Table 1.
Disaster category and reference | Disaster type | Disaster year | Disaster location | Mental health issue | Social media platform | Number of posts (number of users) | Analysis | ||||||||
Natural disaster | |||||||||||||||
|
Gruebner et al [16] | Meteorological | 2012 | United States | Affective response | 344,957 (NRa) | GISb analysis | ||||||||
|
Gruebner et al [17] | Meteorological | 2012 | United States | Affective response | 1,018,140 (NR) | GIS analysis | ||||||||
|
Karmegam and Mappillairaju [18] | Hydrological | 2015 | India | Affective response | 5696 (NR) | Mixed effect model, spatial regression model, thematic analysis | ||||||||
|
Li et al [19] | Geophysical, biological | 2009-2011 | Japan, Haiti | Affective response | 50,000 (NR) | t test | ||||||||
|
Shekhar and Setty [20] | Geophysical, climatological, and hydrological | 2015 | Global | Affective response | 60,519 (NR) | Text mining; k-means clustering | ||||||||
|
Vo and Collier [21] | Geophysical | 2011 | Japan | Affective response | 70,725 (NR) | Naive Bayes, support vector machine, MaxEnt, J48, multinomial naive Bayes; Pearson correlation | ||||||||
Human-made disaster | |||||||||||||||
|
Doré et al [22] | Active shooter | 2012-2013 | United States | Affective response | 43,548 (NR) | Negative binomial regression | ||||||||
|
Glasgow et al [23] | Active shooter | 2012-2013 | United States | Grief | 460,000 (NR) | Multinomial naive Bayes; support vector machine | ||||||||
|
Gruebner et al [5] | Terrorist attack | 2015 | France | Affective response | 22,534 (NR) | GIS analysis | ||||||||
|
Jones et al [24] | Active shooter | 2014-2015 | United States | Affective response | 325,736 (6314) | Piecewise regression | ||||||||
|
Jones et al [25] | Terrorist attack | 2015 | United States | Affective response | 1,160,000 (25,894) | Time series, topic analysis | ||||||||
|
Khalid et al [26] | Terrorist attack | NR | NR | Trauma | Unspecified blogs and discussion boards | 17 (NR) | Semantic mapping and knowledge pathways | |||||||
|
Lin et al [27] | Terrorist attack | 2015-2016 | France, Belgium | Affective response | 18 Million (NR) | Multivariate regression analysis, survival analysis | ||||||||
|
Sadasivuni and Zhang [28] | Terrorist attack | 2019 | Sri Lanka | Depression | 51,462 (NR) | Gradient-based trend analysis methods, correlation, learning quotient, text mining | ||||||||
|
Saha and De Choudhury [29] | Active shooter | 2012-2016 | United States | Stress | 113,337 (NR) | Support vector machine classifier of stress, time-series analysis | ||||||||
|
Woo et al [30] | Accident | 2011-2014 | Korea | Suicide | NR | Time-series analysis | ||||||||
Epidemic or pandemic | |||||||||||||||
|
Da and Yang [31] | Epidemic or pandemic | 2020 | China | Affective response | Sina Weibo | 340,456 (NR) | Linear regression | |||||||
|
Gupta and Agrawal [32] | Epidemic or pandemic | 2020 | India | Anxiety, depression, panic attacks, stress, suicide attempts | Twitter, Facebook, WhatsApp, and blogs | NR | Thematic analysis | |||||||
|
Hung et al [33] | Epidemic or pandemic | 2020 | United States | Psychological stress | 1,001,380 (334,438) | Latent Dirichlet allocation | ||||||||
|
Koh and Liew [34] | Epidemic or pandemic | 2020 | Global | Loneliness | NR (4492) | Hierarchical clustering | ||||||||
|
Kumar and Chinnalagu [35] | Epidemic or pandemic | 2020 | NR | Affective response | Twitter, Facebook, YouTube, and blogs | 80,689 (NR) | Sentiment analysis bidirectional long short-term memory | |||||||
|
Lee et al [36] | Epidemic or pandemic | 2020 | Japan, Korea | Affective response | 4,951,289 (NR) | Trend analysis | ||||||||
|
Li et al [37] | Epidemic or pandemic | 2020 | China | Anxiety, depression, indignation, and Oxford happiness | Sina Weibo | NR (17,865) | t test | |||||||
|
Low et al [38] | Epidemic or pandemic | 2018-2020 | Global | Eating disorder, addiction, alcoholism, ADHDc, anxiety, autism, bipolar disorder, BPDd, depression, health anxiety, loneliness, PTSDe, schizophrenia, social anxiety, suicide, broad mental health, COVID-19 support | NR (826,961) | Support vector machine, tree ensemble, stochastic gradient descent, linear regression, spectral clustering, latent Dirichlet allocation | ||||||||
|
Mathur et al [39] | Epidemic or pandemic | 2019-2020 | Global | Affective response | 30,000 (NR) | Sentiment analysis | ||||||||
|
Oyebode et al [40] | Epidemic or pandemic | 2020 | Global | General mental health concerns | Twitter, YouTube, Facebook, Archinect, LiveScience, and PushSquare | 8,021,341 (NR) | Thematic analysis | |||||||
|
Pellert et al [41] | Epidemic or pandemic | 2020 | Austria | Affective response | Twitter and unspecified chat platform for students | 2,159,422 (594,500) | Trend analysis | |||||||
|
Pran et al [42] | Epidemic or pandemic | 2020 | Bangladesh | Affective response | 1120 (NR) | Convolutional neural network and long short-term memory | ||||||||
|
Sadasivuni and Zhang [43] | Epidemic or pandemic | 2020 | Global | Depression | 318,847 (NR) | Autoregressive integrated moving average model | ||||||||
|
Song et al [44] | Epidemic or pandemic | 2015 | South Korea | Anxiety | Twitter, Unspecified blogs and discussion boards | 8,671,695 (NR) | Multilevel analysis, association analysis | |||||||
|
Xu et al [45] | Epidemic or pandemic | 2019-2020 | China | Affective response | Sina Weibo | 10,159 (8703) | Content analysis, regression | |||||||
|
Xue et al [46] | Epidemic or pandemic | 2020 | Global | Affective response | 4,196,020 (NR) | Latent Dirichlet allocation, sentiment analysis | ||||||||
|
Zhang et al [47] | Epidemic or pandemic | 2020 | United States | Depression, anxiety | YouTube | 294,294 (49) | Regression, correlation, feature vector |
aNR: not reported.
bGIS: geographic information system.
cADHD: attention-deficit/hyperactivity disorder.
dBPD: borderline personality disorder.
ePTSD: posttraumatic stress disorder.