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SUMMARY

Expression reprogramming directed by transcription factors is a primary gene regulation 

underlying most aspects of the biology of any organism. Our views of how gene regulation is 

coordinated are dramatically changing thanks to the advent and constant improvement of high-

throughput profiling and transcriptional network inference methods: from activities of individual 

genes to functional interactions across genes. These technical and analytical advances can 

reveal the topology of transcriptional networks in which hundreds of genes are hierarchically 

regulated by multiple transcription factors at systems level. Here we review the state of the art 

of experimental and computational methods used in plant biology research to obtain large-scale 

datasets and model transcriptional networks. Examples of direct use of these network models and 

perspectives on their limitations and future directions are also discussed.
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INTRODUCTION

Social networks are an important part of our daily lives: we connect with others via personal 

interactions or remotely in several ways. In biological systems, molecular components (i.e., 

DNA, RNA and proteins) function by this same creed, physically or indirectly interacting 

with each other to form complex networks and control many aspects of the biology of 

an organism. Because the activity of individual genes or gene sets is often insufficient to 

reprogram global cellular functions in response to developmental and environmental stimuli, 

gene networks operate as part of a genome-wide system at different biological scales (e.g., 

individual cells, across cells in tissues, within the organism). Over the course of evolution, 
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plants have developed networking as a means to thrive in a variety of environments that set 

them apart from other organisms, e.g., compared with animals and fungi, plants generally 

have more transcription factor (TF) families (Shiu et al., 2005; Yamasaki et al., 2013) and 

cis-regulatory elements (CREs) that physically interact to regulate and integrate diverse 

biological processes (O’Malley et al., 2016; Franco-Zorrilla and Solano, 2017). There has 

also been a considerable proliferation in the number of copies of critical genes in plants 

by frequent whole-genome duplication events (Van de Peer et al., 2009; Panchy et al., 
2016), suggesting highly diversified gene–gene, protein–protein or protein–DNA interaction 

networks in plants compared with other species.

In the past decade or so, the revolutionary advent of next-generation sequencing (NGS) 

technologies has resulted in the proliferation of several types of genome-wide data that have 

enabled the cataloging of genes, gene products and their interactions within the biological 

context (Goodwin et al., 2016). The plant science community has been a frontier for 

that matter: Lister et al. (2008) reported on the Arabidopsis epigenome with single-base 

resolution, which, to our knowledge, is one of the first published papers that used NGS 

technologies to profile transcriptome in a biological system (Lister et al., 2008). The major 

challenge in this post-genomics era is to mine large omics datasets effectively for a deeper 

understanding of the multitude of molecular mechanisms underlying complex biological 

traits. Such an understanding will ultimately facilitate plant improvement by engineering or 

germplasm selection through breeding (Evans et al., 2015; Wing et al., 2018; Chen et al., 
2019; Gao et al., 2019). An approach that is valuable for this matter is a network-based 

analysis to integrate global measurements at different molecular levels and derive models 

describing the biological systems (Ideker et al., 2001; Kitano, 2002; Barabási and Oltvai, 

2004; Bonneau, 2008). This approach emphasizes the understanding of interactions between 

molecular components (e.g., genes and TFs), rather than the function of components alone, 

to identify processes underlying biological systems. One of the research areas in which 

network-based approaches are being extensively employed is transcriptional regulation in 

plants (Figure 1).

An important prerequisite for a systems-level understanding of transcriptional networks is 

a high-quality global quantification of molecular components and their interactions. The 

putative biological functions of the networks inferred through these analyses are routinely 

tested via genetic perturbations of the hub genes (i.e., most connected genes in the network), 

which are predicted to be critical for network performance. The resulting networks, hubs 

and their functional roles can also be remodeled to predict additional hub genes, which 

are not accessible with the available datasets, so to generate new testable hypotheses. 

Furthermore, the selection of candidate genes for testing function and genetic modification 

can be improved using network-based machine learning (ML) approaches. This framework 

is expected to provide novel insights into complex gene-regulatory networks (GRNs) and 

allow plant researchers to understand the hierarchical organization of genes controlling 

several aspects of plant biology, including flowering, growth, development and response to 

environmental stress (Box 1 and 2).

In light of the growing importance of network-based approaches to understand 

gene regulation in plants, in this review, we illustrate recent technical advances 
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in monitoring dynamic transcriptome changes and TF-DNA interactions in different 

experimental conditions. Next, we describe established computational modeling methods 

for transcriptional networks and highlight some of the emergent properties identified by 

various modeling algorithms in plant biology. Finally, we introduce challenges and future 

directions of systems-level understanding in the gene regulation of plants. This review is 

particularly aimed at stimulating plant biologists who are curious about recent developments 

and applications of transcriptional network modeling with little to no relevant knowledge of 

this approach.

DATA COLLECTION FOR GENE NETWORK INFERENCE

The rapid improvements of high-throughput deep sequencing technologies (e.g., NGS), 

increasing access to them and the plummeting of their cost have led to a revolution in plant 

functional genomics that has made systems-level approaches widely available for identifying 

transcriptional networks. A variety of methods has been employed to measure the abundance 

and interactions of molecular components of transcriptional networks on a genome-scale 

(Long et al., 2008; Moreno-Risueno et al., 2010; Gaudinier and Brady, 2016). Here, we 

highlight a set of approaches for omics data collection that are necessary for modeling 

transcriptional networks at a systems-level (Figure 1).

Genome assembly and annotation

The genome sequencing of the model plant species Arabidopsis thaliana (Initiative, 2000) 

has been followed by the sequencing of major crops, such as maize (Schnable et al., 2009) 

and rice (International Rice Genome Sequencing Project, 2005). Since then, 383 green plant 

species (Viridiplantae) with a wide range of genome size, complexity and ploidy have been 

sequenced at a whole-genome level, and 576 genome assemblies now are available (Kersey, 

2019). It is expected that the genome sequences of 10 000 plant and algal species will be 

available soon through the 10 000 Plants Genome Sequencing Project (10 KP) (Cheng et al., 
2018).

The high-throughput sequencing and assembly of plant genomes have been possible with the 

rapid development of sequencing technologies: NGS, long-read sequencing technologies 

(Goodwin et al., 2016) and physical mapping technology (Liu and Weigel, 2015). 

Although whole-genome sequencing itself does not serve directly for transcriptional network 

construction, the unprecedented breadth of well-assembled reference genomes produced 

from these state-of-the-art sequencing approaches provides exciting opportunities to explore 

the dynamics of global gene regulation and set the foundations for answering significant 

biological questions at a mechanistic level in plants.

Transcriptome analysis

Because most biological processes are driven by changes in gene activity, quantification of 

gene expression has been a frontier to address biological questions in any living organism 

(Brady et al., 2007; Busch and Lohmann, 2007; Romero et al., 2012). Quantification 

of global gene expression changes is the most essential part of building transcriptional 

networks. RNA-sequencing (RNA-seq), a transcriptome profiling approach that uses NGS 
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technologies, offers the most straightforward and unbiased way to investigate transcript 

abundance with increased speed and depth compared with earlier approaches (e.g., 

microarrays) (Wang et al., 2009; Metzker, 2010). The power of RNA-seq lies in the fact that 

a highly standardized experimental and bioinformatics pipeline (Wang et al., 2011; Conesa 

et al., 2016) can be adapted to any biological system; this has made RNA-seq rapidly evolve 

and become widely available to plant researchers. For example, the multiplexing RNA-seq 

technique, which was introduced after the advent of single-lane RNA-seq, has allowed 

for scaling up the experiment size in a cost-effective manner (Craig et al., 2008). These 

advantages coupled with technical improvements (i.e., pair-end sequencing, increased yield 

and read length) have made RNA-seq a most suitable approach for transcriptome profiling. 

