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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative brain disorder characterized by 

memory loss and cognitive decline. Early detection and accurate prognosis of AD is an important 

research topic, and numerous machine learning methods have been proposed to solve this problem. 

However, traditional machine learning models are facing challenges in effectively integrating 

longitudinal neuroimaging data and biologically meaningful structure and knowledge to build 

accurate and interpretable prognostic predictors. To bridge this gap, we propose an interpretable 

graph neural network (GNN) model for AD prognostic prediction based on longitudinal 

neuroimaging data while embracing the valuable knowledge of structural brain connectivity. In 

our empirical study, we demonstrate that 1) the proposed model outperforms several competing 

models (i.e., DNN, SVM) in terms of prognostic prediction accuracy, and 2) our model can 

capture neuroanatomical contribution to the prognostic predictor and yield biologically meaningful 

interpretation to facilitate better mechanistic understanding of the Alzheimer’s disease. Source 

code is available at https://github.com/JaesikKim/temporal-GNN.
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I. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative brain disorder characterized 

by memory loss and cognitive decline. Today, about 5.8 million people have AD-related 

dementia in the United States, and it is expected to exceed 13.8 million by 2050 [1]. Despite 

the advances in clinical practice, it is challenging to accurately detect AD at an early stage 

based on their clinical symptoms or neuropathology. For example, it is important to identify 

biomarker detecting mild cognitive impairment (MCI, a prodromal stage of AD) since the 

phase of MCI increases risk of progressing to dementia. The risk of AD development 

increases approximately twice every five years between the ages of 65 and 85. Furthermore, 

AD treatments are most likely to be effective at early disease stages, even before any 

outward signs of dementia. Thus, early detection and accurate prognosis of AD has become 

an important research topic, and numerous machine learning methods have been proposed to 

solve this problem [2].

Recently, many researchers focused on discovering imaging biomarkers from various 

neuroimaging modalities for early detection and accurate prognosis of AD [3]. Although 

functional and structural changes have been reported as biomarkers to distinguish 

AD and cognitive normal (CN) subjects, the topic on capturing MCI biomarkers is 

still underexplored. Moreover, the main challenge in neuroimaging data with complex 

topological structures is how to effectively process its structural information and incorporate 

valuable biological knowledge in an interpretable manner. Conventional neuroimaging 

studies employed graph Laplacian penalization strategies to incorporate this knowledge 

[4]–[6].

A graph-based neural network (GNN) approach has emerged in the data science field to 

directly encode the graph structure and apply it to the neural network-based predictive 

model [7]–[10]. The GNNs have the advantage of reducing model complexity by applying 

spectral graph convolution compared with conventional graph-based approaches. Moreover, 

GNNExplainer [11], a promising interpretation method specialized in explaining GNN has 

been published recently. It showed better interpretation on real graph datasets than gradient- 

or attention-based interpretation.

In AD prognostic research, several deep learning approaches were introduced to predict AD 

progression using time series data [12]. Due to the characteristics of the sequential data, they 

applied recurrent neural networks (RNN), such as Long Short-Term Memory (LSTM), and 

Gated Recurrent Unit (GRU), which have been shown to achieve outstanding performances 

in many healthcare applications with time series or sequential data [13].

With these observations, in this work, we propose an interpretable temporal graph neural 

network for prognostic prediction of AD from longitudinal neuroimaging data while 

embracing the valuable knowledge of structural brain connectivity. Our main scientific 

contributions are three-folds: 1) An innovative graph convolutional network (GCN) based 

RNN model is proposed to aggregate longitudinal neuroimaging measurements; 2) the 

proposed model is able to capture the neuroanatomical contribution to the classifier based on 

the node importance and edge importance of the graph at each time point; and 3) empirical 
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studies demonstrate the effectiveness and benefits of our model for prognosis prediction 

compared with several competing models.

II. METHODOLOGY

A. Dataset

Data used in the preparation of this article were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). We downloaded the 

longitudinal neuroimaging data of 806 participants (i.e., 266 CN, 312 MCI, 228 AD) from 

the ADNI database. Table I shows the participant demographic information. Of note, from 

baseline to 24-month, there were 23 patients who reverted to a better condition, including 21 

with MCI→CN and 2 with AD→MCI. The T1-MRI data at multiple time points, including 

baseline, 6-month, 12-month, and 24-month, were collected and the regional measurements 

(i.e., average and standard deviation of thickness, volume, and area) were extracted from 68 

cortical regions based on the Desikan-Killiany atlas using Freesurfer.

To incorporate relevant biological knowledge and thus avoid over-fitting, a reference 

structural connectivity network was computed using the diffusion magnetic resonance 

imaging (dMRI) data from 291 healthy participants in an independent database, the human 

connectome project (HCP, available at https://www.humanconnectome.org/). The FSL 

software was used to construct the structural connectivity networks of all the participants 

and the distance-dependent consensus thresholding method was applied to generate the 

average group-level connectivity network, and this network was used as the graph of the 

GNN model in our analyses [14].

