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Introduction

Fibrotic diseases are one of the leading causes of mortal-
ity due to the scarce therapeutic options available today.1,2 
Despite numerous recent advances in the understanding 
of various complex mechanisms responsible for the patho-
genesis and progression of fibrotic diseases, this topic still 
remains elusive.3 The pathogenetic pathways leading to 
fibrosis are multiple, but a classic model of fibrotic dis-
eases is represented by systemic sclerosis (SSc). This dis-
ease is characterized by a complex pathophysiology4 
which is not only represented by an immune dysfunction 
but also by the peculiar involvement of the microvascular 
system.5 The sufferance of the endothelial cells (ECs) 
covering the vessel wall is a pivotal event in the disease 
pathogenesis also for the endothelial transition into myofi-
brobalsts (EndoMT).6 Therefore, the endothelium injury 
may be considered as a primary event which leads to tis-
sue fibrosis. For this reason, the markers of endothelial 

injury have been studied at large, but none of them has 
been identified as useful and reliable marker of the 
endothelial sufferance so far.

Microparticles (MPs) can regulate vascular thrombosis, 
angiogenesis, vascular reactivity, and inflammation.7 
Epigenetic studies contributed to better understanding of 
MPs and its potential role in fibrosis.8–10 It is well known 
that MPs have been also proposed as markers of endothe-
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lial involvement, and their role in the genesis and mainte-
nance of fibrosis is recently hypothesized.11,12

The aim of this review is to assess the importance of MPs 
in the pathogenetic cascade involved in tissue fibrosis.

MPs: state of the art

In the literature, MPs, also called microvesicles and ecto-
somes, are heterogeneous population of membrane-coated 
vesicles generated from the cells via outward blebbing of 
the plasma membrane under both physiological and path-
ological conditions.13–15 Although MPs may be distin-
guished from other extracellular vesicles (such as exomes 
and apoptotic bodies) according to the mechanism of for-
mation and their content, the most commonly used dif-
ferentiating parameter is size. MPs are typically defined 
as 0.1–1 µm in diameter, while exomes are smaller 
(approximately 40–100 nm). Apoptotic bodies are much 
larger compared to both exomes and MPs, with size of 
1–5 µm.14

MPs are generated and released during different biological 
processes, including not only normal cellular differentiation, 
senescence, or apoptosis but also upon cellular activation fol-
lowing stimulation with proinflammatory cytokines (i.e. 

tumor necrosis factor α (TNF-α), lipopolysaccharides (LPS), 
soluble CD40 ligand, interleukin-6 (IL-6), IL-1α, and 
C-reactive protein (CRP)), prothrombotic (i.e. thrombin, col-
lagen, proteinase-activated receptor agonists, and plasmino-
gen activator inhibitor-1ß (PAI-1)), or proapoptotic substances 
and exposure to high shear stress (Figure 1).13,16–19

These small particles (0.1 and 1 µm in diameter) may be 
distinguished from other groups of cell-derived vesicles 
because the MPs membrane and its proteins originate from 
their parental cells, reflecting both the type and state of 
their cellular origin.13,14 Thus, MPs express a broad range 
of surface cytoplasmic and nuclear molecules that are 
incorporated into membrane-bound structures including 
bioactive lipids, integrins, cytokines, and enzymes.13,14,16,20 
MPs contain DNA, RNA, including micro RNA (miRNA), 
histones, and damage-associated molecular patterns 
(DAMPs).21,22 Once MPs are released into circulation, 
they bind and fuse with their target cells through receptor/
ligand interaction and act as biological vectors.13

MPs can deliver miRNA into recipient cells, where the 
exogenous miRNA may regulate target gene expression and 
modulate the function of recipient cells. Furthermore, 
immune complexes with autoantigens presented by MPs 
may induce immune response; in addition, the particles 

Figure 1. Schematic presentation of MPs surface main components.
EMPs: endothelial cells–derived microparticles; PMPs: platelet-derived microparticles; LMPs: leukocyte-derived microparticles; GPVI: glycoprotein VI; 
GPIIb: glycoprotein IIb; GPIbα: glycoprotein Ibα; VCAM-1: vascular cell adhesion molecule-1; PECAM-1: platelet endothelial cell adhesion mol-
ecule-1; ICAM-1: intercellular cell adhesion molecule-1; E-selectin: endothelial selectin; CD51: vitronectin receptor; P-selectin: platelet selectin; L 
selectin: leukocyte selectin.
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themselves may coordinate functions of different cells via 
both autocrine and paracrine ways. Thus, MPs are found as 
central mediators of a communication network for the local 
and systemic intercellular exchange of biological informa-
tion and cell–cell interaction.17,23 Some components of MPs 
are selectively enriched compared to their cell of the origin, 
and even more, the composition and the function of MPs not 
only depend on the cellular origin but also on the inducing 
triggers and the microenvironment of the parental cell.23,24

Although circulating MPs can be derived from virtually 
any cell type, including immune cells, they are most com-
monly originated from the vasculature and circulating blood 
cells: endothelial cells (endothelial cells–derived micropar-
ticles (EMPs)), platelets (platelet-derived microparticles 
(PMPs)), leukocytes (leukocyte-derived micropaticles 
(LMPs)), and vascular smooth muscle cells.13 The compo-
nents on the MPs surface are the most notable, since they 
allow detection by flow cytometry (FC). Thus, EMPs may 
display platelet endothelial cell adhesion molecule-1 
(PECAM-1; CD31), vascular endothelial cadherin 
(VE-cadherin; CD144), vitronectin receptor (CD51), 
ICAM-1 (CD54), vascular cell adhesion molecule-1 
(VCAM-1; CD106), endothelial selectin (E-selectin; 
CD62E), platelet selectin (P-selectin; CD62P), or endoglin 
(CD105).25 PMPs can exhibit glycoprotein ibα polypep-
tide (GPIbα; also known as CD42b), glycoprotein IIb 
(GPIIb; CD41), glycoprotein VI (GPVI; CD49), integrin-
β3 (CD61), and the lysosomal markers such as CD68  
or CD63, while LMPs may express protein tyrosine phos-
phatase receptor type C (PTPRC; CD45), CD14, L-selectine 
(CD62L), and integrin αMβ2 (CD11b/18)25–27.

