM units at the final step are concatenated, and the
combined output is applied to a fully connected layer
with a sigmoid function to produce the final output.

The hybrid model of BERT with Bi-LSTM was proposed
in the previous studies for the prediction of bitter pep-
tides [44]. To compare the BERT with Bi-LSTM to the BERT
and the Bi-LSTM, the parameters, including the number
of layers, attention heads and hidden size, of the BERT
with Bi-LSTM are set to the same values as those of BERT
and Bi-LSTM. The parameters of the 1D-CNN with Bi-
LSTM are set to the same values as those of 1D-CNN and
Bi-LSTM.

Training of deep learning models
We evaluated the predictive performances of the deep
learning approaches in the same way as Lv et al. [12].
Five-fold cross-validation was applied to the training
dataset, and the trained models were tested by inde-
pendent test. In the 5-fold cross-validation, training data
were divided into five subsets. Then, four subsets were
used for training models; the remaining one was used
for validation. The optimization was performed by the
Adam optimizer with a learning rate of 1.0 × 10−5. Mini-
batch size was set to 128 and the losses were calcu-
lated by a binary cross-entropy loss function. To prevent

overlearning, the training process was terminated when
the minimum loss in the validation data was not updated
for consecutive 20 epochs. All the parameters of the
training are summarized in Table S1 available online at
http://bib.oxfordjournals.org/.

Cross-species validation
To validate whether a species-specific trained model is
effective in predicting 6mA sites of other species, cross-
species validation was carried in the same manner as
Lv et al.’s research [12]. The BERT6mA model that was
trained on the whole data of one species was tested by
the whole data of other species.

Pretraining and fine-tuning
In general, it is hard to train deep learning models
with fewer data. To overcome this problem, pretraining
and fine-tuning were carried. In detail, the BERT with
wrod2vec models were trained on the whole data of
species other than the target species as the pretrained
models. The pretrained models were fine-tuned by 5-
fold cross-validation on the training data of the target
species. The fine-tuned model was evaluated on the
test data of the target species. The trained models in
the section of ‘Cross-species validation’ were used as
pretrained models.

Evaluation
We evaluate the predictive model performances by five
statistical measures: sensitivity, specificity, accuracy,
Matthews correlation coefficient (MCC) and AUC. The
measures other than the AUC are given by:

sensitivity = TP
TP + FN

(5)

specificity = TN
TN + FP

(6)

accuracy = TP + TN
TP + TN + FP + FN

(7)

MCC = TP × TN − FP × FN√
(TN + FN) × (TP + FP) × (TN + FP) × (TP + FN)

,

(8)
where TP, FP, TN and FN are true positive, false positive,
true negative and false negative, respectively. The thresh-
old to determine whether 6mA or non-6mA was set to
0.5. AUC is the area beneath the ROC curve. To calculate
these measures, we used the scikit-learn of the python
package.

Preferred nucleotide distribution patterns
The pLogo (probability logo) [45, 46] is generally employed
to examine the distribution patterns of nucleotides
and to present the appearance frequency or preference
of specific nucleotides. In the pLogo, the height of
each nucleotide indicates the statistical significance
of its appearance frequency or preference, which is
determined by the binomial test (Bonferroni corrected
P-value < 0.01) using the negative samples as the
background sequences.
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To investigate co-occurring nucleotides in positive
samples, the conditional probability of nucleotide pairs
is given by:

P
(
Yj|Xi

) = P
(
Xi · Yj

)
P (Xi)

, (9)

where P (Xi) = fr (Xi)

n
, P

(
Xi · Yj

) = fr
(
Xi · Yj

)
n

,

fr(Ai) is the number of positive samples in which
nucleotide A appears at position i, fr(Ai ·Bj) is the number
of positive samples in which two nucleotides A and B
simultaneously appear at positions i and j, and n is the
number of positive samples.

