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Abstract: Background: Immune and skeletal systems physiologically and pathologically interact
with each other. Immune and skeletal diseases may share potential pleiotropic genetics factors, but
the shared specific genes are largely unknown.

Objective: This study aimed to investigate the overlapping genetic factors between multiple diseas-
es (including rheumatoid arthritis (RA), psoriasis, osteoporosis, osteoarthritis, sarcopenia, and frac-
ture).

Methods: The canonical correlation analysis (metaCCA) approach was used to identify the shared
genes for six diseases by integrating genome-wide association study (GWAS)-derived summary
statistics. The versatile Gene-based Association Study (VEGAS2) method was further applied to
refine and validate the putative pleiotropic genes identified by metaCCA.

Results: About 157 (p<8.19E-6), 319 (p<3.90E-6), and 77 (p<9.72E-6) potential pleiotropic genes
were identified shared by two immune diseases, four skeletal diseases, and all of the six diseases,
respectively. The top three significant putative pleiotropic genes shared by both immune and skele-
tal diseases, including HLA-B, TSBP1, and TSBP1-AS1 (p<E-300), were located in the major histo-
compatibility complex (MHC) region. Nineteen of 77 putative pleiotropic genes identified by me-
taCCA analysis were associated with at least one disease in the VEGAS2 analysis. Specifically, the
majority (18) of these 19 putative validated pleiotropic genes were associated with RA.

Conclusion: The metaCCA method identified some pleiotropic genes shared by the immune and
skeletal diseases. These findings help to improve our understanding of the shared genetic mech-
anisms and signaling pathways underlying immune and skeletal diseases.
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1. INTRODUCTION
Bone  formation  and  bone  resorption  are  dynamic  pro-

cesses occurring in bone at all times, and its imbalance con-
tributes  to  bone  metabolic  disorders,  such  as  osteoporosis
(OP) [1]. The immune system is one of the major systems in
determining the balance of bone turnover [1]. The concept
of  osteoimmunology  has  recently  been  proposed  to  sum-
marize  novel  insights  into  functional  interdependence  be-
tween immune and skeletal systems at the anatomical, vascu-
lar, cellular, and molecular levels [2]. It is well established
that bone and adaptive immune systems appear at the same
stage of vertebrate evolution [3]. This phenomenon suggest-
ed that  the  immune system is  required for  bone during its
evolution and vice versa.
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Immune and skeletal systems physiologically and patho-
logically interact with each other. The important role of the
immune system in multiple bone disease pathologies, such
as OP, osteoarthritis (OA), and rheumatoid arthritis (RA), is
now  well  established.  Osteoporosis  is  a  disorder  of  de-
creased  bone  mass,  microarchitectural  deterioration,  and
fragility  fractures  (F)  [4].  OP  is  a  prevalent  inflammatory
bone loss condition in elderly people. RA is a typical chron-
ic inflammatory joint disease characterized by persistent in-
flammation  in  multiple  joints,  progressive  bone  erosions,
and  loss  of  function.  The  formation  of  bone  erosions  and
structural damage in inflamed joints in RA were partially at-
tributed to osteoclasts, which were generally regarded as the
dominant  source  of  both  receptor  activators  of  NF-κB
(RANK) ligand (RANKL) and osteoprotegerin (OPG) [5].
The RANKL to OPG ratio is a key determinant of osteoclast
differentiation and bone resorption. Psoriasis (PsO) was asso-
ciated with higher rates of pathological fractures, particular-
ly of the vertebrae, pelvis, femur, tibia, and fibula [6, 7]. Pre-
vious studies also reported that skeletal muscle was a potent
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regulator of immune system function [8]. The immune sys-
tem has been reported as a contributor to sarcopenia (SP),
which is a syndrome of low muscle mass with low muscle
strength and/or low physical performance.

Immune  and  skeletal  systems  are  strongly  interlinked
through a quantity of shared regulatory factors, including cy-
tokines, chemokines, transcription factors, and receptors [3].
Although previous findings have broadened our understand-
ing of the interplay between these two systems, the shared
molecular mechanism and signaling pathways between im-
mune  and  skeletal  diseases  are  still  much  less  explored.
Pleiotropy is a phenomenon in one gene that affects multiple
phenotypes,  leading  to  genetic  correlation  among  pheno-
types  [9].  Identifying  potential  pleiotropic  genes  among
phenotypes can help investigate the overlapping etiology of
multiple diseases. The genome-wide association study (G-
WAS)-derived summary statistic data can be utilized to iden-
tify the shared genes for immune and skeletal diseases with
canonical  correlation  analysis  (metaCCA)  framework,
which was able to test the association between all SNPs lo-
cated at the same gene and multiple phenotypes [10]. This
method incorporates the GWAS summary statistics, linkage
disequilibrium (LD) structure, and phenotypic correlations
between phenotypes to enhance the statistical power for iden-
tifying  novel  genetic  associations  [11].  MetaCCA extends
the statistical technique of canonical correlation analysis to
the  setting  where  original  individual-level  records  are  not
available and employs a covariance shrinkage algorithm to
achieve robustness [10].