In addition, the recent development of single-cell RNA-seq has opened new avenues for 

plant biologists who are interested in dynamics of gene expression changes at the individual 

cell level (Efroni et al., 2016; Denyer et al., 2019; Jean-Baptiste et al., 2019; Nelms and 

Walbot, 2019; Ryu et al., 2019; Shulse et al., 2019).

TF-DNA interaction profiling

Most of the complex developmental, growth and differentiation processes in eukaryotes are 

mediated by dynamic TF-DNA interactions that direct gene transcription fate (Wray et al., 
2003; Spitz and Furlong, 2012). Genome-wide mapping of TF-DNA interactions is therefore 

necessary for a comprehensive understanding of the transcriptional regulation underlying 

various biological processes (Farnham, 2009).

There are mainly three distinct experimental techniques to map binding sites of TFs on a 

genome-scale: (i) chromatin immunoprecipitation followed by deep sequencing (ChIP-seq); 

(ii) heterologous expression systems, such as yeast one-hybrid (Y1H) screening; and (iii) 

mapping open chromatin regions (Table 1). Although powerful, these approaches have 

caveats (Table 1). For example, a physical binding of TFs to gene promoters that can be 

found in ChIP-seq analyses does not always indicate gene regulation. Several studies have 

reported that <20% of plant TF–gene interactions identified in ChIP-seq analyses result in a 

functional interaction (e.g., alteration of gene expression level) (Gitter et al., 2009; Marchive 

et al., 2013; Swift and Coruzzi, 2017). Inferring GRNs from open chromatin regions 

requires global information of TF-DNA binding motifs (Bubb and Deal, 2020), which is 

not available for most crops. Importantly also, the TF–gene interaction datasets provide 

static snapshots from mixed cell types from a whole tissue. However, gene regulation is 

rather the result of spatiotemporal dynamics of TFs binding to gene regions in response 

to developmental and environmental cues (Kaufmann et al., 2010; Sparks et al., 2013; 

Vihervaara et al., 2018). Therefore, experimental design should take into consideration the 

dynamic properties of the activities of TFs in the context of gene regulation to generate 

meaningful datasets and provide sufficient grounds for interpretation.

ChIP-seq.—ChIP-seq is a TF-centered approach (i.e., finding DNA sequences bound by 

TFs of interests; Table 1), and as such, it is the main tool for global mapping sites of TF-

DNA interactions in vivo (Barski et al., 2007; Johnson et al., 2007; Mikkelsen et al., 2007; 

Robertson et al., 2007; Park, 2009). ChIP was initially developed in cultured Drosophila 
cells (Solomon et al., 1988) and has been applied to other eukaryotes, including plants. 
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Indeed, nearly 500 ChIP-seq data series published from 2009 to 2020 can be retrieved by 

searching for (“plants” [Organism]) AND “genome binding/occupancy profiling by high 

throughput sequencing” [DataSet Type] in the NCBI Gene Expression Omnibus.

In short, to generate a ChIP-seq library, proteins bound to DNA, such as TFs, are cross-

linked in vivo by fixatives (e.g., formaldehyde). The protein–DNA complexes are then 

immunoprecipitated by a specific antibody against the DNA-binding protein of interest or 

the tag fused with the protein. The DNA is then deep-sequenced using NGS technologies 

(Saleh et al., 2008; Park, 2009). The ChIP-seq approach is widely used in Arabidopsis 

(Yu et al., 2016; Chen et al., 2018) but its implementation in crops appears to be more 

challenging due to technical limitations to prepare goodquality ChIP-seq libraries for crops 

compared with Arabidopsis. For instance, generating transgenic crop lines with a protein 

tag fusion of a TF of interests, which may be necessary for weakly expressed TFs or to 

bypass the production of TF-specific antibodies, may be time-consuming or not feasible 

at all because of the absence of suitable transformation protocols. Nonetheless, online 

databases such as Expresso (https://bioinformatics.cs.vt.edu/expresso/) (Aghamirzaie et al., 
2017) and the C3C4 project data portal (http://www.epigenome.cuhk.edu.hk/C3C4.html) 

provide processed data of TF ChIP-seq in plants and may serve as a resource for identifying 

TF-DNA interactions.

Y1H——Y1H screening is a “gene-centered” method that allows the identification of TFs 

binding to DNA sequences of interest (Li and Herskowitz, 1993; Wang and Reed, 1993) 

(Table 1). The development of high-throughput Y1H screening combined with complete 

gold-standard TF collections has enabled the identification of thousands of potential 

interactions at a genome-scale in plants (Gaudinier et al., 2011; Burdo et al., 2014; Pruneda-

Paz et al., 2014; Taylor-Teeples et al., 2015; Yang et al., 2017; Gaudinier et al., 2018; 

Ikeuchi et al., 2018; Li et al., 2018; Smit et al., 2020a; Smit et al., 2020b). Y1H screening 

comes with the major innate risk of any heterologous expression system where interactions 

in non-plant cells do not necessarily imply that TFs identified in the screen bind to the DNA 

sequence in their native environment or under particular experimental conditions.

Mapping open chromatin regions.—In eukaryotes, core histones are generally 

wrapped by 147 bp of DNA, forming an array of nucleosomes, which is a key 

structural component of chromatin (Kornberg, 1974; Kaplan et al., 2009). TF-DNA 

binding repositions nucleosomes on the genome and increases the chromatin accessibility 

for nuclease enzymes (such as DNase I and micrococcal nuclease [MNase]), which 

allows defining potential cis-regulatory regions. The combination of the enzyme treatment 

with high-throughput sequencing such as DNase I sequencing (DNase-seq) and MNase 

sequencing (MNase-seq) has enabled unbiased global profiling of open chromatin regions 

bound by TFs (i.e., TF footprints) occurring in different cell types, developmental stages 

and environmental stresses in several plant species (Zhang et al., 2012a; Zhang et al., 
2012b; Sullivan et al., 2014; Rodgers-Melnick et al., 2016; Oka et al., 2017; Burgess et 
al., 2019) (Table 1). A significant improvement of nuclease-based methods for identifying 

accessible regions of chromatin and TF binding is the Assay for Transposase-Accessible 

Chromatin with high-throughput sequencing (ATAC-seq; Table 1), which uses a hyperactive 
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Tn5 transposase to integrate preloaded sequencing adapters into regions of open chromatin 

(Buenrostro et al., 2013; Buenrostro et al., 2015) and has been increasingly applied to plant 

research (Wilkins et al., 2016; Maher et al., 2018; Sijacic et al., 2018; Reynoso et al., 
2019). ATAC-seq conveniently offers a fast protocol with simple library amplification steps 

and requires relatively small amounts of starting material (50 000 freshly prepared nuclei 

for Arabidopsis) (Bajic et al., 2018), making it a vast improvement over MNase-seq and 

DNase-seq, which require more genetic material and complex sample preparation (Klemm et 
al., 2019). However, a major drawback of ATAC-seq is that the hyperactive Tn5 transposase 

also targets the genomes of mitochondria and chloroplasts. This decreases the proportion 

of sequencing reads that map to the nuclear genome, reducing the amount of information 

that can be used to infer cis-regulatory regions of the genome in the nucleus. This pitfall 

can be bypassed by using nuclei enrichment techniques from tissues or specific cell types, 

such as the approach from Isolation of Nuclei TAgged in specific Cell Types (INTACT) 

(Deal and Henikoff, 2010; Sijacic et al., 2018). The TFs putatively bound to open chromatin 

regions can be inferred through de novo motif analysis followed by TF motif mapping, 

using computational tools such as the MEME suite (Bailey et al., 2009). The DNA binding 

of the TF candidates can be further tested through parallel approaches such as ChIP or 

gene expression analyses. The approaches detailed above have the common limitation that 

TFs with a short residence time on the DNA may not generate detectable footprints on the 

genome under analysis. Furthermore, it may be challenging to assign a particular TF to a 

single footprint due to similar DNA-binding motif patterns of several TFs (O’Malley et al., 
2016).