The expression of different antigens on the MPs sur-
face depends on the state of the origin cell. Thus, the acti-
vated ECs increase expression of inducible antigens on 
EMPs (e.g. CD62E, CD106, and CD54), while ECs 
undergoing apoptosis enhance expression of constitutive 
antigens (e.g. CD31 and CD105) and increase binding of 
annexinV.13,28

Presence of different components/antigens suggests a 
wide range of MPs activities, mainly in hemostasis, inflam-
mation, vascular reactivity, and angiogenesis.4,9,29–33

Increased number of EMPs and PMPs are found in 
patients with antiphospholipid syndrome, suggesting a 
role of MPs in thrombotic events and pregnancy complica-
tions.7 PMPs could be considered as a biomarker for the 
risk of thrombosis or miscarriage in individuals with 
antiphospholipid antibodies.34 Enhanced TF expression on 
both EMPs and LMPs has been shown in systemic lupus 
erythematosus (SLE) patients, indicating an active role of 
TF-positive MPs in thrombosis.35

Furthermore, EMPs vesiculation correlate with IL-6 
release, showing that close relationship between endothe-
lial vesiculation and classical inflammatory pathway exist 
and that MPs are implicated in inflammation.9

Generally, MPs can affect many different processes of 
the vasculature. PMPs may induce the expression of 
cyclooxygenase 2, leading to the release of the vasodilata-
tive mediator prostacyclin. On the contrary, PMPs may 
contain the arachidonic acid metabolite thromboxane A2, 
which increases vascular contraction. Furthermore, EMPs 
have an endothelial-dependent vasodilatation effect influ-
encing directly vascular tone (Figure 2).36,37

Figure 2. Schematic presentation of possible microparticles activity: (a) Hemostatic properties of MPs. Platelet aggregation and 
spreading of procoagulant potential; (b) Induction and amplification of inflammation. Immune cell apoptosis and production of anti-
inflammatory mediators; (c) Vascular reactivity and endothelial dysfunction; and (d) Angiogenesis.
MPs: microparticles; PS: phosphatidylserine; TF: tissue factor; vWF: large von Willebrand factor; PCR: protein C receptor; uPAR: urokinase-type 
plasminogen activator receptor; ICAM-1: intercellular adhesion molecule 1; VCAM-1: vascular cell adhesion molecule-1; C1q: complement compo-
nent 1q; COX 2: cyclooxygenase 2; NO: nitric oxide; eNOS: endothelial nitric oxide synthase; psH: protein sonic Hedgehog; PMPs: platelet-derived 
MPs; EMPs: endothelial cells–derived MPs; LMPs: leukocyte-derived MPs: EC: endothelial cell; SMC: smooth muscle cell.
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MPs may promote endothelial dysfunction by impair-
ing the endothelial nitric oxide (NO) pathway and induc-
ing proinflammatory response (Figure 2).38. EMPs are 
considered as a new useful and reliable marker of endothe-
lial dysfunction. Furthermore, it has been shown that 
PMPs can stimulate angiogenesis and revascularization in 
ischemic heart disease.10

Despite increasing scientific and clinical interest, meth-
odology for MPs assessment is still an area of great debate, 
which is impeded by technological issues.39,40 Nevertheless, 
many different methods of MPs detection in biological 
samples have been described in the literature so far.40,41 No 
standardized protocols are available for the isolation, 
detection, and characterization of MPs.

All preanalytical steps, from blood sampling to sample 
freezing, should be considered as a source of variation in 
MPs analysis. For instance, isolation of MPs from blood is 
affected by the following: venepuncture and the diameter 
of the needle; time between blood collection and first cen-
trifugation, which should be within 30 min to 1 h from 
sampling, no more than 2 h; type of anticoagulant used; 
and freezing and storage of the samples (storage no more 
than 1 year after freezing until analysis at a temperature 
below 80°C), thawing, centrifugation, and washing proce-
dures.40,42–44 After blood collection, platelets need to be 
removed from the plasma in order to avoid cellular activa-
tion, leading to involuntary production of MPs. 
Centrifugation protocols for preparing platelet-free plasma 
and isolated MPs have major influences on MP analysis. 
The common centrifugation parameters used for MPs iso-
lation vary between 1500g and 10,000g for 5–20 min in the 
first centrifugation step intended to remove cells and large 
particles (including platelets), followed by 13,000g–
100,000g for 30–60 min to exclude residual platelets 
obtaining MPs pellet. These differences in centrifugation 
speed and time greatly affect the final MP counts. It has 
been shown that initial low-speed centrifugation between 
1200g and 2000g for 15–20 min could effectively remove 
erythrocytes, platelets, and large membranous fragments, 
whereas speeds >2000g lead to a substantial loss of 
MPs.40,45 Sometimes, in order to remove residual platelets, 
filtration with 0.8-µm porous membranes is used;46 how-
ever, filtration may activate platelets and induce MPs frag-
mentation, leading to serious loss of MPs.45