This study adopted the metaCCA method to assess the
overlapping genetic correlation among two immune diseases
(RA and PsO), four bone skeletal disorders (OP, OA, F, and
SP), and all of these six diseases using the GWAS summary
statistics data, respectively. The versatile Gene-based Associ-
ation Study (VEGAS2) approach was further applied to vali-
date the putative pleiotropic genes identified by metaCCA.
Our findings may provide clues for understanding the shared
pathogenesis of immune and skeletal systems and may serve
as a reference for further genetic research or drug develop-
ment.

2. MATERIALS AND METHODS

2.1. GWAS Datasets
The  summary  statistics  of  six  GWAS  datasets  were

downloaded  from  GWAS  Catalog  (available  at  http-
s://www.ebi.ac.uk/gwas/). The RA GWAS dataset compris-
ing of ~10 million SNPs is derived from a GWAS meta-anal-
ysis with 14,361 cases and 43,923 controls of European sub-
jects [12]. The dataset for OA GWAS included ~16 million
SNPs  and  was  downloaded  from  UK  Biobank  involving
32,970 European subjects [13]. The PsO GWAS summary
data were obtained from a meta-analysis with 10,588 cases
and 22,806 controls of European subjects [14]. The FNK-B-
MD  dataset  contained  the  association  results  for  approxi-
mately 10 million SNPs and were obtained from a GWAS
meta-analysis with 32,965 European subjects published by

the Genetic Factors for Osteoporosis (GEFOS) Consortium
[15].  The summary statistics for  fracture (F) included ~13
million SNPs and were based on a GWAS from a European
cohort consisting of 53,184 cases and 373,611 controls [16].
Many fracture sites were included but not limited to ankle,
leg, hip, spine, and arm. The SP-related traits (appendicular
lean body mass) GWAS dataset was estimated in 28,330 Eu-
ropean subjects from a subset of 15 cohorts, containing sum-
mary statistics of more than 2.3 million SNPs [17]. Basic in-
formation for the GWAS studies was summarized in Table
S1.

2.2. Data Preparation
The SNPs in the six summary statistics were pruned be-

fore multivariate analysis using the genotype data from the
1000 Genomes project as a reference [18]. Briefly, six da-
tasets  were  combined  to  select  overlapping  SNP;  then,  an
LD-based algorithm was adopted to prune SNPs with high
pairwise correlations. Default values of the PLINK 1.9 soft-
ware (50, 5, and 0.2) were set as parameters when calculat-
ing LD values (r2) between each SNP pair. The LD was cal-
culated for windows that contained 50 SNPs. The SNP with
a lower frequency of the minor allele was excluded for each
pair with r2> 0.2. The calculation window was then shifted
forward by 5 SNPs. Then the above process was repeated un-
til each SNP pair was in low LD.

The SNPs were annotated to their corresponding genes
using  the  Genome  Reference  Consortium  Human  genome
build  37  (GRCh37)  (available  at  https://www.gencodege-
nes.org/human/releases.html.),  which  contained  32,801
genes. An SNP was mapped to a certain gene when it was lo-
cated between the transcription starting and ending point of
that gene [11].

The regression coefficient β and corresponding standard
error (SE) of each SNP originatingin GWAS summary statis-
tics of the six different phenotypes were obtained. The re-
gression coefficient β was normalized according to:

(1)

where SEgp  is the standard error of βgp,  as given by the
original  GWAS result,  g  is  the  number  of  genotypic  vari-
ables, p is the number of phenotypic variables, and N is the
sample number of each trait.

2.3. MetaCCA Analysis
MetaCCA analysis was performed to identify the puta-

tive  pleiotropic  genes  among the six  phenotypes.  Detailed
principles and formulas of this approach were described else-
where [10]. Conducting metaCCA analysis requires a cross-
covariance  matrix  between  all  genotypic  SNPs  (ƩXX),  a
phenotypic correlation structure between phenotypes (ƩYY),
and the GWAS summary statistics (ƩXY). The full covariance
matrix (Ʃ) can be calculated according to:
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(2)

The full covariance matrix (Ʃ) was applied to obtain the
final  genotype-phenotype  association  results,  which  con-
tained a significant test for each gene in the identified canon-
ical correlation. The p-value was adjusted using the Bonfer-
roni  approach.  An adjusted p-value < 0.05 was defined as
the  cutoff  value  for  significant  correlation.  The  metaCCA
test was based on the script of the R package “metaCCA”.

