Skip to main content
. 2022 Mar 15;14:15. doi: 10.1186/s13321-022-00594-8

Table 2.

Results of re-ranking combined proposals of GLN and RetroSim on USPTO-50K test data

Models Top-N accuracy (%) Mean Reciprocal Rank
1 3 5 10 20 50
RetroSim 35.7 (±0) 53.3 (±0) 62.0 (±0) 73.4 (±0) 82.3 (±0) 88.5 (±0) 0.477 (±0.000)
RetroSim + Graph-EBM 51.8 (±0.43) 74.5 (±0.37) 81.1 (±0.17) 86.4 (±0.13) 88.5 (±0.02) 88.9 (±0.00) 0.644 (±0.004)
GLN 51.7 (±0.33) 67.8 (±0.43) 75.1 (±0.32) 83.2 (±0.12) 88.9 (±0.11) 92.4 (±0.06) 0.620 (±0.003)
GLN + Graph-EBM 52.3 (±0.01) 74.9 (±0.27) 82.0 (±0.18) 88.0 (±0.02) 91.4 (±0.11) 93.0 (±0.08) 0.652 (±0.001)
GLN + RetroSim + Graph-EBM 52.5 (±0.10) 75.7 (±0.15) 83.1 (±0.34) 89.7 (±0.18) 93.1 (±0.12) 94.8 (±0.06) 0.658 (±0.000)

Bolded values represent best top-N accuracies and best MRR across both GLN and RetroSim (including their individually re-ranked versions)