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Deep Learning-based Noise Reduction for Fast Volume  
Diffusion Tensor Imaging: Assessing the Noise Reduction  

Effect and Reliability of Diffusion Metrics

Hajime Sagawa1, Yasutaka Fushimi2,*, Satoshi Nakajima2, Koji Fujimoto2,  
Kanae Kawai Miyake3, Hitomi Numamoto3, Koji Koizumi1, Masahito Nambu4,  

Hiroharu Kataoka5, Yuji Nakamoto2, and Tsuneo Saga3

To assess the feasibility of a denoising approach with deep learning-based reconstruction (dDLR) for fast 
volume simultaneous multi-slice diffusion tensor imaging of the brain, noise reduction effects and the reli-
ability of diffusion metrics were evaluated with 20 patients. Image noise was significantly decreased with 
dDLR. Although fractional anisotropy (FA) of deep gray matter was overestimated when the number of 
image acquisitions was one (NAQ1), FA in NAQ1 with dDLR became closer to that in NAQ5.
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TECHNICAL NOTE

information such as fractional anisotropy (FA) and the 
direction of diffusion.

Generally, DTI requires a long scan time because of  
the measurement in at least 6 noncollinear directions. Scan 
time is further extended by increasing the number of diffu-
sion encodings. In addition, high-resolution DWI, such as 
isotropic imaging (i.e., thinner slice thickness with increased 
number of slices) suffers from a prolonged TR and low 
SNR, which necessitates a long acquisition time.2 Recently, 
simultaneous multi-slice (SMS) imaging, a technique to 
excite multiple slices with a single RF pulse, has enabled 
the acquisition of several slices simultaneously3 and can 
considerably shorten acquisition times for DTI. Decreases 
in SNR can be recovered by various techniques, from simply 
averaging repeated scans to a more sophisticated model-
based reconstructions.4

Recently, as an alternative approach to reduced SNR in 
the MRI, deep learning approaches for image noise reduction 
have been reported. Kidoh et al.5 presented the performance 
of a denoising approach with deep learning-based recon-
struction (dDLR), which reduced image noise while pre-
serving image quality for brain MR images. However, few 
reports to date have investigated the impact of the deep 
learning technique on DWI or DTI.6,7 We have optimized the 
fast volume SMS-DTI with the number of image acquisitions 
(NAQ) set at one (NAQ1) and a scan time of about 1 min, 
and we applied clinically available dDLR for SMS-DTI 
(dDLR-NAQ1). In the present study, using scan data with 5 
averages as a reference, the feasibility and accuracy of fast 
SMS-DTI with dDLR for the brain were evaluated.

Introduction
Diffusion-weighted imaging (DWI) is widely used in clin-
ical MRI. DWI provides information on tissue microstruc-
ture based on measuring the principal random motion of 
water molecules. With its unique capability to characterize 
water mobility through tissues, DWI can help to detect 
subtle lesions, characterize tissue properties, refine the 
accuracy of diagnosis, and monitor the course of diseases 
over time. Diffusion tensor imaging (DTI) is based on 
measuring the diffusion of water molecules along 6 or more 
gradient directions.1 By characterizing the preferential 
direction of water diffusion, DTI can provide voxel-wise 
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Materials and Methods
Subjects
The present prospective study was approved by the Institu-
tional Review Board and was registered to the UMIN Clin-
ical Trials Registry as UMIN000036700. This study was 
performed in accordance with the ethical standards of the 
Declaration of Helsinki (as revised in Fortaleza, Brazil, 
October 2013). Adult patients who underwent clinical MRI 
of the brain between October and December 2019 were 
enrolled. All patients provided written informed consent to 
participate in this study. Patients were excluded when MRI 
showed poor image quality due to body movement during 
MRI data acquisition.

MRI acquisition
All scans were performed on a 3T whole-body scanner  
(Vantage Galan 3T / ZGO; Canon Medical Systems, Tochigi, 
Japan) with a 32-channel head coil. DTI was performed 
using a single-shot spin-echo echo-planar imaging (EPI) 
sequence with 12 different gradient directions and a b-value 
of 1000 s/mm2. The acceleration factors of in-plane parallel 
imaging (SPEEDER; Canon Medical Systems) and SMS 
(Multi-band SPEEDER) were 3 and 2, respectively. Other 
scan parameters were as follows: TR, 4000 ms; TE, 61 ms; 
FOV, 220 × 220 mm2; matrix size, 128 × 160; slice thickness, 
2 mm; interslice gap, 0 mm; and bandwidth, 1302 Hz/pixel.