Isolation of MPs in SSc studies have included either 
one step (vary from 1500g to 2000g, 10–15 min) 47–49 or 
two step (first: 200g–1800g, 10 min and second: 800g–
20,000g, 6–10 min) centrifugation.50–53 After centrifuga-
tion and freeze-thaw steps had been done, one more 
centrifugation with two steps (1500g for 5 min and 
100,000g for 20 min) was performed in one study.49

Arising concern is that isolation could result in getting 
MPs contaminated with exosomes; apoptotic blebs; protein 
aggregates, including immune complexes; the presence of 
lipoprotein particles; and small platelets within the size 

range of MPs.46,54,55 In spite of these limitations, the combi-
nation of differential centrifugation and FC has proven to be 
invaluable for the detection of MPs.49–51,53,56–59

Different optical and non-optical detection methods have 
been utilized for the assessment/quantification of MPs, 
including immunoassays, FC, electron microscopy, atomic 
force microscopy, and dynamic light scattering.40,41

FC analysis of blood MPs appears to be the most favored 
analytical method of identification, quantification, and size 
assessment of the microvesicles.40,60 MPs are typically 
detected in terms of size by FC based on the intensity of 
light scattering and exposure of phosphatidylserine (PS), an 
“eat me signal” for the immune system, identified by stain-
ing with annexin V and further characterized with fluores-
cent-labeled antibodies against specific surface 
antigens.13,39–41,60,61 One of the biggest FC limitation is MPs 
size detection, regarding the fact that MPs are too small and 
heterogeneous in size to be detected and clusters of small 
MPs might be counted as one event.39,40 Furthermore, 
immune complexes can overlap with size of MPs appearing 
as MPs by FC.46 Quantification of MPs could be done with 
detection of PS-rich surface; annexin V (AnxV) binding is 
often used as identifier.39,40,46,60–62 The mechanisms of gen-
erating AnxV non-binding MPs (AnxV-MPs) are not fully 
known, but because PS exposure is a typical feature of 
apoptosis, it may be hypothesized that AnxV– MPs are gen-
erated by cellular activation. However, a significant propor-
tion of the MPs are annexin V negative, suggesting either 
heterogeneity in the mechanism of production or the pres-
ence of PS at concentrations below the limits of detection. 
As an alternative, lactadherin could be used with higher 
affinity for PS and the potential advantage of non-calcium 
dependent binding to PS compared to AnxV. BODIPY 
maleimide, calcein AM, and SYTO 13 are other alternative 
probes that could detect all circulating MPs also.13,39,63,64 
Identification the MPs origin with fluorescent-labeled anti-
bodies also has limitation in that antibodies are dissimilar 
according to specificity and sensitivity for specific anti-
gens.39 Finally, the standardization of both preanalytic and 
analytic methods still remains a significant challenge.40

The link between inflammation, coagulation, and fibro-
sis is well documented. Even low-grade persistent inflam-
mation is enough to promote fibrosis. Alike, plasma 
coagulation cascade proteases are also involved in fibrosis 
via induction of profibrotic molecules.65 However, our 
knowledge of MPs in the development of fibrosis is unclear.

Fibrosis: state of the art

Fibrosis is characterized by excessive deposition of extracel-
lular matrix (ECM) proteins, mainly collagen and fibronec-
tin, in response to injury and is quite important in wound 
healing. However, when fibrotic process is chronically 
active, it could lead to permanent tissue remodeling and sig-
nificant organ impairment.5 It has been already known that 
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fibrosis is a feature of different connective tissue diseases 
(CTDs) and is the hallmark of the main systemic fibrotic dis-
ease—SSc. SSc is a complex, multifaceted CTD of unknown 
etiology, characterized by a peripheral microvascular injury 
spreading into progressive fibrosis of the skin and multiple 
internal organs.5 We have already pointed out that endothe-
lial injury is a key pathological event in SSc, contributing to 
enhanced leukocyte, platelet activation, and coagulation 
pathways; production of proinflammatory and profibrotic 
cytokines; generation of reactive oxygen species (ROS); 
defective angiogenesis; and vasculogenesis, resulting in 
development of severe vasculopathy and further fibrosis 
(Figure 3).5,66,67

SSc-associated interstitial lung disease (ILD) and pul-
monary arterial hypertension (PAH) are the leading causes 
of impaired quality of life and mortality in SSc.1–3,68 It has 
been reported that endothelium and pericyte activation, 
telocytes loss, aberrant immune responses, endoplasmic 
reticulum stress, and chronic tissue injury are involved in 
the initiation of fibrosis in SSc.69–71 Although the patho-
genesis of SSc fibrosis is still elusive, strong evidence 
suggests that myofibroblasts (MFs) are the main final 
effectors responsible for tissue fibrosis and fibroprolifera-
tive vasculopathy (Figure 3).72 These cells contribute to 
the progressive increase in tissue stiffness, further enhanc-
ing the profibrotic process.73

Extensive investigations have revealed that MFs origi-
nate from multiple cellular sources, including resident tissue 
fibroblasts, bone marrow–derived circulating fibroblast pre-
cursors (also known as fibrocytes), and epithelial cells via a 
phenotypic transition into mesenchymal cells (EMT), by 
which epithelial cells modify adhesive properties and polar-
ity and acquire ECM-producing MFs features. Other cell 
types such as pericytes, adipocytes, pleural mesothelial 
cells, or macrophages are also potential sources of MFs.72,74 

