Table 1.
Models | Top-N accuracy (%) | Mean Reciprocal Rank | |||||
---|---|---|---|---|---|---|---|
1 | 3 | 5 | 10 | 20 | 50 | ||
RetroSim | 35.7 () | 53.3 () | 62.0 () | 73.4 () | 82.3 () | 88.5 () | 0.477 () |
RetroSim + FF-EBM | 49.7 () | 72.3 () | 79.4 () | 85.5 () | 88.1 () | 88.9 () | 0.622 () |
RetroSim + Graph-EBM | 51.8 () | 74.5 () | 81.1 () | 86.4 () | 88.5 () | 88.9 () | 0.644 () |
NeuralSym | 45.7 () | 66.4 () | 73.5 () | 80.7 () | 85.3 () | 87.3 () | 0.578 () |
NeuralSym + FF-EBM | 50.5 () | 71.8 () | 78.7 () | 84.5 () | 87.1 () | 87.5 () | 0.626 () |
NeuralSym + Graph-EBM | 51.3 () | 73.6 () | 80.2 () | 85.4 () | 87.1 () | 87.5 () | 0.636 () |
RetroXpert | 45.8 () | 59.2 () | 63.0 () | 66.9 () | 69.9 () | 73.0 () | 0.543 () |
RetroXpert + FF-EBM | 42.7 () | 62.0 () | 67.6 () | 72.5 () | 75.6 () | 77.1 () | 0.536 () |
RetroXpert + Graph-EBM | 36.7 () | 58.2 () | 65.8 () | 73.0 () | 75.9 () | 77.3 () | 0.491 () |
GLN | 51.7 () | 67.8 () | 75.1 () | 83.2 () | 88.9 () | 92.4 () | 0.620 () |
GLN + FF-EBM | 49.7 () | 72.4 () | 80.0 () | 87.0 () | 90.6 () | 93.0 () | 0.629 () |
GLN + Graph-EBM | 52.3 () | 74.9 () | 82.0 () | 88.0 () | 91.4 () | 93.0 () | 0.652 () |
Bolded values refer to the best top-N accuracy and the best MRR for that one-step model. We report the average of 3 experiments where both the proposer and re-ranker are initialized with a different random seed, with the standard deviation in parentheses. Note that RetroSim is a deterministic algorithm and is reported with a standard deviation of 0