2.4.  Versatile  Gene-based  Association  Study  (VEGAS)
Approach

Gene-based  association  analysis  was  performed  using
the Versatile Gene-based Association Study-2 (VEGAS-2)
method to refine and validate the pleiotropic genes identi-
fied by metaCCA. VEGAS-2 is a gene-based approach that
assesses the correlation between a phenotype and multiple
SNPs within a gene and accounts for linkage disequilibrium
between  those  SNPs  to  estimate  the  association  between
each  SNP  and  each  phenotype  individually  [19].  This
method has shown higher sensitivity and lower false-posi-
tive rates compared to other gene-based approaches. Gene
with a correlation p-value < 1.56E-5 (=0.05/3,209) was signi-
ficantly correlated with the diseases in the VEGA-2 analy-
sis.

2.5. Functional Annotation
For the pleiotropic genes validated by VEGAS-2, we per-

formed  Gene  Ontology  (GO)  and  Kyoto  Encyclopedia  of
Genes and Genomes (KEEG) pathway analysis using online
tool  DAVID  (available  at  http://david.abcc.ncifcrf.gov/).
The  GO  analysis  contained  biological  processes,  cellular
components,  and molecular function. Multiple testing cor-
rected by FDR with a significant threshold at 0.05 was em-
ployed to assess the degree of enrichment in each GO term
or KEGG pathway.

Protein-protein interaction (PPI) analysis for the genes
of interest was performed using the online tool STRING (a-
vailable at https://string-db.org/).

3. RESULTS

3.1. Potential Pleiotropic Genes Identified by metaCCA
Analysis

3.1.1. Potential Pleiotropic Genes for Six Diseases
To investigate the overlapping genetic genes shared by

the six diseases, we applied metaCCA analysis using GWAS
summary  statistics  data.  After  gene  annotation  and  SNP
pruning, 17,284 SNPs located in 5,145 genes were used in
metaCCA analysis.  The  genes  with  correlation  p-values  <
9.72E-6  (=  0.05/5,145)  were  significantly  correlated  with
the six diseases. About 77 potential pleiotropic genes were
significantly associated with multiple diseases (p < 9.72E-6)
(Table  1).  The  canonical  correlation  r  between  potential
pleiotropic  genes  and  diseases  ranged  from  0.0363  to

0.3567. Specifically, among the 77 genes we identified, 57
were from chromosome 6.

3.1.2.  Potential  Pleiotropic  Genes  for  Two  Immune  Dis-
eases

MetaCCA analysis found the pleiotropic effects shared
by two immune diseases (RA and PsO). After gene annota-
tion and SNP pruning, 19,290 SNPs located in 6,103 genes
were used in metaCCA analysis. The genes with correlation
p-values < 8.19E-6 (=0.05/6,103) were significantly correlat-
ed with the two autoimmune diseases. A total of 157 genes
with significant threshold (p < 8.19E-6) were identified as
putative pleiotropic genes (Table S2). The canonical correla-
tion  r  between  potential  pleiotropic  genes  and  diseases
ranged  from  0.0302  to  0.4769.

3.1.3.  Potential  Pleiotropic  Genes  for  Four Skeletal  Dis-
eases

MetaCCA analysis was performed to identify potential
pleiotropic genes for four skeletal traits (OP, OA, SP, and
F). After gene annotation and SNP pruning, 67,362 SNPs lo-
cated in 12,834 genes remained for metaCCA analysis. The
genes  with  a  significant  threshold  (p-values  <  3.90E-6
(=0.05/12,833))  were  identified  as  potential  pleiotropic
genes for the four skeletal diseases. We identified 319 puta-
tive pleiotropic genes that were significantly associated with
multiple diseases (p < 3.90E-6) (Table S3).  The canonical
correlation r between potential pleiotropic gene and pheno-
type ranged from 0.0438 to 0.9455. These pleiotropic genes
were located dispersedly at all human chromosomes.

3.2.  Potential  Pleiotropic  Genes  Validated  by  VEGAS
Analysis

We refined and validated the 77 pleiotropic genes associ-
ated  with  all  six  diseases  to  investigate  their  associations
with  specific  phenotypes  using  VEGAS-2 analysis.  About
24, 102, 4, and 3 significant genes were identified for PsO,
RA, OP, and F with p-values < 1.56E-5 (adjusted p < 0.05),
respectively (Table S4). Notably, we found that 19 putative
pleiotropic genes identified in the metaCCA analysis were
associated with at least one disease in the VEGAS-2 analy-
sis. We identified 4 genes (SLC44A4, HLA-DOB, TAP2, C2)
associated  with  PsO,  18  (PLCL2,  DAP,  COG6,  ARID5B,
IRF5, SLC44A4, CCR6, UQCC2, MAGI3, DCLRE1B, SYN-
GAP1,  AFF3,  RSBN1,  HLA-DOA,  HLA-DOB,  ANKRD55,
TAP2, C2) genes for RA, one (CCDC170) gene for OP and
one  (CCDC170)  gene  for  F  (Table  2).  Four  (SLC44A4,
HLA-DOB, TAP2, C2) genes identified by metaCCA analy-
sis were associated with both PsO and RA.