More recent studies have shown that another source of acti-
vated MFs are ECs that have acquire a mesenchymal pheno-
type through a endothelial to mesenchymal transition 
(EndoMT) procces. Today, we know that EndoMT plays an 
important role during several pathological conditions, 
including cardiac, pulmonary, and renal fibrosis; carcinoma-
associated interstitial fibrosis; idiopathic portal hyperten-
sion; intestinal fibrosis; and diabetic nephropathy.72,74–77 
Moreover, EndoMT may play a role in the development of 
tissue fibrosis and fibroproliferative vasculopathy in SSc.72 
One more evidence which supports this hypothesis is that 
EndoMT may occur in SSc dermal endothelium, contribut-
ing the development of dermal fibrosis.6 During EndoMT, 
ECs become detached from endothelial layer; change their 
morphologic characteristics; lose their specific EC markers 
such as CD31/PECAM-1, large von Willebrand factor 
(vWF), occluding, and VE-cadherin; and initiate the expres-
sion of mesenchymal/myofibroblast phenotype character-
ized by the expression of alpha smooth muscle actin 
(α-SMA), vimentin, S100A4/fibroblast-specific protein-1, 
and type I collagen (CI). It has been shown that EndoMT 
may support loss of microvascular EC and thus contribute to 
capillary rarefaction, leading to chronic tissue ischemia and 
amplifying further fibrotic process.72,78,79

Multiple pathways are implicated in fibrotic process. The 
potent profibrotic transforming growth factor beta (TGF-β) 
has been highlighted as a key player in fibrosis as well as in 
EndoMT and EMT, confirmed both in vitro and in vivo 
studies.78,80,81 TGF-β-regulated genes are expressed in the 
skin and the lung of patients with SSc, and the extent of the 
cytokine expression correlates with the disease activity.82 
Thrombospondin-1 (TSP-1) is important in controlling 
TGF-β activation in fibrotic diseases.83 Smad-dependent 
and Smad-independent pathways and numerous transcrip-
tional regulators such as Snail, Snail2 (or Slug), Twist, and 

Figure 3. Illustration of the link between endothelial injury and fibrosis.
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some members of Zeb family of proteins are implicated in 
EndoMT.84,85 According to Smad-independent pathway, 
extracellular signal-regulated protein kinase (Erk) 1/2 has 
been suggested to have an important role in fibrosis by regu-
lating MF transdifferentiation, cell proliferation, and sur-
vival, as well as matrix synthesis. Erk1/2 pathway is induced 
by TGF-β in dermal fibroblasts and ECs.86 The protein 
phosphatase 2A (PP2A) dephosphorylates and blocks acti-
vation of ERK1/2.87 The PP2A mRNA and protein expres-
sion are significantly reduced in SSc fibroblasts and 
correlate with an increase in ERK1/2 phosphorylation and 
collagen expression.88 Furthermore, aberrant activation of 
Notch, Sonic Hedgehog, and Wnt/13-catenin pathways may 
lead to various pathological consequences, including the 
development of fibrotic diseases via, in part, EndoMT 
(Figure 3).89–91

EndoMT may be mediated by other potential factors 
including platelet-derived growth factor (PDGF), vascular 
endothelial growth factor (VEGF), insulin-derived growth 
factor, connective tissue growth factor (CTGF), and endote-
lin-1 (ET-1).92 It has been proven that ET-1 is capable of 
generating EndoMT either by itself or in combination with 
TGF-β, and despite this, the synergistic interaction with 
TGF-β is still widely supported. CTGF is a common target 
for both ET-1 and TGF-β. In different cells type, CTGF 
regulates cell proliferation, apoptosis, migration, mesency-
mal cell activation, and ECM accumulation.93

Hypoxia represents a potent stimulus for the generation 
of various growth factors and ROS, which influence the fate 
of ECs, promoting mesenchimal transition and fibrosis.94 
Skin hypoxia has been documented in SSc patients.95 
Oxidative stress is implicated in various features of idio-
pathic pulmonary fibrosis (IPF), liver fibrosis, and SSc, 
mediated by ROS. Mainly, ROS production derives from 
the activation of the nicotinamide adenine dinucleotide 
phosphate oxidase (NOX) family. NOX4 has a central role 
in the initiation and maintenance of fibrosis. Increased 
expression of NOX4 transcripts and also level of NOX4 in 
affected SSc skin have been demonstrated.96 Moreover, 
TGF-β1-mediated expression of NOX4 is closely related to 
myofibroblastic differentiation; on the contrary, MF differ-
entiation is dependent on the generation of ROS by NOX4, 
suggesting that ROS and TGF-β1 are essential for manifes-
tation of the MF phenotype (Figure 3).97,98. Activation of 
HIF-1 signaling in renal epithelial cells may promote fibro-
genesis by increasing expression of ECM modifying and by 
facilitating EMT.99,100 Furthermore, activation of HIF-1α in 
dermal fibroblasts of SSc may upregulate CTGF expres-
sion, contributing to the progression of skin fibrosis.101

Several studies have shown a significant deregulation 
of miRNAs involved in angiogenesis, vascular repair, and 
endothelial homeostasis.102 In SSc, several miRNAs are 
associated with kTGF-β and CI expression. Thus, micro-
RNA-29a and miRNA-196a can supress CI gene expres-
sion, but they are downregulated in SSc, suggesting that 

their low-level expression may promote upregulation of CI 
by TGF-β in SSc fibrogenesis. Moreover, levels of 
miRNA-196 inversly correlate with prevalence of pitting 
scars and modified Rodnan skin thickness score (mRSS) 
score.103,104 The downregulation of miRNA let7a leads to 
the exessive CI expression and, recently, has been shown 
that treatment with let7a improves the skin fibrosis in 
SSc.105 Several studies have proven that using strategy 
with combination of miRNAs can transdifferentiate fibro-
blasts into cardiomyocytes or neuronal tissue. However, 
the rate of reprogramming fibroblasts is low and insuffi-
cient to translate into a clinical setting.106,107 Recently, it 
has been demonstrated that MPs derived from endothelial 
progenitor cells could protect the kidney from ischemic 
acute injury by miRNA-dependent reprogramming of 
hypoxic resident renal cells to a regenerative program.108

