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BDNF‑TrkB signaling‑mediated upregulation 
of Narp is involved in the antidepressant‑like 
effects of (2R,6R)‑hydroxynorketamine 
in a chronic restraint stress mouse model
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Abstract 

Background:  Preclinical studies have indicated that the ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) is 
a rapid-acting antidepressant drug with limited dissociation properties and low abuse potential. However, its effects 
and molecular mechanisms remain unclear. In this work, we examined the involvement of brain-derived neurotrophic 
factor (BDNF), tropomyosin receptor kinase B (TrkB) and Narp in the antidepressant-like actions of (2R,6R)-HNK in a 
chronic restraint stress (CRS) mouse model.

Methods:  C57BL/6 male mice were subjected to CRS for 8 h per day for 14 consecutive days. Open field, forced 
swimming, novelty suppressed feeding, and tail suspension tests were performed after administering (2R,6R)-HNK 
(10 mg/kg), a combination of (2R,6R)-HNK and NBQX (an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 
(AMPA) receptor antagonist; 10 mg/kg), or a combination of (2R,6R)-HNK and ANA-12 (a TrkB receptor antagonist; 0.5 
mg/kg). The mRNA levels of Bdnf and Narp in the hippocampus were determined by quantitative reverse transcrip-
tion-PCR (qRT–PCR). Western blotting was used to determine the hippocampal protein levels of GluA1, GluA2, BDNF, 
Narp, PSD95, and synaptophysin, as well as the p-TrkB/TrkB protein ratio.

Results:  (2R,6R)-HNK had rapid antidepressant-like effects in CRS mice. Furthermore, (2R,6R)-HNK significantly ame-
liorated CRS-induced downregulation of GluA1, GluA2, BDNF, Narp, PSD95, and the p-TrkB/TrkB protein ratio in the 
hippocampus. The effects of (2R,6R)-HNK were blocked by combinations with NBQX or ANA-12.

Conclusion:  BDNF-TrkB signaling-mediated upregulation of Narp in the hippocampus may play a key role in the 
antidepressant-like effect of (2R,6R)-HNK in the CRS model of depression.
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Introduction
Major depressive disorder (MDD) is a chronic and 
debilitating mental disorder that affects over 264 mil-
lion people worldwide and causes serious health and 
socioeconomic consequences [1]. Current monoamin-
ergic-based pharmacotherapies often take several weeks 
or months to alleviate clinical symptoms [2]. In addi-
tion, treatment resistance and nonresponse rates of up 
to 30% have made these current treatments less reliable 
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[2]. Laboratory and clinical studies have provided strong 
evidence for the rapid-acting (within hours) and sus-
tained (lasting up to 7 days) antidepressant-like actions 
of (R,S)-ketamine (ketamine), an N-methyl-D-aspartate 
(NMDA) receptor antagonist, in treatment-resistant 
patients with MDD [3–6]. Although ketamine is a prom-
ising alternative to standard clinically prescribed drugs 
and is regarded as one of the most significant advances 
in psychiatry in recent decades, its dissociative proper-
ties, changes in sensory perception, and abuse liability [7] 
have prompted a search for alternative compounds that 
trigger robust antidepressant-like effects without induc-
ing psychotomimetic side effects.

Recently, one of the ketamine metabolites, (2R,6R)-
hydroxynorketamine (HNK), has been proposed as an 
ideal next-generation agent, as it has strikingly rapid and 
robust antidepressant-like effects without the adverse 
effects of ketamine [8–13]. This interesting metabolite 
has been reported to function as an antidepressant in 
animal models by enhancing the expression and function 
of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA) receptors in the hippocampus [8, 10, 13], 
and it has piqued the interest of researchers to determine 
its clinical efficacy in depressed patients and to investi-
gate its underlying mechanisms.