Attention weight of BERT6mA
BERT consists of multiple bidirectional Transformer
encoders that have a core mechanism called multihead
attention [21, 43]. In the self-attention that constitutes
the multihead attention, the word2vec-generated feature
vector xiat the ith k-mer position is transformed into
query, key and value vectors q(xi), k(xi) and v(xi) by linear
functions q(·), k(·) and v(·), respectively.[[ineq25]]Then,
attention weight αi,j is computed as the softmax-
normalized dot products of q(xi) and k(xj):

αi,j = softmax

(
q(xi)k

(
xj

)T

√
depth

)
, (10)

where depth correspond to the dimension of q(xi). Output
of self-attention oi is given as the weighted sum of the
value:

oi =
n∑

j=1
αi,jv

(
xj

)
, (11)

where n is the number of the feature vectors in the
feature matrix. To obtain the multihead attention, the
outputs of multiple attentions, called ‘heads’, are calcu-
lated in parallel, concatenated and linearly transformed
with Wo as follow:

MultiHead (Q, K, V) = Concat
(
head1, . . . headh

)
Wo,

(12)
where h is the total number of heads. Studies of natural
language processing use the attention weight to explain
the prediction and explore the critical features [47].

In this study, we analyzed the attention weights
that were generated in the independent test of the
five cross-validation models. In each sample, the
attention weights of all layers and heads were aver-
aged at each position. We referred to the averaged
attention as attention maps (Figure S9 available online
at http://bib.oxfordjournals.org/). Then, the attention
maps of all samples were averaged at each position.
To characterize the attentions, the deviation between
the value at each position in the attention maps and
the mean value overall positions in the attention
maps was calculated at each position. Furthermore,

to identify the critical k-mer position responsible for
the prediction of 6mA, the position weights were
defined as the averaged attention maps over the
query direction at each key position (Figure S10 avail-
able online at http://bib.oxfordjournals.org/). Since the
word2vec encodes nucleotide sequence per consecu-
tive 4-mer, 41 nucleotide sites are transformed into
38 positions.

Effect size
To investigate the effect size, i.e. the difference in the
position weights between the preferred nucleotides-
including samples and the not-including ones, we
calculated the effect size (Cohen’s d) at each position
[48], given by:

dp =
∣∣∣xwith,p−xwithout,p

∣∣∣
σp

, (13)

where σp =
√

nwiths2
with,p + nwithouts2

without,p

nwith + nwithout
,

nwith and nwithout are the numbers of the preferred
nucleotides-including and not-including samples, respec-
tively, xwith,p and xwithout,p are the means of the position
weights at position p over the preferred nucleotides-
including and not-including samples, respectively; swith,p

and swithout,p are the standard deviations of the position
weights at position p, respectively.

Results and discussion
Comparison of deep learning and machine
learning approaches
To compare the deep learning-based prediction with the
machine learning-based prediction, we used datasets
provided by Lv et al. [12]. We predicted whether the
adenine in the center of the sequence was methylated.
We used 7 encoding methods of word2vec, NCPNF, C-
NCPNF, MNBE, C-MNBE, combination of NCPNF and
MNBE, and combination of C-NCPNF and C-MNBE and
eight deep learning models of LSTM, GRU, Bi-LSTM, Bi-
GRU, BERT, 1D-CNN, BERT with Bi-LSTM and 1D-CNN
with Bi-LSTM. In the two combined encoding methods,
we concatenated their feature vectors at each position.
Totally, 56 (=7 × 8) deep learning models were generated
in this study. After the DNA sequences were transformed
into feature matrixes by using encoding methods, the
deep learning models were trained and validated by 5-
fold cross-validation on the training data. The prediction
performances of the trained five models were averaged
in the independent test. Out of 56, we plotted the
AUCs of the top five deep learning models and the
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Figure 2. Performance comparison of deep learning and machine learning approaches in the independent test. The bar plots show AUCs of five deep
learning-based methods with higher area under the curves (red bar) and previous models (blue bar) for 11 species including Arabidopsis thaliana (A),
Caenorhabditis elegans (B), Casuarina equisetifpolia (C), Drosophila melanogaster (D), Fragaria vesca (E), Homo sapiens (F), Rosa chinensis (G), Saccharomyces cerevisiae
(H), T. thermophile (I), Ts. SUP5–1 (J) and Xoc. BLS256 (K). W2V, C-BE, C-NC, BE, NC, BE+NC and C-BE+C-NC correspond to word2vec, contextual-binary
encoding, contextual-NCPNF, binary encoding, NCPNF, combination of binary encoding and NCPNF, and combination of contextual-binary encoding
and contextual-NCPNF, respectively. BERT, LSTM, GRU, BLSTM, BGRU, CNN, BERT+BLSTM, CNN+BLSTM correspond to BERT, LSTM, GRU, Bi-LSTM, Bi-
GRU, 1D-CNN, BERT with Bi-LSTM and 1D-CNN with Bi-LSTM. The performances of the previous models were provided from Table S3, available online
at http://bib.oxfordjournals.org/, of Lv et al.’s paper (iDNA-MS) and Table S2, available online at http://bib.oxfordjournals.org/, of Yu et al.’s paper (iDNA-
ABT).

