Skip to main content
. 2022 Mar 15;14:15. doi: 10.1186/s13321-022-00594-8

Table 1.

Results of re-ranking four one-step models on the USPTO-50K test dataset

Models Top-N accuracy (%) Mean Reciprocal Rank
1 3 5 10 20 50
RetroSim 35.7 (±0) 53.3 (±0) 62.0 (±0) 73.4 (±0) 82.3 (±0) 88.5 (±0) 0.477 (±0.000)
RetroSim + FF-EBM 49.7 (±0.34) 72.3 (±0.21) 79.4 (±0.15) 85.5 (±0.13) 88.1 (±0.07) 88.9 (±0.01) 0.622 (±0.002)
RetroSim + Graph-EBM 51.8 (±0.43) 74.5 (±0.37) 81.1 (±0.17) 86.4 (±0.13) 88.5 (±0.02) 88.9 (±0.00) 0.644 (±0.004)
NeuralSym 45.7 (±0.30) 66.4 (±0.40) 73.5 (±0.30) 80.7 (±0.21) 85.3 (±0.34) 87.3 (±0.32) 0.578 (±0.001)
NeuralSym + FF-EBM 50.5 (±0.21) 71.8 (±0.62) 78.7 (±0.18) 84.5 (±0.32) 87.1 (±0.29) 87.5 (±0.32) 0.626 (±0.003)
NeuralSym + Graph-EBM 51.3 (±0.52) 73.6 (±0.34) 80.2 (±0.35) 85.4 (±0.30) 87.1 (±0.27) 87.5 (±0.32) 0.636 (±0.004)
RetroXpert 45.8 (±0.25) 59.2 (±0.26) 63.0 (±0.57) 66.9 (±0.31) 69.9 (±0.62) 73.0 (±0.70) 0.543 (±0.004)
RetroXpert + FF-EBM 42.7 (±0.27) 62.0 (±0.21) 67.6 (±0.05) 72.5 (±0.08) 75.6 (±0.11) 77.1 (±0.20) 0.536 (±0.002)
RetroXpert + Graph-EBM 36.7 (±0.91) 58.2 (±1.06) 65.8 (±0.73) 73.0 (±0.32) 75.9 (±0.12) 77.3 (±0.21) 0.491 (±0.008)
GLN 51.7 (±0.33) 67.8 (±0.43) 75.1 (±0.32) 83.2 (±0.12) 88.9 (±0.11) 92.4 (±0.06) 0.620 (±0.003)
GLN + FF-EBM 49.7 (±0.77) 72.4 (±0.18) 80.0 (±0.28) 87.0 (±0.11) 90.6 (±0.12) 93.0 (±0.02) 0.629 (±0.005)
GLN + Graph-EBM 52.3 (±0.01) 74.9 (±0.27) 82.0 (±0.18) 88.0 (±0.02) 91.4 (±0.11) 93.0 (±0.08) 0.652 (±0.001)

Bolded values refer to the best top-N accuracy and the best MRR for that one-step model. We report the average of 3 experiments where both the proposer and re-ranker are initialized with a different random seed, with the standard deviation in parentheses. Note that RetroSim is a deterministic algorithm and is reported with a standard deviation of 0