The activity-dependent release of brain-derived neuro-
trophic factor (BDNF) and the activation of downstream 
tropomyosin receptor kinase B (TrkB) receptors in the 
hippocampus play critical roles in the antidepressant-
like effects of ketamine and its metabolites [8, 14, 15]. 
The stimulation of BDNF-TrkB signaling promotes the 
transcription of many synaptic genes and increases the 
number and function of synapses [16]. Neuronal activity-
regulated pentraxin 2 (Narp) is highly expressed in the 
hippocampus and cortex and is associated with excita-
tory synaptogenesis and AMPA receptor aggregation 
[17, 18]. There is some evidence that BDNF expression 
and Narp expression are related [5, 19, 20]. Mariga et al. 

demonstrated that BDNF directly regulates Narp, medi-
ating glutamatergic transmission and mossy fiber plastic-
ity in the hippocampus [5].

In this work, we sought to investigate whether the keta-
mine metabolite (2R,6R)-HNK rescues chronic restraint 
stress (CRS)-induced depression-like behavior through 
upregulation of AMPA receptors expression mecha-
nisms. We also investigated the role of BDNF-mediated 
Narp expression in the antidepressant-like effects of 
(2R,6R)-HNK.

Methods and materials
Animal groups
All experimental procedures were approved by the Eth-
ics Committee of Zhongda Hospital, Medical School, 
Southeast University. All animal experiments were car-
ried out in strict accordance with the National Institutes 
of Health Guide for the Care and Use of Laboratory Ani-
mals. Eighty male 7-week-old C57BL/6J mice were pur-
chased from the Animal Center of Southeast University, 
Nanjing, China. This initial study was carried out in male 
mice to control for hormonal variables, as ovarian hor-
mones are necessary for the efficacy of (2R,6R)-HNK in 
females [21]. Animals were housed in groups of four per 
cage under controlled illumination (12 h light/dark cycle, 
lights on 07:00 to 19:00) and temperature (23 ± 1 °C) with 
free access to food and water. After one week of acclima-
tion, the mice were randomly divided into five groups (n 
= 16): the control group, the CRS group, the CRS plus 
HNK (Sigma–Aldrich, St. Louis, MO, USA) group, the 
CRS plus HNK plus NBQX (an AMPA receptor antago-
nist; Tocris Bioscience, Bristol, UK) group, and the CRS 
plus HNK plus ANA-12 (a noncompetitive TrkB receptor 
antagonist; Maybridge Chemical Company, Tintagel, UK) 
group. Mice were decapitated after the behavioral tests, 
and the hippocampus was rapidly dissected, frozen, and 
stored at -80 °C for further use. The schematic timeline of 
the experimental procedure is summarized in Fig. 1.

Fig. 1  Timeline of drug injection, behavioral tests, and tissue collection. See the text for details. OFT, open field test; FST, forced swimming test; 
NSFT, novelty suppressed feeding test; TST, tail suspension test
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Chronic restraint stress
For restraint stress, 8-week-old mice weighing 22–23 
g were individually placed head-first into a well-venti-
lated 50 ml polypropylene conical tube, and their tails 
were removed through a 3 cm long tube and a small 
hole in the cap of the tube. Mice could not move for-
ward or backward in this device. This restraint stress 
was administered to animals daily for 8 h, from 9 am to 
5 pm, for 14 consecutive days [22, 23]. The control mice 
remained undisturbed in their original cages in their 
home environment. The stressed animals were returned 
to their home environment following the session of 
restraint stress.

Drugs
All drugs were administered intraperitoneally. For 
(2R,6R)-HNK administration, fresh solutions (10 mg/
kg) were prepared with 0.9% saline and administered on 
Day 15. NBQX (10 mg/kg) was dissolved in 0.9% saline 
and administered to mice intraperitoneally 30 min before 
(2R,6R)-HNK. ANA-12 (0.5 mg/kg) was prepared in vehi-
cle containing 1% dimethyl sulfoxide and coadministered 
with (2R,6R)-HNK to mice. The selected doses and injec-
tion time points were based on previous studies [13, 24].

Open field test (OFT)
Exploration in response to a novel open field was meas-
ured 2 h after (2R,6R)-HNK administration. Animals 
were placed in the center of an arena (50 cm × 50 cm 
× 40 cm; length × width × height) in a dimly lit room 
and allowed to move freely for 5 min. A video camera 
positioned directly above the arena was used to track 
the movement of each animal with software (XR-XZ301, 
Shanghai Softmaze Information Technology Co., Ltd., 
Shanghai, China). The dependent measurements were 
the total distance traveled, the time spent in the center, 
and the number of entries into the center.