state-of-the-art models in the independent test in
Figure 2. The prediction performances of all the employed
deep learning methods were described in Tables S2–S12
available online at http://bib.oxfordjournals.org/.

Among our proposed deep learning models, the BERT
models presented higher performances for most of the
species. Specifically, BERT with the word2vec method,
named BERT6mA, showed the highest AUCs for eight
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Figure 3. Performance comparison of different encoding methods. For deep learning models with different encoding methods, the area under the curves
(AUCs) in the independent tests were averaged over all species and their variances were calculated. W2V, C-BE, C-NC, BE, NC, BE+NC and C-BE+C-NC
correspond to word2vec, contextual-binary encoding, contextual-NCPNF, binary encoding, NCPNF, combination of binary encoding and NCPNF and
combination of contextual-binary encoding and contextual-NCPNF, respectively. One-sided, paired-sample t-tests were conducted to compare the AUCs
between MNBE and C-MNBE and the AUCs between NCPNF and C-NCPNF.

species other than R. chinensis, Ts. SUP5-1 and Xoc. BLS256.
It means that the BERT more effectively learns the
word2vec-represented DNA context patterns than any
other deep learning method. Second to BERT, 1D-CNNs
and Bi-GRU presented higher performances for several
species such as A. thaliana, C. elegans and H. sapiens. The
Bi-GRU and GRU models showed higher performances
than the Bi-LSTM and LSTM models for many species.
The hybrid deep learning models of 1D-CNN with Bi-
LSTM and BERT with Bi-LSTM did not outperform the
single models of BERT and CNN under many conditions.
These hybrid models may be too complex to predict the
6mA sites, and multiple hyperparameters such as the
number of layers and dimension of hidden vectors may
remain to be adjusted.

The BERT6mA presented higher AUCs than the previ-
ous models for the species other than F. vesca, R. chinensis,
T. thermophile and Ts. SUP5-1 (Figure 2). Importantly, our
BERT6mA outperformed the BERT-based iDNA-ABT for
the species other than R. chinensis and Ts. SUP5-1, suggest-
ing the effectiveness of the word2vec-employing BERT
model. On the other hand, BERT6mA showed comparable
and a little low performance to the iDNA-MS (Lv et al.’s

RF models) for F. vesca and for R. chinensis, respectively.
We considered that the low performance was due to the
small number of data in R. chinensis.

Finally, to verify a sequence window length of 41, we
investigated how a different length affected the pre-
diction performance (AUC). The length of the window
containing adenine in the center was varied as 41, 31 and
21. Significant differences in performance were hardly
observed with respect to the lengths (Table S13 available
online at http://bib.oxfordjournals.org/).

Comparison of encoding methods
To characterize the encoding methods, AUCs of the 11
species by the independent test were averaged for dif-
ferent deep learning models. As Figure 3 and Table S14,
available online at http://bib.oxfordjournals.org/, C-
MNBE and C-NCPNF obtained higher AUCs than MNBE
and NCPNF, respectively. It is probably because C-MNBE
and C-NCPNF encode the information that involves
multiple nucleotides, while MNBE and NCPNF encode
only one nucleotide information. In particular, the AUCs
of C-MNBE and C-NCPNF were significantly higher than
those of MNBE and NCPNF in the RNN-based models
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Figure 4. Comparison of BERT6mA with Deep6mA and 6mA-Pred. The ROC curves were generated in the independent test for 11 species including
Arabidopsis thaliana (A), Caenorhabditis elegans (B), Casuarina equisetifpolia (C), Drosophila melanogaster (D), Fragaria vesca (E), Homo sapiens (F), Rosa chinensis
(G), Saccharomyces cerevisiae (H), T. thermophile (I), Ts. SUP5–1 (J) and Xoc. BLS256 (K). The models that presented the highest area under the curve in the
5-fold cross-validation were used.