In vitro TF-DNA binding databases

Typically, a TF binds to CREs that are proximal to the transcriptional start sites (TSS) 

of target genes and provide DNA binding specificity to the TFs. Collectively, a global set 

of CREs populating the transcriptional regulation sites of a gene represents the cistrome 

in an organism, and are critical elements controlling gene expression. Differences in the 

nucleotide sequence, frequency or position of the CREs with respect to the TSS within 

a cistrome contribute to influencing gene expression, e.g., enrichment of the same types 

of CREs in a cistrome is more likely to occur for more highly differentially regulated 

genes compared with genes that are less differentially regulated in the same environmental 

conditions or developmental stages (Liu et al., 2018).

Thus far, there have been two major breakthroughs from in vitro approaches on the 

cistrome identification in plants, i.e., protein-binding microarray (PBM) (Weirauch et 
al., 2014) and DNA affinity purification sequencing (DAP-seq) (O’Malley et al., 2016; 

Galli et al., 2018). Processed data that indicate in vitro DNA-binding motifs for 2913 

TFs from different species obtained through PBM, and of 526 Arabidopsis TFs obtained 

through DAP-seq are available in the CIS-BP Database (http://cisbp.ccbr.utoronto.ca) and 

the Plant Cistrome Database (http://neomorph.salk.edu/dev/pages/shhuang/dap_web/pages/

index.php), respectively. Statistical mapping of CREs to the cistromes can be used to define 

putative TF-binding sites on promoters of differentially expressed genes or open chromatin 

regions using computational tools, such as the MEME suite (Bailey et al., 2009) and 

HOMER (Heinz et al., 2010). These resources and computational tools also allow inferring 
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putative TF co-regulators through the identification of CREs that are bound by other TFs in 

the DNA region targeted by a specific TF (e.g., ChIP-seq). Thus, the cistrome database is a 

critical resource for inferring in silico plant GRNs.

NETWORK INFERENCE: MODELING METHODS

The availability of the transcriptome, TF-DNA interactome and cistrome database discussed 

above has enabled a systems-wide understanding of transcriptional networks underpinning 

complex biological traits. Transcriptional networks can be used to generate hypotheses by 

making in silico predictions and provide guidance to execute in planta experiments.

Transcriptional networks, including coexpression networks and GRNs, are generally 

graphed with nodes and edges similar to other biological networks. Nodes indicate the 

molecular components (genes or TFs) while edges represent gene–gene, gene–TF, or TF–

TF interactions (coexpression or physical binding) (Figure 2). Coexpression networks are 

elaborated into modules representing gene–gene interaction structures based on expression 

similarity. The functional linkages among the nodes of the network constitute the 

network architecture, which can lead to a systematic understanding of the gene-regulatory 

mechanisms. GRNs, which depict the putative architecture of such gene-regulatory 

mechanisms, can be computationally inferred from transcriptome data but can also integrate 

multiple data sources, e.g., GRNs can be generated by integrating TF-DNA interactome 

networks with corresponding gene coexpression networks in the most straightforward way.

GRN inference from transcriptome data is popular because gene expression analyses are 

generally less technically challenging, time-consuming and costly in many plant species 

compared using TF-DNA interactome analyses, such as ChIP-seq and Y1H screening. A 

number of modeling methods for inferring coexpression networks and GRNs in plants have 

been described in depth previously (Li et al., 2015; Serin et al., 2016; Banf and Rhee, 2017; 

Haque et al., 2019; Marshall-Colón and Kliebenstein, 2019), and are therefore only briefly 

summarized here. We illustrate examples of the modeling methods used to explore complex 

transcriptional networks underlying significant biological traits.

Coexpression network modeling

In recent years, coexpression network modeling has grown in popularity for addressing 

many biological questions because of the fast development of transcriptomic technologies, 

publicly available gene expression databases and robust clustering algorithms. This 

modeling approach allows the simultaneous identification, clustering and exploration of 

thousands of genes with similar expression patterns across multiple conditions (coexpressed 

genes). For example, based on “guilt-by-association,” genes that belong to the same gene 

module (i.e., coexpression module) are considered co-regulated by a common set of 

regulators, which may be predicted by de novo motif analysis on their promoters (e.g., 

cistrome analysis Vandepoele et al., 2009; Hickman et al., 2017) (Figure 1). Coexpression 

network modeling has been powerful to identify novel plant genes with a role in the 

biosynthesis of specialized metabolites, including anthocyanins, flavonoids, sinapoyl esters, 

glucosinolates, terpenoids, camalexin and other tryptophan derivatives. To identify genes 

underlying the production of these metabolites and the mechanisms regulating their 
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production in a shared or lineage-specific manner, Wisecaver et al. (2017) elaborated a 

single-network approach in which a coexpression network modeling based on Pearson 

coefficient correlation was applied to a set of 10 transcriptome datasets produced across 

eight plant species (Wisecaver et al., 2017). This network inference generated a catalog of 

coexpression gene modules, many of which were linked to known specialized metabolic 

pathways.

Coexpression analysis can also be applied to study yet uncharacterized metabolic pathways 

in plants, e.g., an integrative analysis of coexpression clustering and metabolomics enabled 

the selection of candidate gene clusters for the biosynthetic pathway of a pathogen-

responsive lipid compound, falcarindiol, in tomato (Jeon et al., 2020). Furthermore, 

coexpression analysis of mayapple time-series transcriptome datasets in a wounding 

experiment designed to trigger the metabolic synthesis of podophyllotoxin, the natural 

product precursor of therapeutic etoposide aglycone, provided a gold set of 29 candidate 

genes. These genes were used in combinatorial expression experiments in tobacco, an 

approach that ultimately identified a six-enzyme pathway for aglycone biosynthesis (Lau 

and Sattely, 2015). The coexpression network modeling adopted in this study may 

be applied to any metabolic biosynthesis pathway, fast advancing research in plants. 

Nonetheless, the accuracy of the predictions and the number of genes potentially involved in 

the biosynthesis of secondary metabolites that can be functionally assessed may be limited 

by key regulatory events that do not necessarily happen at transcriptional levels and the 

strength of the computational frameworks currently available (Yonekura-Sakakibara et al., 
2013; Banf and Rhee, 2017).