Forced swimming test (FST)
The test was performed 4 h after (2R,6R)-HNK adminis-
tration to evaluate depression-like behavior. Mice were 
placed in a glass container (20 cm diameter × 30 cm 
height) filled to a depth of 15 cm with water (23-25 °C) 
and allowed to swim for 6 min. The immobility time dur-
ing the last 4 min was measured by an observer blinded 
to animal treatment. The immobility time refers to the 
time when a mouse floated passively with no additional 
activity or movements other than those required to 
maintain balance in the water [25]. After the experiment, 
the mouse body was wiped dry with absorbent paper, 

and the mouse was returned to its the original cage. The 
water was replaced at the end of each test.

Novelty suppressed feeding test
The novelty suppressed feeding test (NSFT) was carried 
out according to previous studies [26, 27]. The testing 
apparatus was a plastic box (50 cm × 50 cm × 40 cm; 
length × width × height), the floor of which was covered 
with approximately 2 cm of wooden bedding. The mice 
were housed alone in freshly made home cages and food 
deprived 24 h prior to behavioral testing. At the time of 
testing, a single food pellet was placed on a white paper 
platform in the center of the box. An animal was placed 
in a corner of the box, and the time needed for the mice 
to consume some food (the feeding latency) was recorded 
by a trained observer. Immediately afterward, the animal 
was returned to its home cage, which contained pre-
weighed food pellets, and the amount of food consumed 
by the mouse during the next 5 min was measured. Each 
mouse was weighed before food deprivation and before 
testing to assess the percentage of body weight loss.

Tail suspension test (TST)
Mice were suspended by their tails and secured to a hori-
zontal bar with tape. The immobility time was recorded 
for 6 min. Mice were considered immobile only when 
they hung passively and were completely motionless [26]. 
The behavioral apparatus was thoroughly cleaned with 
70% ethanol between animals.

Quantitative mRNA measurements
We analyzed the mRNA levels of Bdnf and Narp in the 
hippocampus via quantitative reverse transcription-
PCR (qRT–PCR) in a StepOnePlus™ Real-Time PCR 
System (Applied Biosystems, Foster City, CA), as previ-
ously described [28]. We extracted RNA from the sam-
ples using an RNeasy Plus Kit (Qiagen, Valencia, CA), 
reverse-transcribed it with a high-capacity cDNA reverse 
transcription kit (Bio–Rad Laboratories, Hercules, CA), 
and then analyzed it with qRT–PCR. TaqMan probes for 
Bdnf (Mm04230607_s1) and Narp (Mm00479438_m1) 
were obtained from Applied Biosystems (Carlsbad, CA, 
USA). Data were normalized to glyceraldehyde-3-phos-
phate dehydrogenase (Gapdh) mRNA (Mm99999915_
g1). The gene expression was calculated using the ΔΔCT 
method [29], and data are presented as the relative fold 
change from control animals.

Western blotting analysis
The hippocampus was homogenized in an RIPA lysis 
buffer mixed with 1% protease inhibitor cocktail and 1% 
phenylmethanesulfonyl fluoride. After centrifugation at 
13,000 g for 10 min at 4 °C, the supernatant was collected, 
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and the protein concentration was determined by a BCA 
protein assay kit (Beyotime, China). Forty micrograms of 
protein per lane was loaded on SDS–PAGE gels and then 
transferred to polyvinylidene fluoride membranes. After 
blocking with 3% bovine serum albumin in Tris Buffered 
Saline with Tween (TBST) for 1 h at room temperature, 
the membranes were incubated at 4 °C overnight with 
primary antibodies, including recombinant anti-GluA1 
(1:1000; ab109450, Abcam, Cambridge, UK), recombi-
nant anti-GluA2 (1:1000; ab133477, Abcam, Cambridge, 
UK), rabbit anti-BDNF (1:1000; ab226843, Abcam, Cam-
bridge, UK), recombinant anti-TrkB (phospho Y705) 
(1:1000; ab229908, Abcam, Cambridge, UK), rabbit anti-
TrkB (1:1000; 4606S, Cell Signaling, Danvers, MA, USA), 
recombinant anti-Narp (1:1000; ab277523, Abcam, Cam-
bridge, UK), rabbit anti-postsynaptic density 95 (PSD95) 
(1:1000; ab18258, Abcam, Cambridge, UK), recombinant 
anti-synaptophysin (1:1000; ab32127, Abcam, Cam-
bridge, UK), and mouse anti-β-actin (1:1000; ab8226, 
Abcam, Cambridge, UK). The membranes were washed 
three times in TBST before being incubated for 1 h at 
room temperature with goat anti-rabbit or mouse IgG-
horseradish peroxidase-conjugated secondary antibodies 
(1:7000, Bioworld Technology, St. Louis Park, MN, USA). 
The protein bands were detected by enhanced chemilu-
minescence, exposed to X-ray film, and quantitated with 
ImageJ software (National Institutes of Health, Bethesda, 
MD, USA).