To evaluate the denoising effect of dDLR, we acquired 
images with a single image acquisition (NAQ1) for com-
parison data, and also acquired 5 NAQ images (NAQ5) for 
ground-truth data. Acquisition times were 1 min 5 s for 
NAQ1 and 5 min 45 s for NAQ5. The vendor-supplied 
dDLR algorithm was applied to b = 0 and 1000 s/mm2 
images acquired with NAQ1 (dDLR-NAQ1). The denoising 
level was determined at which the delineation of the basal 
ganglia and the contrast between the cerebral cortex and 
white matter on b = 1,000 images were sufficiently pre-
served. The same denoising level was applied across all 
patients.

Image analysis
ROI analysis
From DTI, isotropic DWI, apparent diffusion coefficient 
(ADC) maps and grayscale FA maps as well as color-coded 
FA maps that contain 3D information on the voxel-wise dif-
fusion orientation were obtained.

Oval ROIs were placed in the following areas: (1) the 
corpus callosum (genu, splenium); (2) deep white matter 
(frontal, parietal, occipital); (3) periventricular white 
matter (parietal, occipital); (4) deep gray matter (GM) 
(putamen); and (5) cortical GM (posterior parietal, 
occipital), as described in a previous article.8 ROIs were 
initially placed on NAQ5 images, then transferred onto 
NAQ1 and dDLR-NAQ1 images by a radiological 
technologist with 6 years of experience and approved by a 

radiologist with 21 years of experience. Mean and standard 
deviations (SDs) of signal intensity (SI) for isotropic 
DWI, mean ADC, and mean FA values in each ROI were 
measured. There were no cases in which lesions were 
included within the ROIs.

The SNR of isotropic DWI was calculated as follows:

		        SNR
SI
SD

= � (1)

Fiber-tracking analysis
Diffusion tensor tractography (DTT) of the bilateral 
pyramidal tract was performed using Ziostation 2 (Ziosoft, 
Tokyo, Japan), a 3D workstation. Seed ROIs were manually 
drawn on the anterior pontine area, target ROIs were drawn 
on the cerebral peduncle and the posterior limb of the internal 
capsule by a radiological technologist with 11 years of 
experience. Tracking was initiated at an FA value of 0.2 and 
was terminated when FA fell to < 0.2 or the angle between 
two adjacent eigenvectors was > 40°. Fiber volume (FV), a 
volume of voxels occupied by all streamlines for the pyram-
idal tract, was measured and compared among NAQ1, 
NAQ5, and dDLR-NAQ1.

Statistical analysis
All statistical analyses were performed using JMP14 soft-
ware (SAS Institute, Cary, NC, USA). Normality was exam-
ined using the Shapiro–Wilk test. Mean SI, SD, SNR of 
isotropic DWI, mean ADC, mean FA values, and FV calcu-
lated from NAQ1, NAQ5, and dDLR-NAQ1 images were 
compared using the Steel–Dwass test. All P-values were 
two-sided and values of P < 0.05 were considered statisti-
cally significant.

Correlations of mean ADC and mean FA values between 
NAQ1 and NAQ5, dDLR-NAQ1 and NAQ5 were assessed 
by determining the Spearman’s rank correlation coefficient 
(r) for nonparametric correlations.

Results
A total of 20 patients (9 men, 11 women; mean age, 66.5 ± 
12.4 years) were enrolled in this study. The purposes of  
MRI examination were: screening for brain lesions in  
4 patients, searching for brain metastasis in 5 patients, 
follow-up of brain metastasis after treatment in 3 patients, 
follow-up of benign brain tumors in 5 patients, follow-up of 
cerebral aneurysm in 2 patients, and follow-up after opera-
tion for chronic subdural hematoma in 1 patient. No active 
lesions such as growing tumors or acute infarction/bleeding 
that may have affected the present image analysis were 
detected in these 20 patients, and no patients were excluded 
from the following analyses.