In particular, 14 of these 19 potential pleiotropic genes
(PLCL2, COG6, ARID5B, IRF5, CCDC170, CCR6, MAGI3,
AFF3,  RSBN1,  HLA-DOA,  HLA-DOB,  ANKRD55,  TAP2,
and C2) were previously reported to be associated with more
than one of these six diseases in published studies. Among
the  14  confirmed  pleiotropic  genes,  CCR6  was  associated
with  OP,  RA,  PsO,  and  OA  in  previous  studies,  3  genes
(IRF5, TAP2, and C2)  were  reported to  be associated  with
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Table 1. Potential pleiotropic genes identified by metaCCA analysis for six traits.

Pleiotropic Gene Chrom Position Correlation Coefficient (r) p-value
HLA-B 6 31237268-31324965 0.2521 0
TSBP1 6 32256303-32339689 0.3058 0

TSBP1-AS1 6 32222417-32375540 0.3568 0
HLA-DQA1 6 32595956-32614839 0.1728 4.3193E-165
LINC02571 6 31261685-31269419 0.1733 2.1443E-163
ABHD16A 6 31654732-31671133 0.1525 1.891E-127

C2 6 31865562-31913449 0.1483 3.4572E-120
TAP2 6 32789610-32806547 0.1462 2.6041E-109

MUC22 6 30978251-31003179 0.1414 1.7153E-104
SFTA2 6 30899130-30923413 0.1247 4.6514E-74

ANKRD55 5 55395507-55529157 0.1359 2.27576E-67
HLA-DOB 6 32780540-32788243 0.1149 1.31164E-66

STK19 6 31938868-31950598 0.1044 7.52326E-58
BTNL2 6 32361740-32374905 0.1041 1.54063E-57

HLA-DOA 6 32971959-32977368 0.1052 2.79825E-55
HCG20 6 30711567-30760027 0.1062 1.01891E-51

COL11A2P1 6 33071571-33075107 0.0982 5.90187E-51
LINC00243 6 30766431-30798436 0.1018 8.0991E-49
HIPK1-AS1 1 114466622-114472117 0.0950 1.77439E-47

TRIM31 6 30070674-30080867 0.0908 6.15542E-45
TRIM31-AS1 6 30073017-30082501 0.0939 1.69435E-44

MICA 6 31367561-31383092 0.0864 7.76903E-39
TRIM39 6 30294256-30311506 0.0868 1.64094E-37
TCF19 6 31126324-31134936 0.0836 5.11349E-35
ATAT1 6 30594619-30614600 0.0821 6.96222E-35
OR5V1 6 29321526-29399744 0.0884 1.44978E-34

HLA-DMA 6 32916390-32936871 0.0786 1.72345E-34
RSBN1 1 114304454-114355098 0.0891 3.54109E-34
DRAIC 15 69755260-70135459 0.0948 1.475E-32
MUCL3 6 30902300-30921998 0.0787 1.0258E-29
TMPOP1 6 30434229-30435771 0.0759 1.53914E-29
HCG17 6 30201816-30293911 0.0837 3.28028E-29

HLA-DPA2 6 33059530-33065072 0.0719 2.92774E-26
AFF3 2 100161881-100808890 0.0903 7.18191E-25

HLA-P 6 29768192-29770202 0.0680 2.37849E-23
HCG18 6 30254467-30295159 0.0734 3.87231E-22

HLA-F-AS1 6 29694378-29716826 0.0662 7.19657E-22
TNXB 6 32008930-32083111 0.0644 1.22398E-21

NOTCH4 6 32162620-32191844 0.0656 1.39385E-21
GABBR1 6 29523406-29601753 0.0626 1.73259E-21
PFDN6 6 33257079-33266178 0.0652 2.72822E-21
PRKCQ 10 6469105-6622263 0.0868 1.28076E-20

SYNGAP1 6 33387438-33421466 0.0616 7.38002E-19
HLA-DPA3 6 33098993-33111102 0.0606 3.61826E-18
DCLRE1B 1 114447835-114456708 0.0636 7.51786E-18

MAGI3 1 113933137-114228545 0.0706 1.91163E-16
HCP5 6 31430947-31446713 0.0560 4.46803E-15

ZBED9 6 28538312-28583989 0.0553 6.47681E-15
OLFML3 1 114522013-114578194 0.0575 3.99471E-14
HLA-F 6 29690552-29706305 0.0526 2.29311E-13

