Skip to main content
. 2022 Feb 28;9(2):e33058. doi: 10.2196/33058

Table 1.

Summary of articles estimating mental health burden from social media during a disaster.

Disaster category and reference Disaster type Disaster year Disaster location Mental health issue Social media platform Number of posts (number of users) Analysis
Natural disaster

Gruebner et al [16] Meteorological 2012 United States Affective response Twitter 344,957 (NRa) GISb analysis

Gruebner et al [17] Meteorological 2012 United States Affective response Twitter 1,018,140 (NR) GIS analysis

Karmegam and Mappillairaju [18] Hydrological 2015 India Affective response Twitter 5696 (NR) Mixed effect model, spatial regression model, thematic analysis

Li et al [19] Geophysical, biological 2009-2011 Japan, Haiti Affective response Twitter 50,000 (NR) t test

Shekhar and Setty [20] Geophysical, climatological, and hydrological 2015 Global Affective response Twitter 60,519 (NR) Text mining; k-means clustering

Vo and Collier [21] Geophysical 2011 Japan Affective response Twitter 70,725 (NR) Naive Bayes, support vector machine, MaxEnt, J48, multinomial naive Bayes; Pearson correlation
Human-made disaster

Doré et al [22] Active shooter 2012-2013 United States Affective response Twitter 43,548 (NR) Negative binomial regression

Glasgow et al [23] Active shooter 2012-2013 United States Grief Twitter 460,000 (NR) Multinomial naive Bayes; support vector machine

Gruebner et al [5] Terrorist attack 2015 France Affective response Twitter 22,534 (NR) GIS analysis

Jones et al [24] Active shooter 2014-2015 United States Affective response Twitter 325,736 (6314) Piecewise regression

Jones et al [25] Terrorist attack 2015 United States Affective response Twitter 1,160,000 (25,894) Time series, topic analysis

Khalid et al [26] Terrorist attack NR NR Trauma Unspecified blogs and discussion boards 17 (NR) Semantic mapping and knowledge pathways

Lin et al [27] Terrorist attack 2015-2016 France, Belgium Affective response Twitter 18 Million (NR) Multivariate regression analysis, survival analysis

Sadasivuni and Zhang [28] Terrorist attack 2019 Sri Lanka Depression Twitter 51,462 (NR) Gradient-based trend analysis methods, correlation, learning quotient, text mining

Saha and De Choudhury [29] Active shooter 2012-2016 United States Stress Reddit 113,337 (NR) Support vector machine classifier of stress, time-series analysis

Woo et al [30] Accident 2011-2014 Korea Suicide Twitter NR Time-series analysis
Epidemic or pandemic

Da and Yang [31] Epidemic or pandemic 2020 China Affective response Sina Weibo 340,456 (NR) Linear regression

Gupta and Agrawal [32] Epidemic or pandemic 2020 India Anxiety, depression, panic attacks, stress, suicide attempts Twitter, Facebook, WhatsApp, and blogs NR Thematic analysis

Hung et al [33] Epidemic or pandemic 2020 United States Psychological stress Twitter 1,001,380 (334,438) Latent Dirichlet allocation

Koh and Liew [34] Epidemic or pandemic 2020 Global Loneliness Twitter NR (4492) Hierarchical clustering

Kumar and Chinnalagu [35] Epidemic or pandemic 2020 NR Affective response Twitter, Facebook, YouTube, and blogs 80,689 (NR) Sentiment analysis bidirectional long short-term memory

Lee et al [36] Epidemic or pandemic 2020 Japan, Korea Affective response Twitter 4,951,289 (NR) Trend analysis

Li et al [37] Epidemic or pandemic 2020 China Anxiety, depression, indignation, and Oxford happiness Sina Weibo NR (17,865) t test

Low et al [38] Epidemic or pandemic 2018-2020 Global Eating disorder, addiction, alcoholism, ADHDc, anxiety, autism, bipolar disorder, BPDd, depression, health anxiety, loneliness, PTSDe, schizophrenia, social anxiety, suicide, broad mental health, COVID-19 support Reddit NR (826,961) Support vector machine, tree ensemble, stochastic gradient descent, linear regression, spectral clustering, latent Dirichlet allocation

Mathur et al [39] Epidemic or pandemic 2019-2020 Global Affective response Twitter 30,000 (NR) Sentiment analysis

Oyebode et al [40] Epidemic or pandemic 2020 Global General mental health concerns Twitter, YouTube, Facebook, Archinect, LiveScience, and PushSquare 8,021,341 (NR) Thematic analysis

Pellert et al [41] Epidemic or pandemic 2020 Austria Affective response Twitter and unspecified chat platform for students 2,159,422 (594,500) Trend analysis

Pran et al [42] Epidemic or pandemic 2020 Bangladesh Affective response Facebook 1120 (NR) Convolutional neural network and long short-term memory

Sadasivuni and Zhang [43] Epidemic or pandemic 2020 Global Depression Twitter 318,847 (NR) Autoregressive integrated moving average model

Song et al [44] Epidemic or pandemic 2015 South Korea Anxiety Twitter, Unspecified blogs and discussion boards 8,671,695 (NR) Multilevel analysis, association analysis

Xu et al [45] Epidemic or pandemic 2019-2020 China Affective response Sina Weibo 10,159 (8703) Content analysis, regression

Xue et al [46] Epidemic or pandemic 2020 Global Affective response Twitter 4,196,020 (NR) Latent Dirichlet allocation, sentiment analysis

Zhang et al [47] Epidemic or pandemic 2020 United States Depression, anxiety YouTube 294,294 (49) Regression, correlation, feature vector

aNR: not reported.

bGIS: geographic information system.

cADHD: attention-deficit/hyperactivity disorder.

dBPD: borderline personality disorder.

ePTSD: posttraumatic stress disorder.