Figure 1 shows representative images for isotropic DWI, 
ADC maps, and FA maps calculated from NAQ1, NAQ5, 
and dDLR-NAQ1 images.
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Fig. 1  A 45-year-old woman. Representative isotropic DWI images, ADC maps, and FA maps reconstructed from NAQ1, NAQ5, and 
dDLR-NAQ1 images. Images from NAQ1 show increased noise, particularly in deep brain regions (left). Noise in dDLR-NAQ1 images is 
significantly decreased compared to that in NAQ1 images (right). ADC, apparent diffusion coefficient; dDLR, denoising approach with 
deep learning-based reconstruction; DWI, diffusion-weighted imaging; FA, fractional anisotropy; NAQ, number of image acquisitions.

ROI analysis
No significant difference in mean signal intensity of isotropic 
DWI was seen between the 3 groups in any regions (Fig. 2). 
SD of dDLR-NAQ1 was significantly reduced in the corpus 
callosum, white matter (WM) and deep GM compared to that 
of NAQ1 (P < 0.001). In deep GM, the SD of dDLR-NAQ1 
was significantly lower than that of NAQ5 (P < 0.001). The 
SNR of isotropic DWI of NAQ5 was significantly higher in 
the corpus callosum and WM compared to NAQ1 (P < 
0.001). The SNR of dDLR-NAQ1 was significantly increased 

not only in the corpus callosum and WM, but also in the deep 
GM compared to that of NAQ1 (P < 0.001). Furthermore, in 
deep GM, the SNR of dDLR-NAQ1 was significantly higher 
than that of NAQ5 (P < 0.001).

No significant difference in ADC was seen between the 
3 groups in any regions (Fig. 3a). No significant difference in 
FA values were identified between the 3 groups, with the 
exception of deep GM. In deep GM, significant differences 
were noted between NAQ1 and NAQ5 (P < 0.001), NAQ1 
and dDLR-NAQ1 (P < 0.001), NAQ5 and dDLR-NAQ1  
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Fig. 3  ADC and FA values for different brain regions calculated from NAQ1, NAQ5, and dDLR-NAQ1 images. Note that asterisks repre-
sent statistically significance (P < 0.05). ADC, apparent diffusion coefficient; dDLR, denoising approach with deep learning-based recon-
struction; FA, fractional anisotropy; GM, gray matter; NAQ, number of image acquisitions; WM, white matter.

(P = 0.045). FA values were the highest in the order of  
NAQ1, dDLR-NAQ1, and NAQ5 (Fig. 3b).

Table 1 shows Spearman’s rank correlation coefficients 
for ADC and FA values between NAQ1 and NAQ5, and 
between dDLR-NAQ1 and NAQ5. ADCs showed strong 
correlations between NAQ1 and NAQ5 and between dDLR-
NAQ1 and NAQ5 (P < 0.001). In FA values, a weak correla-
tion was observed between dDLR-NAQ1 and NAQ5 in deep 
GM (r = 0.38, P = 0.016), but no correlation was observed 
between NAQ1 and NAQ5 (r = 0.23, P = 0.15). Strong 

correlations were observed between NAQ1 and NAQ5 and 
between dDLR-NAQ1 and NAQ5 in ROIs other than deep 
GM (P < 0.001).

Fiber-tracking analysis
Figure 4 shows representative DTT images of the pyram-
idal tracts. DTT of NAQ1 was improved with dDLR. FV of 
the pyramidal tracts (mean ± SD ×103 mm3) of NAQ1, 
NAQ5, and dDLR-NAQ1 were 26.0 ± 7.7, 49.5 ± 15.6, and 
44.9 ± 11.8, respectively. FV of NAQ5 and dDLR-NAQ1 

Fig. 2  Mean SI (a) and SD (b) of isotropic DWI and SNR (c) for 
brain regions calculated from NAQ1, NAQ5, and dDLR-NAQ1. 
Note that asterisks represent statistically significance (P < 0.05). 
dDLR, denoising approach with deep learning-based reconstruc-
tion; DWI, diffusion-weighted imaging; GM, gray matter; NAQ, 
number of image acquisitions; SD, standard deviations; SI, signal 
intensity; WM, white matter.

a b

c

a b
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Table 1  Spearman’s rank correlation of ADC and FA values 
between NAQ1 and NAQ5, and between dDLR-NAQ1  
and NAQ5