Circulating blood cells can mediate various features in 
the fibrotic diseases, through pleiotropic functions. Platelets 
are critical players in SSc pathogenesis. They represent 
source of different profibrotic signals such as VEGF, TGF-
β, PDGF, and serotonin.109 Platelets also contain high 
mobility group box 1 (HMGB1) protein (Figure 3). This 
protein plays multiple roles in the pathogenesis of inflam-
matory and autoimmune diseases and mediates processes 
that range from inflammation to repair. It targets various 
immunologically relevant systems, including p53, nuclear 
factor (NF)-κB, the glucocorticoid receptor, and the recep-
tor for advanced glycation end products (RAGE). The sign-
aling of HMGB1 or with its receptors plays a crucial role in 
mediating fibrotic diseases in liver, renal, lung, and myo-
cardial.11,109 Further studies have revealed that serum 
HMGB1 level in SSc is higher compared with healthy con-
trols and control mice, while SSc patients with elevated 
HMGB1 level have more frequent involvement of several 
organs and immunological abnormalities than those with 
normal level.110 The bioactive HMGB1 can stimulate neu-
trophils to generate ROS via P-selectin, thus contributing to 
increased vessel inflammation in SSc and oxidative stress 
development. The oxidation of HMGB1 further amplified 
its ability to activate neutrophils. It has been demonstrated 
that HMGB1+ MPs purified from SSc patients activate in 
vitro healthy neutrophils maintaining of sterile inflammation 
in SSc patients.111 Moreover, the activation of HMGB1 is 
associated with the loss of telocytes.70,71 Finally, HMGB1 
may contribute to EMT and EndoMT in various fibrotic 
diseases (Figure 3).11

Data from diverse fibrosis models indicate that matrix 
metalloproteinases (MMP) may modulate a range of bio-
logical processes, especially those related to immunity 
and tissue repair and/or remodeling, having both inhibi-
tory and stimulatory roles in fibrosis.112 Since MMP3, 
MMP2, and MMP9 might stimulate EMT, MMP9 can 
activate TGF-β, contributing to enhance the pool of active 
TGF-β. MMP7-deficient mouses are protected from ble-
omicyn-induced lung fibrosis, suggesting profibrotic role 
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of this MMPs. Even though, in lung fibrosis model, at the 
beginning MMP7s facilitate neutrophil influx and activa-
tion, leading to epithelial damage and an enhanced fibrotic 
environment, later epithelial-derived MMP-7s promote 
resolution by attracting an influx of immunosuppressive 
leukocytes reflecting also antifibrotic role. In a model of 
liver fibrosis, MMP-1 and MMP-13 lead to resolution of 
fibrosis.112,113 In a SSc patient, MMP-7 serum level is 
higher than those in control group, and patients with lung 
fibrosis have higher levels than those without. 
Interestingly, fibroblasts in early stage of SSc exhibit 
higher levels of MMP-1, MMP-3, and TIMP-1, unlike the 
gene expression of MMP-1, MMP-2, and MMP-3, which 
is decreased in fibroblast from SSc patients with mild 
stage of disease. MMP-9 concentration positively corre-
lates with the mRSS, and one of the sources of MMP-9 is 
dermal fibroblast.114,115

Is there a link between MPs and fibrosis?

A few important findings suggest direct implication  
of MPs in fibrosis and possibly a role in EMT and 
EndoMT. PMPs secretome contains a range of vasoactive  
mediators favoring vasoconstriction (e.g. thromboxane), 
growth factors (TGF-β and PDGF), and HMGB1 protein 
that may contribute to fibrosis.9,11 Very new precious data 
have shown that PMPs from SSc patients interact with 
neutrophils in vitro and in mice, promoting neutrophil 
autophagy and leading to generation of neutrophil extra-
cellular traps (NETs).116 Taken together, all of these data 
may support the role of PMPs in EndoMT due to fact  
that NETosis itself is contributing to EndoMT.117 
Furthermore, EMPs may contain Nox1, Nox2, Nox4, 

p47phox, p67phox, and p22phox and have the ability to 
produce ROS through Nox-dependent processes. 
Moreover, EMPs can increase phosphorylation of 
ERK1/2 and Src via ROS-independent way, contributing 
to increased ECM accumulation. A recent proteomic 
analysis found that PP2A, which is present in human 
EMPs, may be transferred to target cells, giving insight to 
decreased ERK1/2 phosphorylation, but this has not been 
shown experimentally yet.8 In contrast, MPs from LPS-
treated THP-1 monocytes cell may induce phosphoryla-
tion of ERK1/2, activation of the nuclear factor-B 
pathway, and expression of cell adhesion molecules 
ICAM-1, VCAM-1, and E-selectin, promoting proin-
flamatory and profibrotic role (Figure 4).118

Podocyte-derived MPs might increase p38 and Smad3 
phosphorylation and expression of the ECM proteins in 
proximal tubule epithelial cells, suggesting their role in 
EMT and tubular fibrosis.119 EMT could be fostered by 
EMPs coming from activated ECs via increasing the 
expression of HIF-α/VEGF-A in a COX-2/EP2 receptor 
dependent manner.120

As MPs contain proteolotic enzymes, it is possible 
that MPs may contribute to alteration of the ECM and 
cleavage of signaling molecules. For example, MPs 
derived from microvascular ECs contain MMP-1, MMP-
2, MMP-7, and MMP-13 and may degrade fibronectin in 
vitro.121 Furthermore, EMPs have ability to bind and acti-
vate both endogenous and exogenous proMMP-2, lead-
ing to vascular matrix remodeling.122 Very new data have 
proven that LMPs derived from T cells and monocytes 
potently induce the synthesis of MMP-1, MMP-3, MMP-
9, and MMP-13 in fibroblasts in a time-dependent man-
ner. On the contrary, no contraregulatory induction of the 