(Table 1) contd....
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Pleiotropic Gene Chrom Position Correlation Coefficient (r) p-value
HLA-DMB 6 32902406-32908805 0.0567 6.4457E-13

OR2I1P 6 29518184-29525498 0.0502 4.40528E-12
LINC01016 6 33835283-33864691 0.0575 6.67504E-12

MICD 6 29938578-29940241 0.0482 4.73015E-11
ANK3 10 61786056-62493248 0.0702 3.48439E-10

UQCC2 6 33662070-33679504 0.0458 7.77029E-10
PRRC2A 6 31588492-31605548 0.0455 1.0046E-09

CCR6 6 167525295-167553184 0.0493 1.96115E-09
LINC02829 6 29465252-29478335 0.0402 2.23724E-09

OR10C1 6 29407083-29408754 0.0445 3.1145E-09
SLC44A4 6 31830969-31846823 0.0440 5.16113E-09
CCDC170 6 151815152-151942328 0.0478 8.7594E-09

IRF5 7 128577511-128590092 0.0425 2.47913E-08
OR11A1 6 29393281-29424848 0.0449 3.14789E-08
ARID5B 10 63661443-63856703 0.0469 3.39802E-08

MICE 6 29709508-29716746 0.0408 1.30454E-07
COG6 13 40229764-40365802 0.0402 2.32812E-07

ABCF1 6 30539170-30564956 0.0400 2.72518E-07
IL2RA 10 6052652-6104333 0.0498 1.66699E-06
DAP 5 10679342-10761346 0.0420 2.25497E-06

LINC00824 8 129417515-129576925 0.0534 2.43457E-06
MFSD4B 6 111580530-111766557 0.0392 2.97114E-06
PLCL2 3 16844159-17132096 0.0373 3.14587E-06
FAM3C 7 120988932-121036418 0.0368 4.67958E-06

TRIM26BP 6 30206078-30210056 0.0365 5.93577E-06
ERBB3 12 56470583-56497289 0.0363 6.98855E-06
PTPRC 1 198607587-198726605 0.0428 9.58622E-06

Note: “0”: p-value <1E-300.

Table 2. Potential pleiotropic genes identified by both metaCCA analysis and VEGAS2 analysis for six traits.

Gene p.meta p.f p.oa p.pso p.ra p.sp p.op
PLCL2 3.15E-06 6.63E-01 3.78E-01 7.59E-02 1.00E-06 8.89E-02 8.51E-01

DAP 2.25E-06 4.80E-01 6.72E-01 2.72E-01 1.00E-06 9.89E-02 6.24E-01
COG6 2.33E-07 4.52E-02 9.55E-01 6.84E-01 1.00E-06 4.00E-01 3.74E-01

ARID5B 3.40E-08 2.86E-01 4.06E-01 2.10E-01 1.00E-06 9.30E-01 5.17E-01
IRF5 2.48E-08 1.44E-02 4.86E-01 5.10E-02 1.00E-06 5.38E-01 3.56E-01

CCDC170 8.76E-09 1.00E-06 9.87E-01 2.38E-01 7.96E-01 7.84E-01 1.00E-06
SLC44A4 5.16E-09 6.77E-01 5.22E-01 1.00E-06 1.00E-06 5.98E-01 2.88E-03

CCR6 1.96E-09 4.35E-02 7.30E-01 7.52E-01 1.00E-06 3.95E-02 2.38E-01
UQCC2 7.77E-10 5.12E-01 4.12E-01 6.36E-03 1.00E-06 8.48E-01 2.54E-02
MAGI3 1.91E-16 5.85E-02 8.26E-01 9.97E-01 1.00E-06 4.18E-01 7.49E-02

DCLRE1B 7.52E-18 4.87E-01 6.22E-01 9.42E-01 1.00E-06 6.83E-01 2.89E-02
SYNGAP1 7.38E-19 8.26E-01 1.44E-01 7.84E-01 1.00E-06 4.60E-01 6.54E-01

AFF3 7.18E-25 7.46E-01 5.12E-01 3.35E-03 2.00E-06 5.79E-01 1.86E-01
RSBN1 3.54E-34 1.79E-01 1.00E+00 9.45E-01 1.00E-06 3.10E-01 6.27E-02

HLA-DOA 2.80E-55 9.13E-01 3.72E-01 2.22E-03 1.00E-06 5.96E-01 2.12E-01
HLA-DOB 1.31E-66 1.56E-01 6.16E-01 1.00E-06 1.00E-06 2.05E-01 9.83E-01
ANKRD55 2.28E-67 6.29E-01 5.50E-01 2.71E-01 1.00E-06 6.08E-01 8.45E-01

TAP2 2.60E-109 1.19E-01 5.89E-01 1.00E-06 1.00E-06 6.96E-01 7.53E-01
C2 3.46E-120 5.97E-01 3.19E-01 1.00E-06 1.00E-06 2.68E-01 1.40E-03

Note: Bold numbers indicate a significant adjusted p-value (p < 0.05) for the VEGAS2 test, and the bold text indicates genes related to more than one trait in the VEGAS2 test.
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Table 3. GO terms enriched by pleiotropic genes.