Coexpression network analyses have been also implemented for the study of pathways 

other than secondary metabolites, such as hormones. For example, Hickman et al. (2017) 

investigated the temporal regulatory dynamics of gene expression in conditions of treatment 

with jasmonic acid (JA), an essential hormone for plant growth, development and stress 

responses (Wasternack, 2015). They identified 3611 differentially expressed genes (Hickman 

et al., 2017), and then used SplineCluster, a hierarchical clustering method based on a 

regression model with a marginal likelihood criterion (Heard et al., 2006), to separate the 

identified differentially expressed genes into coexpression clusters. This yielded 27 clusters 

containing distinct expression responses linked to distinct biological pathways. This network 

analysis ultimately led to a discovery that specific TFs modulate JA-responsive GRN and 

laid the ground for testing new hypotheses on JA signaling in plants.

In coexpression network modeling, the distances of the coexpression modules can be 

quantitatively measured and serve to establish a molecular phenotype. For example, 

the weighted gene coexpression network analysis (WGCNA) is one popular modeling 

approach that applies unsupervised correlation analysis and soft thresholding to convert 

gene expression measures in adjacency matrices to a connection weight. This approach 

generates module eigengenes, which represent quantitatively measured expression values 

of coexpression modules (Langfelder and Horvath, 2008). WGCNA has been successfully 

applied to map gene expression dynamics in environmental stress. For example, Greenham 

et al. (2017) performed transcriptome analysis and various physiological measurements, 

such as stomatal conductance, photosynthetic rate and photosystem II efficiency, over a 
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2-day time course of drought stress in Brassica rapa (Greenham et al., 2017). WGCNA 

was applied to generate coexpression gene modules, which were subsequently associated 

with the phenotypic traits measured. The innovative coupling of coexpression gene modules 

and quantitative values of physiological traits identified drought-related modules containing 

drought-responsive genes associated with a wide range of biological processes. In addition, 

Lanver et al. (2018) used WGCNA to identify coexpression modules of the genes from the 

maize smut fungus Ustilago maydis during fungal development (Lanver et al., 2018). The 

analysis revealed 14 coexpression modules, each of which displayed a unique expression 

signature of the eigengene and was associated with significant biological processes. This led 

to the selection of the most likely influential modules for U. maydis virulence in maize.

Coexpression network modeling can take advantage of the temporal dynamics of gene 

expression changes. Wigwams (identifying genes working across multiple situations) is 

an efficient statistical method to identify coexpression gene modules in multiple time 

series of gene expression data (Polanski et al., 2014). Wigwams measures the Pearson 

correlation coefficient in time-series data for establishing coexpression gene modules. This 

is particularly useful to reconstruct coexpression networks associated with time-specific 

modules of co-regulated genes. However, handling large datasets for coexpression network 

analyses can become very complex and challenge data interpretation (Usadel et al., 2009).

In contrast to GRNs, and because of their static representation, coexpression networks per se 
do not provide information on the nature of the regulatory relationship of connected genes 

(i.e., direct or indirect) (Stuart et al., 2003). Careful application of coexpression network 

analysis tools and strategies is therefore required to maximize the information extraction, 

disentangle reliable network connections and infer true biological meaning.

GRN modeling

Computational prediction of the TF–gene interactions from transcriptome data in GRN 

modeling has been a challenging endeavor that requires the development of powerful 

bioinformatics methods to study the complex architecture of gene regulation (Figure 1). 

A wide range of network inference methods have been proposed, and can broadly be divided 

into model-based and model-free methods. Model-based methods construct a computational 

model of the biological system and subsequently learn the parameters of this model to 

solve the network inference problems, creating a dynamic model that is optimized for the 

given dataset. Model-based methods are clearly interpretable and can be used for other 

gene expression predictions.One of such methods most commonly used is the Bayesian 

network (BN), a type of probabilistic graphical model in which the known conditional 

dependence on directed edges is explicitly captured (Pe’er, 2005). BN models have been 

successfully applied to infer functional relationships between TFs and downstream target 

genes controlling a number of biological phenomena (Needham et al., 2009; Bechtold et 
al., 2016; Scofield et al., 2018); e.g., a conditional dependency of SHOOT MERISTEM 

(STM), a key TF in the development of shoot apical meristem with 56 genes encoding 

other multifunctional TFs involved in shoot apical meristem formation was inferred using 

a BN, revealing the topology of the STM-mediated GRN. This analysis led to the 

hypothesis of a positive transcriptional feedback loop between STM and CUP-SHAPED 
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COTYLEDON 1 (CUC1), which was experimentally validated (Scofield et al., 2018). BN 

models encompass several algorithmic variants, including the dynamic BN, which has 

been developed to identify statistically meaningful relationships between time-dependent 

variables while incorporating noise (Murphy and Mian, 1999). Application of a dynamic 

BN method, the Metropolis variational Bayesian state-space modeling, on high-resolution 

time-series transcriptomics data coupled with physiological and metabolic analyses during 

a transition to drought conditions, has been used to identify AGAMOUS-LIKE22 (AGL22) 

as a hub gene in the control of water stress responses (Bechtold et al., 2016). Because 

AGL22 is a TF known to be involved in the transition from vegetative state to flowering 

(Hartmann et al., 2000), this approach successfully identified a key regulator in common 

to two seemingly unrelated biological pathways, supporting the strength of BN models to 

generate new hypotheses and make new discoveries.

Despite the potential of model-based methods, multiple issues have eroded their 

attractiveness: they tend to be computationally demanding and rely on strong assumptions 

about the model dynamics. In contrast, model-free methods take a different approach to 

avoid the pitfalls of model-based methods, i.e., they do not make any assumptions about 

the nature of gene regulation but rather optimize theoretical measures of co-variation 

between genes (Margolin et al., 2006; Huynh-Thu et al., 2010). Such methods, including 

an ML-based regression tree algorithm, the Gene Network Inference with Ensemble of 

Trees 3 (GENIE3) (Huynh-Thu et al., 2010), typically have good scalability for the network 

construction, high flexibility due to the absence of a benchmark model (no constrain) 

and have consistently achieved reconstruction performance that is comparable with other 

algorithms (Marbach et al., 2012). Shibata et al. (2018) used GENIE3 to infer a GRN 

of three important TFs (GT-2-LIKE 1 [GTL1], DF1, RHD6-LIKE 4 [RSL4]) and their 

36 common target genes in regulating root hair growth based on TF-DNA interactome 

and transcriptome data (Shibata et al., 2018). The GRN interference not only revealed 

the topology of GRN underlying root growth, it also identified a negative transcriptional 

feedback loop of two of those TFs (i.e., GTL1 and RSL4). A regression tree-based 

pipeline that implements GENIE3, the Regression Tree Pipeline for Spatial, Temporal, 

And Replicate, has been recently used to integrate time-series transcriptome datasets with 

phospho-proteome data into systems-level GRN models, and successfully revealed new 

components for a crosstalk of JA signaling with other signaling pathways (Zander et al., 
2020). Despite their demonstrated performance, model-free methods are generally difficult 

to interpret, which limits their predictive power. A hybrid approach, Jump3 (Huynh-Thu and 

Sanguinetti, 2015), has been applied to bridge the gap between model-based and model-free 

methods, using transcriptome networks of murine macrophages (Blanc et al., 2011), in silico 
and synthetic gene networks of yeast (Cantone et al., 2009; Prill et al., 2010; Marbach et 
al., 2012). As such, Jump3 shows a competitive performance compared with other existing 

methods (Huynh-Thu and Sanguinetti, 2019) and may be applied to solve highly complex 

plant GRNs.