Figure 4. Illustration of the link between microparticles and fibrosis: (a) Platelet-derived microparticles (PMPs) secretome may 
contribute to fibrosis via EndoMT, EMT procces, and ROS-mediated pathway; (b) Fibrotic and antifibrotic role of endothelial 
cells–derived microparticles (EMPs); and (c) Profibrotic and antifibrotic properties of leukocyte-derived microparticles (LMPs).
ECM: extracellular matrix; EMT: epithelial to mesenchymal transition; EndoMT: endothelial to mesenchymal transition; ERK1/2: extracellular 
signal-regulated protein kinase 1/2; HMGB1: High mobility group box 1; NOX: NADP(H) oxidase; p47phox, p67phox, p22phox: NADP(H) oxidase 
subunits; PP2A: protein phosphatase 2A; ROS: reactive oxygen species.
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expression of tissue inhibitors of MMPs was observed.14 
In SSc, the inverse correlation between the mRSS and 
values of total EMPs and PMPs has been demonstrated 
(Figure 4).49,50

EMPs and LMPs may generate on the surface plasmin, 
which has both profibrotic and antifibrotic properties by 
activating TGF beta on one hand and on the other hepato-
cyte growth factors and MMPs (Figure 4).123

MMPs and plasmin influence migration capacity of 
cells which could be implicated in fibrosis. MPs promote 
fibroblast activation and migration. ROS, namely H2O2, 
may increase the generation of procoagulant MPs, 
TF-bearing MPs, by alveolar epithelial cells that could acti-
vate local synthesis of factor Xa leading to PAR-1-mediated 
activation of fibroblasts and a profibrotic response.124 
Furthermore, EMPs isolated from idiopathic pulmonary 
patients might induce migration capacity of the lung fibro-
blast, increasing formation of F-actin fibers, by their 
fibrinolytic activity contributing to fibrogenesis.125 EMPs 
are elevated among IPF patients with severe reduced dif-
fusing capacity of the lung for carbon monoxide (DLCO), 
while TF-bearing MPs negatively correlate with both 
forced vital capacity (FVC) and DLCO,125 suggesting their 
implication in lung fibrosis disease. Evidence that MPs are 
involved in pathogenesis of lung fibrosis also comes from 
the finding that LMPs might lead to extensive entry of neu-
trophils into airways and aggregation at the epithelial sur-
face of the respiratory tract in cystic fibrosis patients.126 
Regarding the well-known profibrotic effect of IL17,127,128 
PMPs could be considered as antifibrotic mediators through 
their ability to prevent the differentiation of Tregs into 
IL-17 and IFN-γ—producing cells in P-selectin-dependent 
manner.129 Moreover, PMPs may deliver miRNA let7a to 
the ECs and reduce production of TSP-1, possibly influenc-
ing TGF-β pathway.130

The role of MPs in SSc

Recently, a few research groups reported plasma levels of 
MPs and their clinical association in SSc patients giving 
divergent results.47–53,59,111,116,131 EMPs, PMPs, and LMPs 
are predominantly investigated, and labeling antigens for 
detection-specific MPs population has been dissimilar 
across studies. Furthermore, some studies have shown that 
patients with SSc have increased concentration of MPs 
compared to healthy controls,48–52,111,116,131 while others 
have demonstrated opposite results (Table 1).47,59

Even though some of them have investigated same pop-
ulation of MPs, heterogeneity of the studies with respect to 
eligibility criteria, study population, methods, and choice 
of outcome statistics make the comparison difficult.

In spite of the study differences, the association of MPs 
with hemostasis disturbance, microangiopathy, disease 
activity, inflammation, and organ involvement in SSc might 
be speculated.

Hemostasis

As a common feature, particles expose PS, as a conse-
quence of membrane flipping during apoptosis, which can 
bind and activate different coagulation factors promoting 
conversion of prothrombin into thrombin. Furthermore, 
MPs may express tissue factor (TF) and vWF multimers, 
which may initiate the extrinsic coagulation pathway and 
promote platelet aggregation.29,30,132 EMPs from activated 
ECs may trigger TF-dependent thrombin formation in 
vitro and thrombus formation in vivo.133 In addition, TF 
can be transferred between MPs and different cell types, 
spreading procoagulant potential.134

Recent studies have demonstrated that EMPs expose 
endothelial protein C receptor, urokinase-type plasmino-
gen activator, and its receptor, suggesting that these parti-
cles also have anticoagulant properties (Figure 2).12

Concomitant to the changes in the SSc endothelial lin-
ing, platelets undergo activation. Enhanced activation of 
platelets, increased tendency to aggregation, and activa-
tion of coagulative cascade have long been observed in 
SSc patients.109,135,136 Different stimulus may influence the 
emergence of procoagulant MPs. An oxidative stimulus, 
namely H2O2, increases the production of procoagulant 
MPs by alveolar epithelial cells in culture. Increased num-
ber of TF-bearing MPs has been found in SSc interstitial 
lung disease.124

Vascular health and microangiopathy

Few lines of evidence support the hypothesis that certain 
MPs subpopulation can induce angiogenesis and vascular 
remodeling. It has been postulated that expressing the 
VEGF, TF, and the protein sonic Hedgehog can define 
MPs as proangiogenic structures. Since MPs contain 
miRNA, they are able to activate a proangiogenic program 
in ECs.4 Incubation of human microvascular endothelial 
cell line (HMEC-1) with THP-1 MPs leads to transfer of 
miRNA 150 from MP to recipient EC promoting angio-
genesis, leading finally to the developed capillary-like 
structures out of existing blood vessels.31 EMPs may trans-
fer miRNA to ECs promoting angiogenesis.32 In addition, 
activated subtype of EMPs positively correlate with num-
ber of ramified capillaries, indicating their role in angio-
genesis and vessel regeneration.33 In contrast, high levels 
of EMPs isolated from human umbilical vein ECs may 
reduce angiogenesis, while low concentration of EMPs 
stimulate formation of capillary-like structure (Figure 2).9