B. Temporal Graph Neural Network Model for Prognosis

1) Data and Notations: Let G = (X, A) be a graph of the brain for each subject, 

where X ∈ ℝp × q is the matrix containing node attribute information (i.e., node-based 

regional features extracted from the longitudinal neuroimaging data), A ∈ ℝp × q represents 

an adjacency matrix of a graph (i.e., node- or region-based brain connectivity), p is the 

number of nodes in the brain, and q is the number of regional imaging attributes associated 

with each node. For the node attributes, we use the following four neuroimaging features as 

initial attributes (q = 4): (1) volume and (2) area of the corresponding cortical region, and (3) 

average and (4) standard deviation of all the vertex-based thickness measures in the cortical 

region. A is defined by the average group-level structural connectivity network obtained 

from the HCP data, as described in Section II-A. As mentioned earlier, in this work, we 

focus on analyzing p = 68 cortical regions.

2) Proposed interpretable temporal graph neural network: We propose an 

end-to-end interpretable temporal graph neural network for prognostic prediction. The 

architecture of the proposed model is shown in Figure 1. Overall, a graph at the time point 

passes through the two GNN encoder blocks to encode new node embedding, and then new 

node embeddings are fed into the LSTM to aggregate temporal information. Finally, fully 

connected layers with SoftMax activation function are added after for predicting multi-class 

diagnosis at 24-month.
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The the GNN encoder blocks are containing [GNN layer-Dropout-ReLU]. We carefully 

compare and choose GNN encoder layers among graph convolutional network (GCN) [7], 

GraphSAGE [8], Graph attention networks (GAT) [9], and Graph isomorphism network 

(GIN) [10]. To avoid over-smoothing, a pre-linear layer is added before first GNN encoder 

block and the skip-connection is connected between two blocks. At the last part of the GNN 

encoder block, the readout layer aggregates the node embeddings into the graph embedding 

by using the global average pooling layer.

For the LSTM layer, we explore a variety of models, including the vanilla LSTM model as 

well as the LSTM models with attention [15] and self-attention [16] mechanisms, to improve 

aggregating temporal information. These LSTM models have been broadly used in natural 

language processing and signal processing domains. Then, the two fully connected layers 

with SoftMax activation function are added after the LSTM layer for predicting multi-class 

diagnosis at 24-month.

In this study, we include covariates (i.e., age, gender, education, and MRI field strength) in 

the last fully connected layer. Finally, the sparse categorical cross-entropy loss function is 

applied. All the parameters in the model are optimized using the AdamW optimizer.

3) Model intepretation: We apply GNNExplainer to identify relevant nodes that 

contribute to the prediction of the prognostic outcome. GNNExplainer is a state-of-the-

art interpretable model that provides interpretation of GNN-based model [11]. The 

GNNExplainer generates a subgraph structure and a subset of node features that have a 

decisive role in the prediction by maximizing the mutual information between the prediction 

and distribution of possible subgraph structures. The resulting subgraph and node feature 

can be interpreted in two main perspectives: 1) node importance, 2) feature importance. 

Node importance can be measured by computing degree centrality (DC) in the subgraph. 

Feature importance can be measured by computing feature node mask.

III. EXPERIMENTS AND RESULTS

A. Experimental setup

In our study, we converted weighted group-level connectivity graph into unweighted graph 

by thresholding it by 0.05 and used it as topology of GNN layer, since GraphSAGE and GIN 

do not support weighted graphs. For prediction task, we trained models (e.g., GNN, DNN, 

and SVM) on 60% of the data (i.e., train set), validated on 20% of data (i.e., validation set), 

and applied it on 20% of data (i.e., test set) to evaluate prediction accuracy. We repeated 300 

times to evaluate the stability of the model and measured the performance in the form of 

mean ± standard deviation (std).

For benchmark algorithms, the DNN model with single hidden layer and linear SVM were 

used with adjusting covariates. The neural network models were trained on the NVIDIA 

2080TI GPU (with cuda ver. 10.2). For DNN and GNN training, we utilized earlystopping 

algorithm to avoid overfitting. The proposed model was implemented as described in Section 

II-B. The learning rate was 5e-4, the hidden dimension size in both GNN and RNN layer 

was 16, dropout rate was 0.5, and the hidden dimension size in the fully connected layer was 
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8. Our model was implemented in pytorch (ver. 1.9.0) and pytorch-geometric (ver. 1.7.2) 

[17].

B. Neural network module comparisons

We conducted comparative experiments to select GNN and RNN layer types in our model. 

For GNN layer, we employed and compared four representative GNN layer types, including 

GCN, GraphSAGE, GAT, and GIN while RNN layer type was vanilla LSTM, in order to 

achieve the best prediction accuracy. We compared the prediction performance of four GNN 

layers through 300 empirical trials. Although the four models did not show significant 

differences, the GCN layer obtained the best accuracy of 53.5 ± 3.8 (53.4 ± 3.9 of 

GraphSAGE, 53.0 ± 4.0 of GAT, and 53.0 ± 4.0 of GIN).