Network visualization and online tools

Inferred gene networks need to be visualized in a way that the interactions are 

comprehensively recognized. The currently available network visualization tools were 
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summarized in detail earlier (Marshall-Colón and Kliebenstein, 2019). Cytoscape is the 

most widely utilized tool for network visualization equipped with built-in network topology 

analysis algorithms. The function of Cytoscape can be expanded by >200 applications 

available (https://apps.cytoscape.org/apps/all) to improve the network presentation or for 

critical downstream analyses (Shannon et al., 2003).

There are several online tools for retrieving already predicted or identified interactions 

of the genes of interests to generate new hypotheses. For example, the VirtualPlant 

(http://virtualplant.bio.nyu.edu) provides a convenient online platform in which users can 

identify interactions among genes of interests based on published genome-wide datasets 

in multiple plant species and that can be visualized (Katari et al., 2010). In additions, the 

Arabidopsis Interaction Viewer 2.0 (AIV2) (http://bar.utoronto.ca/interactions2/) allows for 

the visualization of predicted and experimentally validated protein–DNA interactions as well 

as protein–protein interactions in A. thaliana (Dong et al., 2019).

Arabidopsis regulatory network databases are also available for TFs, e.g., the 

Plant Regulome database (http://www.plantregulome.org) offers a user-friendly interface 

for the Arabidopsis regulatory network map of 235 TFs driven by DNase-I seq 

(Sullivan et al., 2014), and the PlantRegMap (http://plantregmap.cbi.pku.edu.cn) (Tian 

et al., 2020) visualizes the Arabidopsis Transcriptional Regulatory Map (ATRM, http://

atrm.cbi.pku.edu.cn/vis_network.php), which consists of 1431 TF-DNA interactions curated 

through an extensive literature mining (Jin et al., 2015).

Adding to these tools, the TF2Network (http://bioinformatics.psb.ugent.be/webtools/

TF2Network/) predicts potential regulators for coexpressed or functionally related genes 

with a high accuracy (75%–92%) in A. thaliana (Kulkarni et al., 2018). Databases have been 

also developed to analyze CREs. For example, the Cistrome (http://bar.utoronto.ca/cistome/

cgi-bin/BAR_Cistome.cgi) allows users to explore CREs at different lengths (250, 500 and 

1000 bp) of gene promoters using the cistrome dataset or user-provided motifs in A. thaliana 
(Austin et al., 2016).

Collectively, these online tools serve as a convenient means to mine multi-omics datasets 

for understanding transcriptional networks without an extensive knowledge of network 

construction in plant research.

EMERGING FIELDS OF TRANSCRIPTIONAL NETWORK APPLICATIONS

Transcriptional network-based approaches help narrow down hundreds or thousands of 

genes into relatively small sets of genes responsible for the molecular or physiological traits 

of interests. Indeed, in addition to studies briefly exemplified in the previous section, the 

construction of transcriptional networks has been extensively applied to providing testable 

hypotheses in the development of flowers (Heyndrickx et al., 2014; Ó’Maoiléidigh et al., 
2014; Chen et al., 2018), seeds (Xiong et al., 2017) and root (Brady et al., 2011; Moreno-

Risueno et al., 2015), as well as in nutrient signaling (Varala et al., 2018), pathogen infection 

(Windram et al., 2012) and abiotic stresses (Vermeirssen et al., 2014; Wilkins et al., 2016; 
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Van den Broeck et al., 2017). Below, we discuss research areas in plants being increasingly 

addressed with transcriptional network prediction analyses.

Epigenetic modifications affecting transcriptional networks

TFs dynamically compete or collaborate with chromatin modification markers, such as 

methylation on DNA or histones, to promote local access to regulatory DNA regions (Gates 

et al., 2017; Talbert and Henikoff, 2017). While the role of gene body DNA methylation 

is unclear, promoter DNA methylation is usually accompanied by a reduction of gene 

transcription (Zhang et al., 2006; Lei et al., 2015; Williams et al., 2015), largely through a 

reduction of the binding of TFs to the promoter (Domcke et al., 2015; Zhang et al., 2018). 

DNA methylation, which occurs at cytosine bases in CG, CHG and CHH (H=A, T or C) 

contexts in plants (Zhang et al., 2006; Lister et al., 2008), alters gene expression in response 

to adverse environmental conditions and during development (Matzke and Mosher, 2014; 

Niederhuth and Schmitz, 2017). Histone-associated epigenetic changes are also important 

in modulating transcriptional networks underpinning many aspects of plant biology. From 

yeast to plants to humans, trimethylation of histone 3-lysine 27 (H3K27me3) and H3K4me3 

has been associated with genes transcribed at low and high levels, respectively, while 

acetylation of histone 3 lysine 9 and 13 (H3K9ac and H3K14ac) leads to gene activation 

by reducing an interaction between DNA and core histones (Allis and Jenuwein, 2016). In 

Arabidopsis, wounding-inducible genes are marked with H3K9ac, H3K14ac and H3K27ac 

shortly after wounding (Rymen et al., 2019). In addition, Song et al. (2018) demonstrated 

that an Arabidopsis COMPASS-Like complex, which accumulates H3K4me3 at gene 

promoters, physically interacts with basic leucine zipper protein (bZIP) 28 (bZIP28) and 

bZIP60 TFs to regulate expression of the endoplasmic reticulum (ER) stress-responsive 

genes, providing mechanistic insights into how the epigenetic modifications are deeply 

embedded into the ER stress-responsive gene networks (Song et al., 2015). Zhang et 
al. (2017) also showed that rapid transcriptional changes of hundreds of binding target 

genes of ETHYLENE INSENSITIVE 2 (EIN2), a positive transcriptional regulator of 

ethylene signaling, is accompanied with increased levels of H3K14ac and H3K23ac at the 

gene promoters, which are mediated by a physical interaction between EIN2 and EIN2 

nuclear-associated protein 1 (ENAP1), a histone-binding protein (Zhang et al., 2017). These 

examples underscore critical regulatory roles of the epigenetic components in defining the 

architecture of transcriptional networks operating in plant development and stress responses. 

Accordingly, Chen et al.(2018) performed a systems-level network analysis using ChIP-seq 

profiles of 15 key floral TFs and transcriptomes of mRNA and microRNA (miRNA) (Chen 

et al., 2018), tightly linked with DNA methylation (Matzke and Mosher, 2014). The network 

inference revealed a prevalence of a feed-forward loop mediated by TFs and miRNAs 

through integrated GRN modeling and led to an experimental validation that SEPALLATA3 

acts as an upstream regulator of miR319a/TCP4 module to regulate petal development.

ML-based transcriptional network modeling

Despite the wide applicability and effectiveness demonstrated in a number of studies, 

transcriptional network modeling has unavoidable limitations, including that the 

interpretation of gene-regulatory modules is often based on postulated functions of yet 

uncharacterized genes. This emphasizes a need for developing new effective approaches to 
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improve network prediction, interpretability and efficiency of data usage. ML is a collection 

of data algorithms aimed at establishing predictive models from multidimensional datasets 

and has already been used in a number of advanced analyses in plant biology: predicting 

new specialized metabolism genes (Moore et al., 2019; Toubiana et al., 2019), putative 

CREs in abiotic and biotic stress responses (Zou et al., 2011), CREs regulating root cell 

type-specific gene expression (Uygun et al., 2019), gene annotation (Sartor et al., 2019), 

phenotyping (Bernotas et al., 2019) and crop yield (Khaki and Wang, 2019; Zhang et al., 
2019; Herrero-Huerta et al., 2020) (Figure 2).