Recently, it has been shown within SSc patients that the 
active nailfold videocapillaroscopy (NVC) pattern is associ-
ated with higher concentration of activated E-selectin-
positive EMPs (CD62+AnxV–) compared to early 
microvascular involvement. This subpopulation of EMPs is 
also increased in patients with specific microvascular altera-
tions: pericapillary edema and giant capillaries or frequent 
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microhemorrhages, confirming that endothelial activation is 
enhanced in the active phase of SSc-related microangiopa-
thy and also suggesting that their increased concentration 
might be a sensitive marker for early EC dysfunction. 
Furthermore, activated EMPs may reflect early step of angi-
ogenesis since they positively correlate with number of 
ramified capillaries. Total number of EMPs is associated 
with the overall number of microvessels reflecting the 
severity of avascularizations. The confirmation proof of this 
is that the total number of EMPs is decreased in late NVC 
compared to early pattern and inversely correlates with 
number of ramified loops in SSc patients.50 Apoptotic MPs 
phenotype (AnxV+ MP) has shown positive association 
with the avascular and microvasculopathy scores objected 
by NVC in the autoimmune disease patients with Raynaud’s 
phenomenon, reflecting the existence of critical tissue 
hypoxia.48 Furthermore, it has been shown that both higher 
annexin-positive EMPs and PMPs levels are associated with 
better digital perfusion assessed using laser speckle contrast 
imaging (LSCI) in patients with primary RP and SSc, 
reflecting vascular perfusion across diseases.51

It is well known that calcinosis and digital ulcers are 
associated with the late NVC pattern.137,138 Regarding this, 
we could expect that in patients with this features of disease, 
total number of EMPs is decreased or apoptotic phenotype 
increased. Indeed, the significantly decreased numbers of 
both total MPs shading from various cells and PMPs have 
been demonstrated in patients with present cutaneus ulcers.49 
Furthermore, total EMPs levels also tended to be lower in 
SSc patients with active digital ulcers,50 and higher levels of 
apoptotic EMPs (CD31+/CD42b–AnxV+) are associated 
with a history of digital ulceration/pitting.51 In contrast, 
patients with calcinosis have increased level of activated 
(CD146+AnxV–) EMPs subpopulation.53

Inflammation and disease activity

MPs can activate complement cascade (C1q), enhance 
leukocyte rolling, and stimulate the release of broad 
proinflammatory mediators (e.g. IL-6 and IL-1 β; Figure 
2). IL-6 has been implicated in the pathogenesis of SSc 
via stimulation of fibroblasts to produce excess collagen 

Table 1. Labeling of MPs and differences across studies.

Labeling SSc vs HC lSSc vs HC dSSc vs HC lSSc vs dSSc Reference

tMP ↑** ↑* ↑* Guiducci et al.49

 ↓** ns ns Iversen et al.59

AnxV− MPs Total
Total fraction

↓ns
↑*

Iversen et al.59

 CD62E+ ↑** ↑* ↑* ↑ns Michalska-Jakubus et al.50

AnxV+ MPs Total ↓* Iversen et al.59

 CD62E+ ↑** ↑* ↑* ↑ns Michalska-Jakubus et al.50

 CD31+/CD42b– ↓* Jung et al.47

 CD31+/CD42b– ↑ns McCarthy et al.51

 CD31+/CD42b+ or 
CD31–/CD42b+

↑** McCarthy et al.51

EMPs CD144+ ↑** ↑* ↑** ↑ns Guiducci et al.49

 CD146+
aCD146+

↓*
↑ns ↑ns ↑ns

Iversen et al.59

 CD31+/CD42b– ↑** ↑* ↑* ↑ns Michalska-Jakubus et al.50

 CD51+ ↑* ↑* ↑*  
PMPs CD42+ ↑** ↑* ↑* ↑ns Guiducci et al.49

 bCD42a+
CD42a+

↑ns
↓* ↑**

↑ns ↑ns Iversen 
et al.59

Nomura 
et al.52

 CD61+HMGB1+ ↑** 111,116,131

LMPs cCD14+
dCD3+

↑**
↑*

↑*
↑*

↑*
↑*

↑ns
↑ns

Guiducci et al.49

 CD45+
eCD45+

↓*
↑ns

↑ns ↑ns Iversen et al.59

HC: healthy controls; tMP: total number of MPs; AnxV: annexin V; MP: microparticles; EMPs: endothelial cells–derived microparticles; PMPs: 
platelet-derived microparticles; LMPs: leukocyte-derived micropaticles; SSc: systemic sclerosis; lSSc: limited systemic sclerosis; dSSc: diffuse systemic 
sclerosis.
aFraction of AnxV−CD146+.
bFraction of AnxV−CD42a+.
cMonocytes.
dT cells.
eFraction of AnxV−CD45+.
*p < .05; **p < .001; ns p ⩾ .05.
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and glycosaminoglycan, but to the best of our knowledge, 
no study so far has tested the role of MPs bearing IL6 in 
SSc.139 Interaction between EMPs and naïve EC triggers 
proinflammatory response by upregulation of ICAM-1, 
messenger RNA (mRNA) expression, and solubile 
ICAM-1 shedding from target cells. Furthermore, EMPs 
which are triggered by transforming growth factor-alpha 
increase the release of solubile ICAM-1 secretion from 
ECs, enhancing the endothelial response to inflammation. 
This paracrine effect of MPs could not be observed using 
EMPs from unstimulated ECs, suggesting that these MPs 
may be both a consequence and a cause of the inflamma-
tory response.9