Gene Ontology ID: Term Genes FDR
Biological process

GO: 0002504 Antigen processing and presentation of peptide or polysaccharide anti-
gen via MHC class II

HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-
DQA1 4.44E-05

GO: 0006955 Immune response HLA-DMA, HLA-DMB, IL2RA, HLA-B, CCR6, HLA-DOA,
HLA-F, HLA-DOB, HLA-DQA1 3.73E-03

GO: 0060333 Interferon-gamma-mediated signaling pathway HLA-B, IRF5, TRIM31, HLA-F, HLA-DQA1 5.39E-03
GO: 0019886 Antigen processing and presentation of exogenous peptide antigen

via MHC class II
HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-

DQA1 1.11E-02

GO: 0019882 Antigen processing and presentation HLA-DMB, HLA-B, MICA, HLA-DQA1 3.38E-02
GO: 0042102 Positive regulation of T cell proliferation HLA-DMB, PTPRC, PRKCQ, BTNL2 3.64E-02

Cellular component

GO:0042613 MHC class II protein complex HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-
DQA1 3.00E-05

GO:0009986 Cell surface HLA-DMA, PTPRC, NOTCH4, HLA-B, ANK3, CCR6, HLA-
F, MICA 2.65E-02

Molecular function
GO: 0032395 MHC class II receptor activity HLA-DMA, HLA-DOA, HLA-DOB, HLA-DQA1 5.22E-04

GO: 0023026 MHC class II protein complex binding HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB 5.22E-04

Table 4. KEGG pathways enriched by pleiotropic genes.

Term Genes FDR
hsa05332 Graft-versus-host disease HLA-DMA, HLA-DMB, HLA-B, HLA-DOA, HLA-F, HLA-DOB, HLA-DQA1 4.01E-08

hsa05330 Allograft rejection HLA-DMA, HLA-DMB, HLA-B, HLA-DOA, HLA-F, HLA-DOB, HLA-DQA1 4.17E-08
hsa04940 Type I diabetes mellitus HLA-DMA, HLA-DMB, HLA-B, HLA-DOA, HLA-F, HLA-DOB, HLA-DQA1 4.74E-08

hsa04612 Antigen processing and presentation HLA-DMA, HLA-DMB, HLA-B, TAP2, HLA-DOA, HLA-F, HLA-DOB, HLA-DQA1 4.74E-08
hsa05320 Autoimmune thyroid disease HLA-DMA, HLA-DMB, HLA-B, HLA-DOA, HLA-F, HLA-DOB, HLA-DQA1 1.41E-07

hsa05416 Viral myocarditis HLA-DMA, HLA-DMB, HLA-B, HLA-DOA, HLA-F, HLA-DOB, HLA-DQA1 2.08E-07
hsa04514 Cell adhesion molecules (CAMs) HLA-DMA, HLA-DMB, PTPRC, HLA-B, HLA-DOA, HLA-F, HLA-DOB, HLA-DQA1 2.13E-06

hsa04145 Phagosome HLA-DMA, HLA-DMB, HLA-B, TAP2, HLA-DOA, HLA-F, HLA-DOB, HLA-DQA1 2.71E-06
hsa05150 Staphylococcus aureus infection HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DQA1, C2 4.37E-06

hsa05168 Herpes simplex infection HLA-DMA, HLA-DMB, HLA-B, TAP2, HLA-DOA, HLA-F, HLA-DOB, HLA-DQA1 8.33E-06
hsa05310 Asthma HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DQA1 1.12E-05

hsa05166 HTLV-I infection HLA-DMA, HLA-DMB, IL2RA, HLA-B, HLA-DOA, HLA-F, HLA-DOB, HLA-DQA1 5.94E-05
hsa04672 Intestinal immune network for IgA produc-

tion HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DQA1 5.94E-05

hsa05321 Inflammatory bowel disease (IBD) HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DQA1 1.89E-04
hsa05322 Systemic lupus erythematosus HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DQA1, C2 2.30E-04

hsa05140 Leishmaniasis HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DQA1 2.49E-04
hsa05323 Rheumatoid arthritis HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DQA1 5.40E-04

hsa05145 Toxoplasmosis HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DQA1 0.001199
hsa05164 Influenza A HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DQA1 0.006251
hsa05152 Tuberculosis HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DQA1 0.006318

RA, PsO and OA, 3 genes (PLCL2, COG6, and AFF3) were
associated with PsO and OA, CCDC170 was associated with
OP  and  F,  and  6  genes  (ARID5B,  MAGI3,  RSBN1,  HLA-
DOA, HLA-DOB, and ANKRD55) were associated with RA.