A number of ML algorithms are designed to infer transcriptional networks by providing 

data-driven prediction models from transcriptome profiles in Arabidopsis. In addition 

to GENIE3 described earlier, such algorithms include State-Space Models (SSMs) and 

Supervised Inference of Regulatory Networks (SIREN). SSMs, a set of ML-based graphical 

model formulations, allow the prediction hidden values of gene expression at future time-

points based on observed values (Beal et al., 2005). SSMs have been used to predict 

temporal network models responsive to nitrate and infer a functional GRN from time-series 

transcriptome data in plants (Krouk et al., 2010). SIREN is an ML-based supervised 

regulatory interaction network modeling framework (Mordelet and Vert, 2008) that has been 

used to analyze the information gained from microarrays systematically and infer GRNs in 

the control of secondary cell wall biosynthesis (Taylor-Teeples et al., 2015).

ML-based approaches have shown a great potential for understanding transcriptional 

networks in crops in which the depth of transcriptome and protein–DNA interactome 

datasets is much weaker compared with Arabidopsis and the functions of only a small 

number of genes have been experimentally validated (Figure 2), e.g., full scanning of the 

maize reference genome for CREs is expensive, laborious and technically challenging. The 

shortcoming of genome-wide information and experimental data for CREs and aggregated 

genomic complexity have urged maize (Zea mays) researchers to predict CREs using ML for 

transcriptional network mapping. For example, Mejía-Guerra and Buckler (2019) established 

the architecture of gene-regulatory regions at a k-mer (nucleotide sequence in a certain 

length) level in maize using an ML-based computational framework in which two trained 

models were able to make a distinction between regulatory and non-regulatory genomic 

regions with >90% accuracy (Mejía-Guerra and Buckler, 2019).

The predicting power of ML models can be further improved by training with new layers 

of genomic information such as the 3D structure of cis-regulatory regions and genomic 

sequence variation data of the maize diversity panels. Such a framework is highly applicable 

to other crops. In addition, ML modeling can also aid the identification of key regulators in 

response to abiotic stress in crops. For example, Gupta et al. (2020) took a network-based 

supervised ML framework to predict TFs that likely play key roles in response to drought 

stress in rice (Oryza sativa) (Gupta et al., 2020). In this study, to prioritize TFs, multiple 

GRNs were inferred from published rice transcriptome datasets, and then the consensus 

GRN was provided in the ML framework in which the support vector machine, a binary 

classification algorithm, trained models to learn the regulatory patterns of TFs in responses 

to drought. By pursuing this approach, the TF OsbHLH148 was predicted to play a key 

role in drought stress. These predictions were functionally validated by the characterization 
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of an OsbHLH148 knockout (bhlh148), which showed growth defects specifically under 

drought stress compared with wild type. Furthermore, consistent with a prediction that, 

in the consensus GRN, the target genes of OsbHLH148 would be enriched with TFs of 

the WRKY and AP2-EREBP families, the genes annotated to be controlled by these TF 

families were highly downregulated in the drought-treated bhlh148 but not wild type or 

well-watered bhlh148. Therefore, this study demonstrates the effectiveness of the ML-based 

approach to identify genes in biological pathways in plants but also to advance research 

using predictive modeling in crops. Nonetheless, despite their strong potential to improve 

the predictive power, accuracy and biological interpretability of gene networks in crops, 

ML-based approaches require high-quality training datasets for robust and effective learning 

(Camacho et al., 2018), which may be a limiting factor for their implementation into 

transcriptional network mapping, particularly in crops.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

With the rapidly increasing access to NGS technologies and decreased implementation 

costs, it is clear that new global datasets will continue to be rapidly accumulated and 

add to the abundant datasets already available. As such, the demand for transcriptional 

network modeling will exponentially increase (Box 1). However, several limitations of the 

current analyses could prevent us from maximizing the effectiveness and usefulness of these 

“big data” and computational frameworks (Box 2). A realistic obstacle lies in a lack of 

standardized computational pipelines for transcriptional network analyses, particularly of 

ML-based approaches. This consequently hampers a wider usage of transcriptional network-

based approaches for biological questions that are difficult to be addressed via the traditional 

approaches based on a modification of the expression of a single gene or alteration of 

a single biological pathway. Another significant bottleneck is the quality input datasets, 

which undermines the performance of network inference. The recipe for high-quality data 

consists of correct controls, high signal-to-noise ratio and reproducibility. Datasets can miss 

one or more of these components with the result of erroneous biological interpretation due 

to the generation of inaccurate network predictions. Nonetheless, difficulties in generating 

transcriptional networks can be helpful in evaluating the quality of the input data and 

understanding where the experimental design needs rethinking.

Because they consist of many nodes of low degree and few nodes of high degree, known 

as scale-free topology, transcriptional networks are often resistant to perturbations (i.e., 

buffering effects by other gene members) (Barabási, 2009). Although gene functional 

redundancy may contribute to the fitness of a biological system, it does not allow validating 

the phenotypic effects of gene networks by single perturbation (i.e. single loss-of-function 

mutation). Combinatorial mutations of multiple genes predicted to be crucial for the 

gene network can overcome this limitation. While such an approach is possible for the 

model plant Arabidopsis, it may be not as feasible for other plant species. The recent 

expansion of the genome-editing toolbox, transcription activator-like effector nucleases and 

the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, to 

generate mutations on a combination of multiple gene targets could make this task more 

feasible, particularly in crops (Čermák et al., 2017).

Ko and Brandizzi Page 14

Plant J. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A significant question we are facing in the post-genomics era is whether we can 

extract biologically meaningful insights from highly heterogeneous, noisy, complex and 

dimensional datasets at a reasonable computational cost. Despite facing analytic challenges, 

rapid advancements in ML-based and artificial intelligence methodologies, such as deep 

learning (Ching et al., 2018; Eraslan et al., 2019), hold great promise to bypass caveats 

imposed by traditional statistical algorithms. These state-of-art computational approaches 

are also expected to help to explore spatiotemporal dynamics of transcriptional networks 

using single-cell transcriptome data in plants, which are increasingly valuable, by improving 

data clustering (Kiselev et al., 2019).

The systems-level understanding in gene regulation is still in its infancy, yet its demand 

is increasing often beyond the capability of individual labs. Both experimental biologists 

and bioinformaticians need to communicate directly for their own biological, experimental 

and analytical problems and come up with solutions in collaborative settings such as online 

or virtual workshops (e.g., the Plant Cell Atlas initiative; Rhee et al., 2019). This will 

help advance our systems-level understanding of gene regulation in plant biology and build 

strong research communities.
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Box 1.

Bullet point summary

• Gene regulation is a complex biological process in which multiple molecular 

components work together to support the growth, development and stress 

responses of a biological system.

• The systems-level understanding of gene regulation requires high-quality 

datasets of transcriptome, TF-DNA interactome and TF footprints, which 

can be effectively collected by the recently developed and improved high-

throughput technologies.

• The development of cistrome database and diverse online network tools has 

helped plant biologists mine multi-omics data conveniently and for systematic 

understanding of transcriptional networks underlying complex biological 

traits.

• Several competing computational approaches, which are here categorized into 

coexpression network modeling and GRN modeling, have been proposed 

to infer transcriptional networks, highlighting the complex nature of gene 

regulation.