In inflammation state, MPs have ability to transfer 
chemokine receptors and arachidonic acid between cells, 
leading to induction of adhesion molecules such as intra-
cellular adhesion molecule-1 (ICAM-1) and VCAM-1. 
Adhesion molecules on EMPs can mediate adhesion of 
monocytes to ECs in vitro, leading to the maintenance of 
inflammation (Figure 2). Several studies have demon-
strated increased sVCAM-1, sICAM1, sE-selectin, and sP-
selectin levels in serum of SSc patients compared with the 
healthy controls,66,140,141 raising the question: do MPs have 
together with adhesion molecules role in SSc pathogene-
sis. It has been found that sE- and sP-selectins142 strongly 
correlate with either fraction (F) of AnxV-negative EMPs 
or PMPs in SSc with difference regarding to subtypes. In 
patients with diffuse systemic sclerosis (dSSc), association 
between F EMPs and both sP and sE selectins was 
observed, while in limited systemic sclerosis (lSSc), the 
only association was between PMPs and sP.59

MPs are capable of converting pentametric CRP into 
proinflamatory monometric CRP. Furthermore, MPs con-
taining CRP monomers can bind to the surface of ECs and 
generate proinflamatory signals in vitro.143 In early inflam-
mation, MPs may also induce immune cell apoptosis and 
the production of anti-inflammatory mediators such as IL8 
predominately from LMPs (Figure 2).144 CRP is one of the 
revised European Scleroderma Trials and Research group 
(EUSTAR) index component.145 The highest number of 
total MPs has been found in a SSc patient with elevated 
CRP and an increased disease activity score of 3.5.49 In 
spite of no study showing significant correlation between 
MPs and EScSG disease activity index score49,50 so far, 
some data suggest that this association might exist. Thus, 
C3 complement, one of the EScSG component and possi-
ble marker of vascular injury,146 inversely correlates with 
values of activated EMPs (CD62+AnxV–).50

Recently, strong association has been demonstrated 
between EMPs (CD62+) levels and perivascular soft tis-
sue inflammation, visualized by fluorescence optical 
imaging (FOI) in SSc patients.47 An enhancement of 
fluorescence optical contrast media has been observed in 
vivo in the inflammatory tissue as visualized by FOI with 
an excellent correlation to histopathology.147

Organ involvement

The levels of EMPs, MPs, and PMPs total number 
inversely correlate with the severity of skin involvement 
assessed by mRSS,49,50 the best validated outcome meas-
ure for skin fibrosis in SSc.146 Lower levels of PMPs and 
total MPs have been reported in patients with mRSS 
⩾10,49 indicating that numbers of MPs could be associated 
with milder dermal fibrosis in SSc.

Recently, it has been shown that worse lung function 
measured by DLCO and FVC correlates with higher levels 
of both AnxV non-binding EMPs and LMPs, and these 
findings have been dissimilar in patients with limited and 
diffuse disease. In dSSc, increased concentration of both 
AnxV– EMPs and LMPs is related to a reduction of FVC, 
whereas in lSSc, the same MPs are associated with a reduc-
tion of DLCO. Furthermore, increased AnxV– EMPs have 
been found in patients with x-ray-confirmed lung fibrosis 
compared to cases without (frequency of ILD was higher in 
lSSc group).53 The significantly increased concentration of 
both PMPs and monocytes-derived microparticles (mMPs) 
has been found in SSc patients with interstitial pneumonia 
(IP). PMPs-enhanced rsCD40L may stimulate the activa-
tion of monocytes and promote the production of mMPs 
from THP-1 sugessting the role of MPs in pathophysiology 
of progressive SSc with IP.52 Furthermore, oxidized extra-
cellular HMGB1, soluble or associated to PMPs, may 
amplify activation of neutrophils. Activated leukocytes and 
membrane HMGB1 are elevated in SSc patients with PAH 
or with diffuse subtype of disease.111 PAH is associated 
with a specific pattern of platelets activation and higher 
fraction of HMGB1+ PMPs.131

Conclusion

Although the knowledge about the role of MPs in fibrosis 
has recently advanced considerably, this research area still 
presents a great number of challenges. There is now accu-
mulating evidence of the multiple faces of MPs as convey-
ors of cell information with major role in inflammation, 
thrombosis, and angiogenesis. MPs are undoubtedly impli-
cated in immunopathogenesis. At present, the attention 
may be focused for the first time on the fact that MPs may 
have different behaviors. In fact, they can be antifibrotic 
and profibrotic as well. These particles may contribute to 
EndoMT and EMT via different mediators such as TGF-β, 
PDGF, and HMGB1 protein. Furthermore, they may 
directly produce ROS through Nox-dependent processes, 
leading to the development and maintenance of oxidative 
stress, which is an important trigger of fibrosis. MPs are 
implicated in microangiopathy and clinical features of 
SSc. On the contrary, MPs contain proteolotic enzymes, 
such as MMPs involved into ECM degradation. Moreover, 
these particles may induce the synthesis in fibroblast of 
some MMPs, thus enhancing the ECM degradation 
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process. Expressing VEGF, TF, and the protein sonic 
Hedgehog, MPs may promote new vessel formation. The 
proven antifibrotic activity of MPs might serve as new 
therapeutic targets, opening new research avenues. More 
studies are warranted to provide novel insights into the 
world of MPs, to disclose their real potential as factors 
with a regenerative as well as an antifibrotic role.
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