ADC FA

r P r P

Corpus callosum

NAQ1 vs. NAQ5 0.66 < 0.001 0.81 < 0.001

dDLR-NAQ1 vs. NAQ5 0.77 < 0.001 0.84 < 0.001

Deep WM

NAQ1 vs. NAQ5 0.69 < 0.001 0.94 < 0.001

dDLR-NAQ1 vs. NAQ5 0.76 < 0.001 0.95 < 0.001

Periventricular WM

NAQ1 vs. NAQ5 0.88 < 0.001 0.93 < 0.001

dDLR-NAQ1 vs. NAQ5 0.88 < 0.001 0.94 < 0.001

Deep GM

NAQ1 vs. NAQ5 0.75 < 0.001 0.23 0.15

dDLR-NAQ1 vs. NAQ5 0.78 < 0.001 0.38 0.016

Cortical GM

NAQ1 vs. NAQ5 0.82 < 0.001 0.79 < 0.001

dDLR-NAQ1 vs. NAQ5 0.78 < 0.001 0.74 < 0.001

ADC, apparent diffusion coefficient; dDLR, denoising approach with 
deep learning-based reconstruction; FA, fractional anisotropy; GM, 
gray matter; NAQ, number of image acquisitions; WM, white matter.

Fig. 4  A 59-year-old man. Representative DTT of pyramidal tracts reconstructed from NAQ1, NAQ5, and dDLR-NAQ1 images. The depic-
tion ability of DTT was significantly improved with dDLR-NAQ1 compared to NAQ1. DTT, diffusion tensor tractography; dDLR, denoising 
approach with deep learning-based reconstruction; NAQ, number of image acquisitions.

was significantly larger than that of NAQ1 (P < 0.001). No 
significant difference was evident between NAQ5 and 
dDLR-NAQ1.

Discussion
Comparison between NAQ1 and dDLR-NAQ1 showed that 
the SI of isotropic DWI was unchanged, and SD was 
significantly decreased in all regions except for cortical GM 
with dDLR to the fast volume SMS-DTI acquisition (NAQ1, 
1 min). SNR of dDLR-NAQ1 became equivalent to or better 
than that of NAQ5. In deep GM, the SD and SNR of 
dDLR-NAQ1 were significantly better than those of NAQ5. 
This was because the receiver coil used in this study was a 
32-channel phased array coil, and image noise was more 
severe in deep brain regions. Moreover, T2 value of putamen 
is shorter than that of the other regions, therefore, the degree 
of SNR improvement was considered small even with NAQ5 
in deep GM. In contrast, since a strong de-noising effect was 
obtained by dDLR even in low-SNR regions, the SD and 
SNR of dDLR-NAQ1 seemed significantly different from 
those of NAQ5. On the other hand, since cortical GM is a 
region close to the receiver coil, there seemed to be no differ-
ence in SD and SNR among the 3 groups.

In this study, ADCs did not differ significantly among 
the 3 groups in any regions. This was consistent with a report 
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by Farrell et al.,9 which found no bias trend at low SNR for 
ADC. Regarding FA values, no significant difference was 
seen among the 3 groups in corpus callosum or WM, while  
a significant difference was identified in deep GM.  
FA values were reportedly overestimated in GM due to 
increases in λ1 and decreases in λ3 at low SNR.9 In the  
present study, FA values did not differ significantly among 
the three groups in cortical GM, but showed significant dif-
ferences in deep GM. This was attributed to differences in 
image noise between the cortical and deep GM. As a result, 
FA values in deep GM were more affected at low SNR than 
those in cortical GM. By reducing image noise using dDLR, 
the FA value of dDLR-NAQ1 in deep GM became much 
closer to that of NAQ5 compared to that of NAQ1, and cor-
relation between dDLR-NAQ1 and NAQ5 was stronger than 
that between NAQ1 and NAQ5. However, the FA value of 
dDLR-NAQ1 was significantly higher than that of NAQ5. 
Considering relatively low SNR of the DWI at the deep GM, 
sufficient SNR may not have been achieved to calculate true 
FA at deep GM in NAQ1. To calculate accurate FA values for 
deep GM, further studies with more NAQs may be necessary. 
Nevertheless, FA value of dDLR-NAQ1 was closer to that of 
NAQ5, compared to that of NAQ1. This might be interpreted 
that dDLR not only reduced the image noise but, more 
importantly, improved the reliability of FA values.