(GRU, Bi-GRU, LSTM and Bi-LSTM) (one-sided, paired-
sample t-test; P-value<0.003 or P-value<0.001). The
contextual encoding methods (C-MNBE and C-NCPNF)
increased the prediction performance more than non-
contextual ones (MNBE and NCPNF) in the RNN-based
models, indicating that it is effective to consider the
contextual nucleotide patterns. Interestingly, 1D-CNN

and BERT showed high prediction performance even
when using the non-contextual encoding methods. It
suggests that 1D-CNN is able to learn the consecutive
nucleotide patterns by filters and BERT is able to
well learn the contextual information or dependencies
between nucleotides compared to the RNN-based
models. In many deep learning models, the combination
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Figure 5. Area under the curve (AUC) performances of cross-species
validation. The BERT model with word2vec that was trained on the whole
data of one species was evaluated on the whole data of another species.

methods of NCPNF and BE and of C-NCPNF and C-BE
showed higher performance than the single encoding
methods.

The word2vec presented very high performance when
using BERT and 1D-CNN. We considered that BERT and
1D-CNN captured the dependencies and patterns of the
word2vec-represented contextual information, respec-
tively. These results suggest that the effectiveness of the
encoding method depends on the architecture of deep
learning.

Comparison of state-of-the-art models
Recently, deep learning-based models such as Deep6mA
and 6mA-Pred have presented state-of-the-art perfor-
mances. Deep6mA extracts the sequence features by
CNN with Bi-LSTM to learn the dependence information
among nucleotides. It outperformed SNNRice6mA [24]
and MM-6mAPred [49]. 6mA-Pred extracted the related
features to 6mAs by LSTM, and captured the sequence
differences between 6mAs and non-6mAs by attention
mechanisms. It presented better performances than
SNNRice6mA [24] and iDNA6mA-rice [50]. To charac-
terize the performances of BERT6mA, we compared
BERT6mA with Deep6mA and 6mA-Pred by using Lv et
al.’s datasets. These deep learning models were trained
on 5-fold cross-validation on the training dataset and
tested on the independent dataset. The source codes
of Deep6mA and 6mA-Pred were used with the default
parameter values.

As shown in Figure 4, BERT6mA showed high perfor-
mance compared to the Deep6mA and 6mA-Pred in C.
equisetifolia, F. vesca, S. cerevisiae and Ts. SUP5-1. In the
other species, BERT6mA presented comparable perfor-
mances. Although 6mA-Pred showed high performances
for T. thermophile, it indicated low performance for other

species. BERT6mA realized the robust prediction with
respect to different species and data sizes due to the two
mechanisms. One is that the 4-mer word2vec method-
encoded feature matrixes include the contextual infor-
mation related to 6mA, because the word2vec embeds
the regularities of 4-mer amino acids as single words.
The other is that BERT6mA considers the dependencies
among all the 4-mer words in the sequence context.

Cross-species validation
To investigate which species pairs share 6mA-specific
features or sequence similarity, cross-species validation
was carried out. As shown in Figure 5, the three plant
species of A. thaliana, R. chinensis and F. vesca and the
two animal species of H. sapiens and D. melanogaster pre-
sented higher AUCs, suggesting that they have similar
nucleotides distribution patterns. On the other hand, the
AUCs in T. thermophile, C. elegans and Xoc. BLS256 were low,
suggesting that the nucleotides distributions are signifi-
cantly different among these species. The variations in
AUCs would be caused by the difference in the species
because the 6mA data of the employed species were
measured mainly by SMRT. These results were consistent
with those of the machine learning-based cross-species
validation presented by Lv et al. [12]. It was interest-
ing that some plants and animals share very similar
nucleotide patterns around 6mA.

Construction of BERT6mA via pretraining and
fine-tuning
As far as R. chinensis is concerned, the BERT6mA showed
low performances compared to Lv et al.’s machine learn-
ing models [12], probably due to insufficient data of it.
To improve the prediction performance, pretraining and
fine-tuning were employed. The pretrained model on
each species was fine-tuned by 5-fold cross-validation
using the training data of R. chinensis. The fine-tuned
model was evaluated on the test data of R. chinensis. The
AUC values in the independent test were improved by
the pretraining on the data of F. vesca, D. melanogaster,
H. sapiens, A. thaliana, C. equisetifpolia, Ts. SUP5-1 and S.
cerevisiae. Specifically, the pretraining on F. vesca greatly
improved the prediction performance of the fine-tuned
model in the independent test (Figure 6 and Table S15
available online at http://bib.oxfordjournals.org/). The
AUC of the pretrained model was higher than that of
the non-pretrained models and the previous models.
The pretraining and fine-tuning were very effective in
increasing the prediction performance.