Statistical analysis
Statistical analyses were conducted on raw data using 
SigmaPlot 14.0 software (Systat Software Inc., San Jose, 
CA, USA), which automatically determined whether the 
dataset met test criteria (Shapiro–Wilk for the normality 
test and Brown-Forsythe for the equal variance test), and 
Prism V8.0 software (GraphPad, San Diego, CA, USA). 
Data are presented as the mean ± SEM. The differences 
between the groups were compared using one-way analy-
sis of variance (ANOVA) followed by post hoc Holm-
Sidak tests. P < 0.05 was considered significant.

Results
Effects of (2R,6R)‑HNK on CRS‑induced depression‑like 
behaviors
In the OFT, there was a significant difference between 
subjects from different groups in terms of the time they 
spent in the center (F(4,75) = 12.016, P < 0.001, Fig.  2B) 
and the number of entries into the center (F(4,75) = 
13.148, P < 0.001, Fig.  2C), but not in terms of the dis-
tance traveled during the test (F(4,75) = 0.993, P = 0.417; 
Fig.  2A). Specifically, mice in the CRS group spent less 
time in the center and made fewer entries into the center 
than mice in the control group (time spent in the center: 

P < 0.001; entries into the center: P < 0.001) and mice 
in the CRS + HNK group (time spent in the center: P < 
0.001; entries into the center: P = 0.001). Compared with 
mice administered (2R,6R)-HNK only, the time spent in 
the center and the number of entries into the center were 
decreased in mice pretreated with NBQX (time spent in 
the center: P = 0.001; entries into the center: P < 0.001) 
or cotreated with ANA-12 (time spent in the center: P = 
0.002; entries into the center: P = 0.001).

In the FST, there was a significant difference in immo-
bility time between treatment groups (F(4,75) = 12.810, P 
< 0.001, Fig. 2D). Multiple pairwise comparisons revealed 
that mice in the CRS group had longer immobility time 
than mice in the control group (P < 0.001) and mice in 
the CRS + HNK group (P < 0.001). The immobility times 
in the CRS + HNK + NBQX group (P = 0.002) and the 
CRS + HNK+ ANA-12 group (P = 0.011) were longer 
than that in the CRS + HNK group.

Mice in the control group lost more weight than mice 
in all other groups during the fast for the NSFT (F(4,75) = 
23.082, P < 0.001, Fig.  2E). One-way ANOVA revealed 
that treatment had a significant effect on feeding latency 
(F(4,75) = 2.704, P = 0.037, Fig. 2F). However, the pairwise 
multiple comparison analysis did not show a significant 
difference between groups. The total food consumption 
was unaffected across all five groups (F(4,75) = 1.849, P = 
0.128, Fig. 2G).

In the TST, there was a significant difference in immo-
bility time between treatment groups (F(4,75) = 4.878, P = 
0.001, Fig.  2H). Multiple pairwise comparisons revealed 
that the mice in the CRS group had significantly longer 
immobility time than the mice in the control (P = 0.015) 
and CRS + HNK (P = 0.020) groups. However, pretreat-
ment with NBQX (P = 0.944 when compared to the CRS 
group) and coadministration with ANA-12 (P = 0.872 
when compared to the CRS group) blocked the antide-
pressant-like action of (2R,6R)-HNK in the TST.