• Transcriptional network approaches have been successfully applied to 

understand the interplay between genes, TFs and epigenetic components 

and dissect functional roles of epigenetic regulation underlying significant 

biological processes in plants.

• In vitro TF-DNA binding database and versatile online tools have led to data-

driven systems-level approaches to explore complex TF networks underlying 

significant biological questions.

• ML-based transcriptional network modeling holds a great promise to improve 

prediction accuracy, interpretability and applicability over the current network 

modeling in crops in which genomic and experimental data are relatively 

scarce.

• The demand for transcriptional network-based analyses is ever-increasing, yet 

it has limitations that need to be overcome to infer network models with high 

accuracy.
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Box 2.

Open questions

• How do we improve the current high-throughput technologies for 

transcriptome and TF-DNA interactome to obtain high-quality datasets in a 

cost-effective manner?

• How do we better standardize current transcriptional network modeling 

methods to broaden the availability of the systems-level analysis in gene 

regulation?

• How can transcriptional network-based analyses integrate highly 

heterogeneous, noisy, complex and dimensional datasets into accurate 

network models to provide systems-level biological insights into gene 

regulation?
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Figure 1. 
Schematic view of transcriptional network analysis.

Transcriptional network analysis consists of data acquisition, network modeling and 

assessment of network functions. Gene expression data obtained by high-throughput 

technologies can be used to construct coexpression networks, which are subsequently either 

integrated with transcription factor (TF)-DNA interactome data to build gene-regulatory 

networks (GRNs) or used to infer GRN bypassing the generation of TF-DNA interactome 

data. Biological functions of resulting GRNs are evaluated through genetic perturbations of 

predictive regulatory hub genes. Pink circle: genes affiliated in GRNs. Yellow rhombus: 

predicted regulatory hub genes, Red triangles: TFs. Edges indicated by solid and dot 

lines, respectively: coexpression interactions. AD, activation domain; ATAC-seq, Assay for 

Transposase-Accessible Chromatin with high-throughput sequencing; ChIP-seq, chromatin 
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immunoprecipitation sequencing; DAP-seq, DNA affinity purification sequencing; GFP, 

green fluorescence protein; PBM, protein-binding microarray; Y1H, yeast one-hybrid.
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Figure 2. 
Schematic view of machine learning (ML)-based transcriptional network approaches in 

crops.

Transcriptional networks, such as coexpression networks or inferred GRNs, are constructed 

and subsequently integrated with phenotype data available. These networks can be used 

as input for following ML approaches. In ML methods, data consist of instances and 

features. In transcriptional networks, instances are genes and features are gene expression 

levels or phenotype. ML methods are largely categorized into supervised and unsupervised 

learning. Supervised methods are used when labels are available for input data (e.g., 

classification) whereas unsupervised methods are applied when the labels on the input 

data are unknown so that the model can learn only from patterns (e.g., clustering). ML 

models generate predictions of relationships among genes in the given networks, which need 

to be functionally tested in planta. Functional validation can be performed in protoplasts 

(i.e., transient expression analysis) or transgenic crop plants depending on the biological 

questions. Validated data can be directly incorporated into the input data to improve the 

performance of the trained model.

Ko and Brandizzi Page 29

Plant J. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ko and Brandizzi Page 30

Ta
b

le
 1

Il
lu

st
ra

tio
n 

of
 g

lo
ba

l T
F-

D
N

A
 in

te
ra

ct
io

n 
an

d 
D

N
A

 a
cc

es
si

bi
lit

y 
pr

of
ili

ng
 m

et
ho

ds

C
hI

P
-s

eq
Y

1H
 s

cr
ee

ni
ng

D
N

as
e-

se
q

M
N

as
e-

se
q

A
T

A
C

-s
eq

A
ss

ay
 ty

pe
In

 v
iv

o 
pr

ot
ei

n-
D

N
A

 in
te

ra
ct

io
ns

In
 v

itr
o 

pr
ot

ei
n-

D
N

A
 

in
te

ra
ct

io
ns

In
 v

iv
o 

op
en

 c
hr

om
at

in
 r

eg
io

ns
In

 v
iv

o 
op

en
 c

hr
om

at
in

 r
eg

io
ns

In
 v

iv
o 

op
en

 c
hr

om
at

in
 r

eg
io

ns

M
aj

or
 

un
de

rl
yi

ng
 

ap
pr

oa
ch

Fr
ag

m
en

te
d 

ge
no

m
ic

 D
N

A
 b

ou
nd

 
by

 T
Fs

 o
f 

in
te

re
st

s 
ar

e 
im

m
un

op
re

ci
pi

ta
te

d 
by

 s
pe

ci
fi

c 
an

tib
od

ie
s 

fo
r 

th
e 

T
Fs

. D
N

A
 

se
qu

en
ce

s 
ar

e 
id

en
tif

ie
d 

by
 d

ee
p 

se
qu

en
ci

ng

R
ep

or
te

r 
ge

ne
 d

ri
ve

n 
by

 a
 b

ai
t 

pr
om

ot
er

 is
 a

ct
iv

at
ed

 w
he

n 
th

e 
pr

om
ot

er
 is

 b
ou

nd
 b

y 
a 

pr
ot

ei
n 

(p
re

y)
 f

us
ed

 to
 th

e 
ac

tiv
at

io
n 

do
m

ai
n 

of
 th

e 
ye

as
t G

al
4 

T
F 

in
 

th
e 

ye
as

t s
tr

ai
n

N
on

-s
pe

ci
fi

c 
D

N
as

e 
I 

cl
ea

ve
s 

w
ith

in
 a

cc
es

si
bl

e 
ch

ro
m

at
in

 (
i.e

., 
tr

an
sc

ri
pt

io
na

lly
 a

ct
iv

e)
. T

he
 

D
N

A
 s

eq
ue

nc
es

 a
re

 id
en

tif
ie

d 
by

 
de

ep
 s

eq
ue

nc
in

g

E
nd

on
uc

le
as

e/
ex

on
uc

le
as

e 
M

N
as

e 
bo

th
 c

ut
s 

an
d 

di
ge

st
s 

ac
ce

ss
ib

le
 D

N
A

. D
N

A
 

se
qu

en
ce

s 
ar

e 
th

en
 id

en
tif

ie
d 

by
 

de
ep

 s
eq

ue
nc

in
g

H
yp

er
ac

tiv
e 

T
n5

 tr
an

sp
os

as
e 

si
m

ul
ta

ne
ou

sl
y 

cu
ts

 a
cc

es
si

bl
e 

ch
ro

m
at

in
 in

 u
nf

ix
ed

 n
uc

le
i 

an
d 

lig
at

es
 a

da
pt

er
s 

fo
r 

N
G

S.
 