Nucleotide preference analysis
The pLogo [45, 46] was applied to the positive samples of
four species including R. chinensis, F. vesca, Xoc. BLS256 and
C. elegans to visualize and examine the preference pattern
of nucleotides around 6mA. As shown in Figure 7A, the
nucleotide distributions of R. chinensis and F. vesca were
similar around the 6mA, while they were different from
those of Xoc. BLS256 and C. elegans. It suggested that high
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Figure 6. Improvement of performances in Rosa chinensis via pretraining and fine-tuning in the independent test. The BERT6mA models were pretrained
by the whole dataset of species other than R. chinensis. The pretrained model was fine-tuned on training data of R. chinensis by 5-fold cross-validation.
The fine-tuned models were evaluated on the test data of R. chinensis. The bars show the area under the curve (AUCs) of pretrained models (red), the
non-pretrained model (green) and previous models (blue).

Figure 7. Nucleotide distribution around 6mA. (A) To identify key nucleotides around 6mA, the pLogo was applied to the positive data of Rosa chinensis
(top), Fragaria vesca (second row), Xoc. BLS256 (third row) and Caenorhabditis elegans (bottom). The red-marked and black-mark positions indicate
significantly critical positions with a Bonferroni corrected P-value < 0.01 and the positions that provide an appearance frequency of the specific
nucleotide with >75%. (B) In the R. chinensis 6mA sequence, the conditional probabilities of nucleotide pairs (X and Y) were displayed. The presented
nucleotide pairs more frequently appeared in the positive samples than the negative ones. The numbers and letters at the axes present the position
and nucleotide, respectively.

AUCs of R. chinensis and F. vesca in cross-species validation
resulted from similar nucleotide patterns around 6mA.
Conversely, the low AUCs between R. chinensis and C.
elegans, between F. vesca and C. elegans, between R.
chinensis and Xoc. BLS256, and between F. vesca and Xoc.
BLS256 in the cross-species validation could be caused
by the different patterns. Through the same mechanism,

the R. chinensis fine-tuned, pretrained model on F. vesca
provided higher performance than the R. chinensis fine-
tuned, pretrained models on C. elegans and on Xoc.
BLS256. From these results, pretraining on the other
species that have similar nucleotide patterns around
6mA is critically important for enhanced prediction
performance.
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Figure 8. Visualization of the deviation in attention maps and the differences in the averaged position weights between positive and negative samples.
(A) Heatmap of the deviation in the averaged attention maps. The attention weight at position (i, j) was the softmax-normalized dot product of the
ith positional vectors of the query and the jth positional vectors of the Key. The averaged attentions were calculated in the independent tests of the
Rosa chinensis-fine-tuned, Fragaria vesca-pretrained model (left) and the R. chinensis-trained model without any pretraining (right). The horizontal bar
indicates the deviations of the averaged attention map. (B) The differences in the averaged position weights between the positive and negative samples
were calculated for both the models: the R. chinensis-fine-tuned, F. vesca-pretrained model (red line) and the R. chinensis-trained model without any
pretraining (blue line).

As shown in Figure 7B, in R. chinensis, the conditional
probability of G at site 22 was high. In addition, the
conditional probabilities of A at sites 25 and 28 were
high with respect to any nucleotides appearing around
6mA, suggesting that these As are critically responsible
for 6mA. The conditional probabilities of G at position 26
and C at position 27 were high, suggesting that the two
nucleotides co-occur. Multiple As were observed at sites
from 16 to 20 in the pLogo (Figure 7A), while the condi-
tional probabilities of them were not so high. Multiple As
would appear in a relatively broad range from 16 to 20
rather than at specific sites.

