Skip to main content
. 2022 Feb 28;9(2):e33058. doi: 10.2196/33058

Table 2.

Summary of articles planning or evaluating interventions or policies from social media during a disaster.

Disaster category and reference Disaster type Disaster year Disaster location Mental health issue Social media platform Number of posts (number of users) Analysis
Natural disaster

Baek et al [48] Geophysical, accident 2011 Japan Anxiety Twitter 179,431 (NRa) Time-series analysis
Human-made disaster

Budenz et al [49] Active shooter 2017 United States Mental illness stigma Twitter 38,634 (16,920) Logistic regression

Glasgow et al [50] Active shooter 2011-2012 United States Coping and social support Twitter NR Classifier (unspecified), qualitative coding analysis

Jones et al [6] Active shooter NR United States Psychological distress Twitter 7824 (2515) Time-series analysis
Epidemic or pandemic

Abd-Alrazaq et al [51] Epidemic or pandemic 2020 Global Affective response Twitter 167,073 (160,829) Latent Dirichlet allocation

He et al [52] Epidemic or pandemic 2020 Americas and Europe Depression, mood instability YouTube 255 (NR) Touchpoint needs analysis

Massaad and Cherfan [53] Epidemic or pandemic 2020 Undisclosed Service access/needs Twitter 41,329 (NR) Generalized linear regression, k-means clustering

Wang et al [54] Epidemic or pandemic 2020 China Subjective well-being Sina Weibo NR (5370) Regression, analysis of variance

Zhou et al [55] Epidemic or pandemic 2020 China Affective response Sina Weibo 8,985,221 (NR) Latent Dirichlet allocation

aNR: not reported.