T
hi

s 
en

ab
le

s 
th

e 
id

en
tif

ic
at

io
n 

of
 th

e 
cu

t s
eq

ue
nc

es
 b

y 
de

ep
 

se
qu

en
ci

ng

So
ur

ce
 o

f 
po

te
nt

ia
l 

pl
at

fo
rm

 n
oi

se

N
on

-s
pe

ci
fi

c 
bi

nd
in

g,
 G

C
 c

on
te

nt
 

bi
as

, c
hr

om
at

in
 s

tr
uc

tu
re

 a
ff

ec
tin

g 
fr

ag
m

en
ta

tio
n 

by
 s

on
ic

at
io

n 
(e

.g
., 

he
te

ro
ch

ro
m

at
in

 v
er

su
s 

eu
ch

ro
m

at
in

)

A
ct

iv
at

io
n 

by
 e

nd
og

en
ou

s 
ye

as
t 

T
Fs

, i
m

pr
op

er
 p

re
y 

pr
ot

ei
n 

fo
ld

in
g 

be
ca

us
e 

of
 th

e 
fu

si
on

 to
 

an
 a

ct
iv

at
io

n 
do

m
ai

n

H
ig

h 
de

pe
nd

en
cy

 o
f 

ef
fi

ci
en

cy
 

in
 id

en
tif

yi
ng

 T
F 

fo
ot

pr
in

ts
 

on
 f

ra
gm

en
t s

iz
e,

 c
le

av
ag

e 
in

 
a 

se
qu

en
ce

-d
ep

en
de

nt
 m

an
ne

r 
(t

hr
ee

 n
uc

le
ot

id
es

 o
n 

ei
th

er
 s

id
e 

of
 th

e 
cl

ea
va

ge
 s

ite
)

V
ar

ia
bl

e 
en

ri
ch

m
en

t p
at

te
rn

 
de

pe
nd

in
g 

on
 f

ra
gm

en
t s

iz
e 

(f
ra

gm
en

ts
 o

f 
on

e 
nu

cl
eo

so
m

e 
le

ng
th

 (
14

7 
bp

) 
ar

e 
ty

pi
ca

lly
 

se
le

ct
ed

 f
or

 th
e 

se
qu

en
ci

ng
),

 
cl

ea
va

ge
 in

 a
 s

eq
ue

nc
e-

de
pe

nd
en

t m
an

ne
r 

(p
re

fe
re

nc
e 

to
 A

T-
ri

ch
)

Q
ua

lit
y 

of
 p

re
pa

ra
tio

n 
of

 
is

ol
at

ed
 n

uc
le

i

A
dv

an
ta

ge
s

St
ra

ig
ht

fo
rw

ar
d 

de
te

ct
io

n 
of

 b
in

di
ng

 
ev

en
ts

 in
 v

iv
o,

 h
ig

h 
in

te
rp

re
ta

bi
lit

y
H

ig
h-

th
ro

ug
hp

ut
 a

nd
 h

ig
h 

co
ve

ra
ge

 w
ith

 r
ob

ot
ic

 m
at

in
g 

pl
at

fo
rm

, c
om

pa
tib

ili
ty

 w
ith

 
pr

ey
 li

br
ar

ie
s,

 d
et

ec
tio

n 
of

 T
F 

is
of

or
m

-s
pe

ci
fi

c 
bi

nd
in

g

R
el

at
iv

el
y 

st
an

da
rd

iz
ed

 
ex

pe
ri

m
en

ta
l a

nd
 c

om
pu

ta
tio

na
l 

w
or

kf
lo

w
s 

vi
a 

th
e 

E
N

C
O

D
E

 
pr

oj
ec

t, 
w

el
l-

un
de

rs
to

od
 b

ia
s 

ef
fe

ct
s

N
uc

le
os

om
e 

bi
nd

in
g 

in
fo

rm
at

io
n 

in
 a

dd
iti

on
 to

 T
F 

bi
nd

in
g 

in
fo

rm
at

io
n

M
uc

h 
le

ss
 in

pu
t m

at
er

ia
ls

 
(<

50
, 0

00
 n

uc
le

i)
 th

an
 

D
N

as
e-

se
q 

an
d 

M
N

as
e-

se
q 

(>
1 

m
ill

io
n)

, s
im

pl
if

ie
d 

ex
pe

ri
m

en
ta

l p
ro

ce
du

re
s,

 s
ho

rt
 

tim
e 

fo
r 

pr
oc

es
si

ng

L
im

ita
tio

ns
N

ec
es

si
ty

 o
f 

an
tib

od
y 

fo
r 

T
F 

of
 

in
te

re
st

s 
or

 tr
an

sg
en

ic
 li

ne
s 

ex
pr

es
si

ng
 

ep
ito

pe
ta

gg
ed

 v
er

si
on

s 
of

 p
ro

te
in

s 
of

 in
te

re
st

s,
 in

te
ra

ct
io

n 
of

 T
F 

w
ith

 c
hr

om
at

in
 d

oe
s 

no
t n

ec
es

sa
ri

ly
 

in
di

ca
te

 a
 f

un
ct

io
na

l i
nt

er
ac

tio
n 

in
 

ge
ne

 r
eg

ul
at

io
n

N
o 

fu
nc

tio
na

l i
ns

ig
ht

s 
in

to
 th

e 
T

F-
D

N
A

 in
te

ra
ct

io
ns

, h
ig

h 
ra

te
 

of
 f

al
se

-p
os

iti
ve

s

L
ab

or
io

us
 e

nz
ym

e 
tit

ra
tio

n,
 h

ig
h 

am
ou

nt
 o

f 
in

pu
t m

at
er

ia
l, 

tim
e-

co
ns

um
in

g 
sa

m
pl

e 
pr

ep
ar

at
io

n

L
ab

or
io

us
 e

nz
ym

e 
tit

ra
tio

n,
 

in
di

re
ct

 d
et

ec
tio

n 
of

 a
ct

iv
e 

re
gu

la
to

ry
 r

eg
io

ns
, h

ig
h 

am
ou

nt
 

of
 in

pu
t m

at
er

ia
l

H
ig

he
r 

se
qu

en
ci

ng
 c

ov
er

ag
e,

 
pr

ev
al

en
ce

 o
f 

pl
as

tid
 

an
d 

m
ito

ch
on

dr
ia

 g
en

om
e 

co
nt

am
in

at
io

n,
 s

ta
nd

ar
di

ze
d 

da
ta

 a
na

ly
si

s 
pi

pe
lin

e 
no

t 
op

tim
iz

ed
 y

et

K
ey

 
re

fe
re

nc
es

(B
ar

sk
i e

t a
l.,

 2
00

7;
 P

ar
k,

 2
00

9)
(D

ep
la

nc
ke

 e
t a

l.,
 2

00
4;

 
G

au
di

ni
er

 e
t a

l.,
 2

01
1)

(C
ra

w
fo

rd
 e

t a
l.,

 2
00

6;
 B

oy
le

 e
t 

al
., 

20
08

)
(S

ch
on

es
 e

t a
l.,

 2
00

8;
 P

aj
or

o 
et

 
al

., 
20

18
)

(B
ue

nr
os

tr
o 

et
 a

l.,
 2

01
3;

 
B

ue
nr

os
tr

o 
et

 a
l.,

 2
01

5)

Plant J. Author manuscript; available in PMC 2022 March 15.


	SUMMARY
	INTRODUCTION
	DATA COLLECTION FOR GENE NETWORK INFERENCE
	Genome assembly and annotation
	Transcriptome analysis
	TF-DNA interaction profiling
	ChIP-seq.
	Y1H—
	Mapping open chromatin regions.

	In vitro TF-DNA binding databases

	NETWORK INFERENCE: MODELING METHODS
	Coexpression network modeling
	GRN modeling
	Network visualization and online tools

	EMERGING FIELDS OF TRANSCRIPTIONAL NETWORK APPLICATIONS
	Epigenetic modifications affecting transcriptional networks
	ML-based transcriptional network modeling

	CONCLUDING REMARKS AND FUTURE PERSPECTIVES
	References
	Figure 1.
	Figure 2.
	Table 1

