Table 2.
Disaster category and reference | Disaster type | Disaster year | Disaster location | Mental health issue | Social media platform | Number of posts (number of users) | Analysis | ||||||||
Natural disaster | |||||||||||||||
|
Baek et al [48] | Geophysical, accident | 2011 | Japan | Anxiety | 179,431 (NRa) | Time-series analysis | ||||||||
Human-made disaster | |||||||||||||||
|
Budenz et al [49] | Active shooter | 2017 | United States | Mental illness stigma | 38,634 (16,920) | Logistic regression | ||||||||
|
Glasgow et al [50] | Active shooter | 2011-2012 | United States | Coping and social support | NR | Classifier (unspecified), qualitative coding analysis | ||||||||
|
Jones et al [6] | Active shooter | NR | United States | Psychological distress | 7824 (2515) | Time-series analysis | ||||||||
Epidemic or pandemic | |||||||||||||||
|
Abd-Alrazaq et al [51] | Epidemic or pandemic | 2020 | Global | Affective response | 167,073 (160,829) | Latent Dirichlet allocation | ||||||||
|
He et al [52] | Epidemic or pandemic | 2020 | Americas and Europe | Depression, mood instability | YouTube | 255 (NR) | Touchpoint needs analysis | |||||||
|
Massaad and Cherfan [53] | Epidemic or pandemic | 2020 | Undisclosed | Service access/needs | 41,329 (NR) | Generalized linear regression, k-means clustering | ||||||||
|
Wang et al [54] | Epidemic or pandemic | 2020 | China | Subjective well-being | Sina Weibo | NR (5370) | Regression, analysis of variance | |||||||
|
Zhou et al [55] | Epidemic or pandemic | 2020 | China | Affective response | Sina Weibo | 8,985,221 (NR) | Latent Dirichlet allocation |
aNR: not reported.