Roles of the mRNA levels of hippocampal Bdnf and Narp 
in the antidepressant‑like activity of (2R,6R)‑HNK
In the hippocampal gene transcription measurements, 
there was a statistically significant difference in the hip-
pocampal mRNA levels of Bdnf between treatment 
groups (F(4,25) = 16.184, P < 0.001, Fig.  3A). The pair-
wise multiple comparison analysis revealed that, when 
compared with the CRS group, (2R,6R)-HNK amelio-
rated the CRS-induced decrease in Bdnf mRNA levels (P 
< 0.001), which was abolished by injection with NBQX 
(P < 0.001) but not ANA-12 (P = 0.876). Similarly, there 
was a statistically significant difference in the hippocam-
pal Narp mRNA levels of subjects that received different 
treatments (F(4,25) = 37.831, P < 0.001, Fig. 3B). The pair-
wise multiple comparison analysis showed that, when 
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Fig. 2  Effects of (2R,6R)-HNK on chronic restraint stress (CRS)-induced depression-like behaviors. A-C Histograms showing the total distance 
traveled, time spent in the center, and number of entries into the center of the open field by mice during the open field test. D Histogram showing 
the immobility time of the mice in the forced swimming test (FST). E-G Histograms showing weight loss during the fast for the novelty suppressed 
feeding test (NSFT), the feeding latency, and the total food consumption in the NSFT. H Histogram showing the immobility time of the mice in 
the tail suspension test (TST). Data are presented as the mean ± SEM (n = 16 mice per group). *P < 0.05, **P < 0.01, and ***P < 0.001. N.S., not 
significant

Fig. 3  Role of the mRNA levels of hippocampal Bdnf and Narp in the antidepressant-like activity of (2R,6R)-HNK. A, B The respective mRNA levels of 
Bdnf and Narp in the hippocampi of mice. Data are shown as the mean ± SEM, with 6 mice/group. ***P < 0.001
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compared with the CRS group, (2R,6R)-HNK amelio-
rated the CRS-induced decrease in Narp transcription (P 
< 0.001), which was abolished by both pretreatment with 
NBQX (P < 0.001) and cotreatment with ANA-12 (P < 
0.001).

Roles of the protein levels of hippocampal GluA1, GluA2, 
BDNF, Narp, PSD95 and synaptophysin and the p‑TrkB/
TrkB protein ratio in the antidepressant‑like activity 
of (2R,6R)‑HNK
To investigate the role of AMPA receptors in the antide-
pressant-like actions of (2R,6R)-HNK, we determined the 
protein levels of hippocampal GluA1 and GluA2, which 
are important subunits of AMPA receptors. We found 
statistically significant differences in the hippocam-
pal GluA1 and GluA2 protein levels between treatment 
groups (GluA1: F(4,25) = 93.635, P < 0.001, Fig.  4A, B; 
GluA2: F(4,25) = 80.131, P < 0.001, Fig. 4A, C). The pair-
wise multiple comparison analysis showed that GluA1 
and GluA2 protein levels in the hippocampi of CRS mice 
were significantly lower than those in control mice (P < 
0.001). (2R,6R)-HNK significantly increased GluA1 and 
GluA2 levels in the hippocampus (P < 0.001), and this 

increase was abolished by pretreatment with NBQX (P 
< 0.001) but not by cotreatment with ANA-12 (GluA1: P 
= 0.879; GluA2: P = 0.670). As BDNF-TrkB signaling is 
a putative pathway in the therapeutic action of (2R,6R)-
HNK, we performed Western blotting analyses of BDNF 
protein levels and the p-TrkB/TrkB ratio. There were sta-
tistically significant differences in BDNF protein levels 
(F(4,25) = 68.315, P < 0.001, Fig. 4A, D) and the p-TrkB/
TrkB protein ratio (F(4,25) = 176.748, P < 0.001, Fig. 4A, E) 
between treatment groups. The pairwise multiple com-
parison analysis showed that the BDNF protein levels 
in the hippocampi of CRS mice were significantly lower 
than those in control mice (P < 0.001). (2R,6R)-HNK 
significantly increased BDNF levels (P < 0.001), and this 
increase was abolished by pretreatment with NBQX (P 
< 0.001) or cotreatment with ANA-12 (P < 0.001). Com-
pared with the p-TrkB/TrkB ratio in the control and CRS 
+ HNK groups, the p-TrkB/TrkB ratio in the CRS group 
was decreased (P < 0.001). Pretreatment with NBQX or 
cotreatment with ANA-12 abolished the (2R,6R)-HNK-
induced increase in the p-TrkB/TrkB ratio in CRS mice 
(P < 0.001). One-way ANOVA of Narp protein levels 
revealed a significant difference among the five groups 