3.3. Functional Annotation
GO enrichment analysis for the 77 putative pleiotropic

genes  identified  by  metaCCA  indicated  that  these  genes
were significantly enriched in biological processes related to

“immune response” (GO: 0006955, FDR=3.73E-3), “inter-
feron-gamma-mediated signaling pathway” (GO: 0060333,
FDR=5.39E-3), “antigen processing and presentation of pep-
tide  or  polysaccharide  antigen  via  MHC  class  II”  (GO:
0002504, FDR=4.44E-5), “antigen processing and presenta-
tion of exogenous peptide antigen via MHC class II” (GO:
0019886, FDR=1.11E-2), “antigen processing and presenta-
tion”  (GO:  0019882,  FDR=3.38E-2)  and  “positive  regula-
tion of T cell proliferation” (GO: 0042102, FDR=3.64E-2).
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Fig. (1). PPI network of 77 putative pleiotropic genes.
Notes: The nodes represent pleiotropic genes-encoded protein(s).
Node content: empty nodes mean unknown 3D structure.
Edges: different colors of edges represent various types of associations (interaction). (A higher resolution / colour version of this figure is
available in the electronic copy of the article).

Cellular components enriched by putative pleiotropic genes
included  “MHC class  II  protein  complex”  (GO:  0042613,
FDR=3.00E-5) and “cell surface” (GO: 0009986, 2.65E-2).
Molecular functions significantly enriched by these genes in-
cluded  “MHC  class  II  receptor  activity”  (GO:  0032395,
FDR=5.22E-4) and “MHC class II protein complex binding”
(GO: 0023026, FDR=5.22E-4) (Table 3).

KEGG pathway analysis showed that the 77 pleiotropic
genes were mainly enriched in pathways related to autoim-
mune/auto-inflammatory diseases and infection (Table 4).

The complex protein-protein interaction network, consti-
tuted by the above 77 putative pleiotropic genes, highlighted
a  network  containing  31  genes  (Fig.  1).  Among  these  31
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genes, eleven genes (BTNL2, HLA-DMB, HLA-DQA1, HLA-
DMA, HLA-DOA, HLA-DOB, TAP2, HLA-B, HLA-F, IRF5,
and TRIM31) constructed a very complex network.

4. DISCUSSION
The present study performed multivariable analytical me-

taCCA by combining six available independent GWAS sum-
mary statistics datasets to identify the genes shared by im-
mune and skeletal diseases. To refine and confirm the genes
identified in metaCCA analysis, the gene-based VEGAS-2
analysis was conducted for these six diseases, respectively.
We identified 77 potential pleiotropic genes in the metaCCA
analysis. Among these putative pleiotropic genes, 19 were
associated with at least one disease in the VEGAS-2 analy-
sis. In particular, 14 of these 19 potential pleiotropic genes
were  previously  reported  to  be  associated  with  more  than
one of these six diseases. By trimming the multiple testing
burden at the initial filtering step, the metaCCA approach al-
lows for the detection of more phenotype-related loci than
what would be identified by VEGAS-2 alone. The identifica-
tion of putative pleiotropic genes and the associated biologi-
cal  pathways  may  provide  a  better  understanding  of  the
shared genetic  factors  involved in the development of  im-
mune and skeletal diseases.

Among  the  19  confirmed  pleiotropic  genes,  18  genes
(PLCL2,  DAP,  COG6,  ARID5B,  IRF5,  SLC44A4,  CCR6,
UQCC2,  MAGI3,  DCLRE1B,  SYNGAP1,  AFF3,  RSBN1,
HLA-DOA, HLA-DOB, ANKRD55, TAP2, C2) were associat-
ed with RA in the VEGAS-2 analysis. Notably, 13 of these
genes were involved in the pathogenesis of RA in previous
studies.  Several  genes,  such  as  PLCL2,  COG6,  RIF5,
ARID5B, and CCR6, were reported to be the susceptibility lo-
ci for RA [20-22]. Chemokine (C-C motif) receptor 6 gene
(CCR6)  encodes  an  important  protein  that  is  expressed  in
memory T-cells and immature dendritic cells and plays a crit-
ical  role  in  B-cell  maturation  and  differentiation  [23].  A
variant of the CCR6 rs3093024 variant was significantly as-
sociated with RA-risk both in a Pakistani and Chinese popu-
lation [24]. Univariate SNP-multivariate phenotype analysis
in the MetaCCA method indicated that rs3093026 was signif-
icantly associated with the six diseases (p=5.91E-08) (Table
S5). Interestingly, the SNPs rs3093024 and rs3093026 were
in strong LD (r2=0.7). This is probably because the real asso-
ciated SNP was removed during the process of data prepara-
tion  using  an  LD-based  pruning  method,  which  was  per-
formed to remove one SNP of pairs with an R2 value greater
than  0.2.  Removing  the  real  associated  SNPs  in  the  LD-
based  pruning  method  may  also  prevent  the  pleiotropic
genes that are truly associated with multiple diseases from
being detected. We noticed that cytokines such as RANKL
and TNF-α, which play an important  role both in immune
and skeletal systems, were insignificantly associated with th-
ese six diseases in the metaCCA analysis. This may also re-
sult from the absence of SNPs in the gene region. As expect-
ed, there was no SNP mapped to the gene regions of RAN-
KL and TNF-α.