A number of approaches have been developed to reduce 
noise for DTI, e.g. Bayesian method for regularizing the diffu
sion tensor field,10 transferring the symmetric and positive-
definite tensor into Riemannian space for regularization,11 
non-local means variants.12 However, these methods were not 
installed in the commercial software as far, and dDLR 
algorithm used in this study has developed as a first commercial 
product that incorporates deep convolutional neural networks 
restoration process into the reconstruction flow to reduce 
image noise. Details of dDLR algorithm have been reported in 
the previous study,5 in which denoising of the high frequency 
components using the discrete cosine transform layer, which 
separates the high-frequency components from the zero-
frequency component, allow for efficient noise reduction. The 
use of dDLR removes image noise by learning various noise 
characteristics using training pairs of different noise level 
images and the corresponding ground-truth images.5 However, 
in images with insufficient image quality and/or SNR, dDLR 
may not work effectively. Therefore, the denoising level has to 
be determined in consideration of excessive image noise, 
blurring of anatomical structural boundaries, and artificial 
texture of the images. In this study, the denoising level of 
dDLR-NAQ1 was determined at which the delineation of the 
basal ganglia and the contrast between the cerebral cortex and 
white matter were sufficiently preserved as with Kidoh et al.5

Diffusion tensor imaging offers an effective tool for 
delineating the effects of a tumor on nearby white matter 
tracts, providing information that may facilitate preoperative 
planning.13 Measurements of diffusion anisotropy tend to be 
quite sensitive to image noise, which can also lead to biases 

in anisotropy estimates.9 The accuracy of DTI measurements 
may be improved by either increasing the number of encoding 
directions or increasing the number of acquisitions, increasing 
the scan time for DTI data collection.14 Therefore, clinically, 
performing DTI with as many diffusion encoding directions 
as possible with minimum averaging is desirable. The dDLR 
approach drastically decreased image noise and generated 
thin-slice MR images of the brain with sufficient image 
quality to precisely evaluate fine anatomical details in a rela-
tively short acquisition time.5 Likewise, in this study, dDLR 
was able to effectively remove the image noise of DWI. By 
applying dDLR to this short-acquisition DTI combining 
SMS and minimum averaging, this imaging method can 
potentially be incorporated into routine protocols as a thin-
slice DTI, including acute cerebral infarction screening.

This study had several limitations. First, single-shot EPI 
without SMS was not used as the control due to long scan 
time for the present clinical study, therefore, NAQ5 with SMS 
was used instead as the control in this study. However,  
SMS does not cause a decreased SNR theoretically, and the 
SMS factor of 2 used in this study was not so high. Moreover, 
no signal leakage15 were apparently observed in all cases. 
Rician noise introduces a bias into MRI measurements that 
can have a significant impact on the shapes and orientations of 
tensors in diffusion tensor MR images.9 Restoration methods 
such as DWI filtering may be required for DWI with decreased 
SNR, especially in DWI with higher b-values and/or higher-
resolution imaging.16 Second, mean value within the ROI  
may average the effects of noise, therefore, SI, SD, SNR, 
ADCs, and FA values should have been compared pixel-by-
pixel. However, because NAQ1 and NAQ5 images were 
acquired separately, ROI analysis was performed instead of 
pixel-by-pixel analysis to avoid the influence of patient’s 
motion. Third limitation of this study was the small size of the 
patient cohort. Several studies have shown the utility of DTI 
parameters in the characterization and grading of brain 
tumors.17 Further studies for comparing DTI parameters with 
and without dDLR are desirable, including patients with var-
ious neurological diseases. However, the ability of DTT to 
depict the pyramidal tracts was significantly improved in 
dDLR-NAQ1 when compared with NAQ1, and no significant 
difference in FV was apparent between dDLR-NAQ1 and 
NAQ5. As for NAQ1, more tracking points were terminated 
due to image noise, on the contrary, visualization of DTT was 
improved in dDLR-NAQ1 due to denoising with dDLR. Thus, 
single averaging short-time DTI with dDLR can be used in 
depicting white matter fibers for preoperative planning.

Conclusion
A deep learning-based noise reduction technique dramati-
cally not only reduces the image noise of fast volume SMS-
DTI, but improves the reliability of ADCs and FA values. 
Furthermore, the ability to depict DTT is also significantly 
improved with dDLR.
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