Analysis of attention and position weights
To identify the nucleotide distributions that the BERT6mA
focuses on, we visualized the attention maps in the

independent test of the five trained models via 5-fold
cross-validation. Figure 8A shows the averaged attention
map of the R. chinensis-fine-tuned, F. vesca-pretrained
model and the R. chinensis-trained model without any
pretraining. Note that the position is defined as the
word2vec-transformed nucleotide site. One position
includes information of 4-mer sites of nucleotide
sequences because the consecutive 4-mer amino acids
are encoded as single words. For example, position i has
the information of sites from i to i + 3. The averaged
attentions in the pretrained model presented high or
low values at some specific positions of the key over the
query (Figure 8A). The values at the specific positions
were well weighted, which were observed more clearly
in the pretrained model than in the non-pretrained
model. This result suggests that the pretrained model
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Figure 9. Effect sizes of the position weights in the pretrained and non-pretrained models. To investigate the effect size, i.e. the difference in the position
weights between the preferred nucleotides-including samples and the not-including ones, we calculated the effect size (Cohen’s d) at each position in
both the models: the Rosa chinensis-fine-tuned, Fragaria vesca-pretrained model (red line) and the R. chinensis-trained model without any pretraining (blue
line).

pays attention to critical features at specific positions,
enhancing prediction performances.

To further identify which key positions generate
different attention weights between 6mA and non-
6mA, we analyzed the difference in the position weights
between the positive and negative samples at each
position, as shown in Figure 8B. The pretrained model
provided higher peaks than the non-pretrained model.
In the pretrained model, the differences in the position
weights were larger at the positions where statistically
significant nucleotides appeared in pLogo. It suggested
the BERT6mA pays attention to discriminable nucleotide
positions between the positive and negative samples.

In the pretrained model, the effect sizes of position
weights between the AA-including and AA not-including
samples at positions from 16 to 20, between the G

including and not-including samples at site 22, between
the A including and not-including samples at position
25, between the GC including and not-including samples
at positions of 26 and 27, and between the A including
and not-including samples at position 28 were observed
to have peaks (Figure 9), suggesting that the position
weights reflect the presence of the 6mA-associated
nucleotides. Furthermore, these peaks in the pretrained
model were larger than in the non-pretrained model,
respectively. It suggested that the pretrained BERT6mA
model uses the attention weights to focus on the
nucleotide preference sites responsible for the 6mA
prediction as seen in pLogo (Figure 7A).

These results imply that BERT6mA generates the
attention weights to understand which nucleotides are
paid attention to. They contribute to extracting key
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sequence patterns around 6mAs and to solving the black
box problem inherent in deep learning. The attention
weights-presented DNA patterns or motifs are very
useful for biologists to find some relationships between
DNA patterns and their associated biological functions.

Webserver construction
To facilitate the community, we build a web server appli-
cation of the BERT6mA by using apache (2.4.18) and
flask (1.1.2). The users can access the server from http://
kurata35.bio.kyutech.ac.jp/6mA-prediction and are nec-
essary to input or upload the 41 bp long DNA sequences
with adenine located in the center in the FASTA format.
In addition to predictive labels and scores, the attention
weights are presented. For other overviews, refer to the
help of the website.

Conclusions
We constructed 56 deep learning models by combining
7 encoding methods with 8 deep learning models for
6mA site predictions of 11 species. Among these deep
learning models, the BERT6mA presented the highest
performance in the eight species in an independent test.
On the other hand, for the species with the small sample
sizes, BERT6mA did not outperform the machine learning
models. To solve this problem, we successfully applied
the pretraining and fine-tuning method to the BERT6mA.
Note that it is not effective when the sample sequences
used by fine-tuning show low similarity to those used by
the pretraining. It is important to select the datasets of
the two species that share sequence similarities around
6mAs. Finally, the BERT6mA showed higher or compara-
ble performances to state-of-the-art deep learning mod-
els. In addition to the prediction, BERT6mA analyzed
the attention weights to suggest key nucleotide patterns
necessary for 6mA sites.

Key points

• The BERT model with a word2vec encoding
method, named BERT6mA, is created to predict N6-
methyladenine (6mA) sites.

• BERT6mA outperforms the state-of-the-art models for
some species.

• BERT6mA presents very high performances for even
species with a small data size by using pretraining and
fine-tuning approaches.

• The attention weights are analyzed to reveal which
sequence patterns are significantly responsible for 6mA
site prediction.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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