As a chemokine receptor, CCR6 is not only the suscepti-
bility gene for RA, through binding to a specific chemokine,

CCL20, to exert its function on the maturation, differentia-
tion, and migration of immune cells, but also plays an impor-
tant role in the pathogenesis of OA, PsO and OP [23]. The
CCL20-CCR6 axis is upregulated in the lesional skin of hu-
man  psoriasis,  and  psoriasiform  dermatitis  can  be  sup-
pressed by blocking this axis using a specific antibody [25].
In addition, CCL20 chemokine could induce osteoclast dif-
ferentiation. Previous studies demonstrated that the expres-
sion  of  RANK  on  CD14+  cells  was  positively  correlated
with that of CCR6. Monocytes expressing both RANK and
CCR6 differentiate into osteoclasts [26]. The above findings
may  help  drive  force  for  understanding  the  osteoimmune
axis.

Of the 77 putative pleiotropic genes identified by the me-
taCCA approach,  several  (HLA-B,  HLA-DMA,  HLA-DMB,
HLA-DOA,  HLA-DOB,  HLA-DPA2,  HLA-DPA3,  HLA-
DQA1, HLA-F, C2, TAP2) were HLA genes, which played a
critical  role in the processing and presentation of antigens
[27]. It has been well established that the HLA region was
strongly associated with autoimmune disease (AID). For ins-
tance, the association of components of the HLA class II -en-
coded HLA-DRB1-DQA1-DQB1 haplotype has been deter-
mined with several AIDs such as RA. Molecules encoded by
this region play a key role in exogenous antigen presentation
to CD4+ Th cells, indicating the importance of this pathway
in AID initiation and progression. However, the association
between the HLA genes and skeletal diseases has been poor-
ly studied. A previous study aimed to investigate the relation-
ships between polymorphisms of the HLA-B gene and post-
menopausal osteoporosis showed that the frequency of the
HLA-B* 3501 allele was significantly higher in postmeno-
pausal  osteoporosis  patients  than in the control  group in a
Chinese Han population and likely an important risk factor
for  postmenopausal  osteoporosis  [28].  Our  results  hinted
that HLA genes' role in skeletal diseases might not be adequ-
ately explored.

GO  analyses  suggested  that  the  identified  putative
pleiotropic genes for two immune diseases were significant-
ly enriched in biological processes related to “positive regu-
lation  of  T  cell  proliferation”  (GO:  0042102,
FDR=2.51E-2),  “immune  response”  (GO:  0006955,
FDR=2.51E-2), “interferon-gamma-mediated signaling path-
way” (GO: 0060333, FDR=2.51E-2) and “antigen process-
ing  and  presentation  of  peptide  or  polysaccharide  antigen
via  MHC  class  II”  (GO:  0002504,  FDR=3.33E-2).  These
processes were reported to be associated with inflammatory
autoimmune disorders. It suggested that the result of metaC-
CA  should  be  reliable  and  reasonable.  The  metaCCA
method is an effective technique to systematically and com-
prehensively identify pleiotropic genes associated with multi-
ple complex diseases. By leveraging large GWAS summary
statistics of six diseases, the metaCCA approach could in-
crease the sample size and statistical power of the study com-
pared to the univariate GWAS analysis based on a cross-sec-
tional population [10]. However, the proportions of variabili-
ty could not be assessed due to no such data being available.
Additionally,  biological  experimental  verification  of  these
pleiotropic genes identified in this study is required.
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CONCLUSION
In summary, by applying metaCCA and VEGAS2 meth-

ods, we identified several putative pleiotropic genes associat-
ed with two immune diseases (e.g., RA and PsO) four skele-
tal disorders (e.g., OP, OA, F, and SP), and all of these six
diseases by using GWAS summary statistics data, respective-
ly. These findings may provide a novel molecular basis for
understanding the  interaction  of  the  pathogenesis  between
immune diseases and skeletal diseases.
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