For the RNN layer, we employed and compared four RNN layers, including Vanilla 

LSTM, attention LSTM, self-attention LSTM (h=1), and self-attention LSTM (h=3) while 

GNN layer type was GCN, in terms of their prediction accuracies. Although there was 

no significant performance difference, we noted that vanilla LSTM showed the best 

performance of 53.5 ± 3.8 (52.7 ± 3.8 of attention LSTM, 53.1 α 3.9 of self-attention 

LSTM(h=1), and 52.9 ± 3.8 of self-attention LSTM (h=3)). This seems different from 

the observation that attention and self-attention are more effective in the natural language 

process domain.

With this observation, we determined to implement our temporal GNN model so that its 

GNN layer employed GCN and its RNN layer employed the Vanila LSTM layer. Below we 

focus on reporting the performance of this implementation.

C. Prognostic prediction task

For prognostic prediction task, our model obtained the best performance (53.5 ± 4.5%), and 

outperformed the competing methods (DNN: 51.7 ± 3.6% and SVM: 51.3 ± 3.6%). Our 

model has the advantage to predict the AD and MCI diagnosis at 24-month, even though 

there is a huge alternation of diagnosis between 12 and 24 months, as shown in Table I. In 

addition, we also tested more complicated DNN models. However, we observed that a single 

layer of DNN performed more consistently than its deeper counterparts.

Of note, our prognostic prediction task is much more challenging due to classifying three 

diagnostic groups instead of two and predicting the diagnostic status in the future instead 

of the current diagnosis. It is encouraging that our model outperforms the state-of-the-art 

DNN and SVM models on this challenging prediction task. Given the modest performance, 

it warrants further study to explore additional advanced models for improving the prognostic 

prediction for early detection.

D. Interpretation of results

First, we measure the contribution of brain regions to prognostic prediction based on 

GNNExplainer. GNNExplainer extracts a subgraph that is important to predict prognosis 

of AD. Figure 2–A visualizes node importance maps based on degree centrality (DC) of 

subgraph depending on true label and predicted label, and Table II presents the top 5 
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overall important regions. Overall, superior frontal, precentral, insula, and superior parietal 

consistently contributed to the CN, MCI, and AD classification. These regions have been 

reported to be associated with process of AD in several studies [18], [19].

Next, we examine which time point(s) (e.g., baseline, 6-month, and 12-month) and 

attribute(s) are the most important for prognostic prediction. Figure 2–B shows the 

importance of four attributes (average and standard deviation of thicknesses, volume, and 

area) for each time point, depending on true and predicted labels. We observed that there 

was no trend of lower or higher importance at any one time point. Likewise, four attributes 

have similar importance. Rather, the model is interpreted as evenly processing information at 

three time points for the prognostic prediction. We note that the prediction is not based on 

strong information at a single time point, but rather on detecting the pattern of change across 

three time points.

IV. CONCLUSION

In this study, we have proposed an interpretable GNN model for prognostic prediction 

of Alzheimer’s disease and mild cognitive impairment. Our model yielded promising 

interpretable results and improved prognostic prediction performance. We tested and 

compared our model with several competing models on the ADNI dataset. We demonstrated 

that our model not only outperforms the competing models on prognostic prediction 

accuracy, but also can capture neuro-anatomical contribution to the prognostic predictor and 

yield biologically meaningful interpretation to facilitate better mechanistic understanding of 

the Alzheimer’s disease.
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Fig. 1. 
The proposed interpretable GNN model for prognosis prediction.
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Fig. 2. 
Interpretation results of the proposed model by using GNNExplainer according to true 

label and predicted label of CN, MCI, and AD, respectively. (A) Visualization of node 

importance. For each figure, the most important 10 region of interests (ROIs) are colored 

in red representing high contribution to the classification. (B) Visualization of feature 

importance. Each plot shows importance of attributes depending on the time point.
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TABLE I

DEMOGRAPHIC INFORMATION

Demographic features Baseline 6-month 12-month 24-month

CN Number of subjects 261 262 271 266

Age (mean ± std.) 74.8 ± 5.6 75.2 ± 5.6 75.3 ± 6.0 76.3 ± 5.9

Gender (M/F) 143/118 142/120 154/117 143/123

Education (year) 15.6 ± 3.1 15.8 ± 3.2 15.9 ± 3.1 15.8 ± 3.0

MCI Number of subjects 446 424 383 312

Age (mean ± std.) 72.6 ± 7.4 73.1 ± 7.4 73.9 ± 7.3 74.6 ± 7.4

Gender (M/F) 263/183 247/177 224/159 193/119

Education (year) 15.9 ± 2.8 15.8 ± 2.9 16.0 ± 2.9 16.0 ± 2.8

AD Number of subjects 99 120 152 228

Age (mean ± std.) 74.8 ± 7.8 75.0 ± 7.7 75.1 ± 7.6 76.2 ± 7.4

Gender (M/F) 59/40 72/48 91/61 126/102

Education (year) 16.1 ± 2.7 16.0 ± 2.7 16.0 ± 2.7 15.9 ± 2.9
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