Fig. 4  Roles of AMPA receptors and BDNF-TrkB signaling in the antidepressant-like activity of (2R,6R)-HNK. A Representative Western blots of the 
protein levels in the five groups. Full-length blots are presented in Supplementary Figure 1, 2, 3. B–H The respective protein levels of GluA1, GluA2, 
BDNF, the p-TrkB/TrkB protein ratio, Narp, PSD95, and synaptophysin in the hippocampi of male mice. Data, normalized against the control, are 
shown as the mean ± SEM, with 6 mice/group. ***P < 0.001. N.S., not significant
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(F(4,25) = 176.748, P < 0.001, Fig.  4A, F). The pairwise 
multiple comparison analysis showed that Narp protein 
levels in the hippocampi of CRS mice were significantly 
lower than those in control mice (P < 0.001). (2R,6R)-
HNK significantly increased Narp levels (P < 0.001), and 
this increase was abolished by pretreatment with NBQX 
or cotreatment with ANA-12 (P < 0.001). The treatment 
also had a statistically significant effect on PSD95 protein 
levels (F(4,25) = 129.127, P < 0.001; Fig. 4A, H), but not on 
the levels of the presynaptic membrane protein synapto-
physin (F(4,25) = 2.301, P = 0.087; Fig.  4A, G). Consist-
ent with these results, the pairwise multiple comparison 
analysis revealed that the PSD95 protein levels in the 
CRS group were lower than those in the control and CRS 
+ HNK groups (P < 0.001). The PSD95 protein levels 
were lower in mice pretreated with NBQX (P < 0.001) or 
cotreated with ANA-12 (P < 0.001) than in mice adminis-
tered (2R,6R)-HNK only.

Discussion
The novel finding of this study is that increased AMPA 
receptors and BDNF expression, activation of down-
stream TrkB receptors, which resulted in increased Narp 
expression, are associated with the antidepressant-like 
effects of (2R,6R)-HNK. The antidepressant-like effects 
of (2R,6R)-HNK are blocked by the AMPA receptor 
antagonist NBQX and the TrkB antagonist ANA-12. 
Overall, these results suggest that the BDNF-TrkB signal-
ing-mediated upregulation of Narp plays a key role in the 
antidepressant-like effects of (2R,6R)-HNK by influenc-
ing synaptic plasticity.

Chronic stress is a risk factor for psychiatric illnesses 
such as anxiety and depression [30, 31]. For this reason, 
we established a chronic restraint stress animal model of 
depression, which has been well described in previous 
studies [22, 23]. Kim et  al. demonstrated that restraint 
treatment for 8 h per day for 14 days successfully pro-
duced anxiety- and depression-like behaviors, whereas 
restraint treatment for 2 h per day for 10 days was only 
marginally effective [22]. In our study, CRS-induced 
depression-like behaviors were reversed by (2R,6R)-HNK 
administration, confirming previous observations of the 
antidepressant-like effects of (2R,6R)-HNK [8, 10, 12, 
13, 32]. However, (2R,6R)-HNK has also been reported 
to lack antidepressant effects or exert have poor antide-
pressant effects in chronic social-defeat stress (CSDS), 
lipopolysaccharide (LPS), chronic corticosterone, and 
learned helplessness (LH) models [33–35]. The reason for 
the discrepancy between these findings remains unclear, 
but it could partially be due to differences in the strain, 
species, animal models of depression, behavioral test 
procedures, or drug doses. A clinical trial of (2R,6R)-
HNK for therapeutic efficacy in humans is ongoing at the 

United States National Institute for Mental Health [36]. 
It is of great interest to explore the antidepressant-like 
effects of (2R,6R)-HNK in MDD patients.

Currently, the precise mechanisms underlying the 
effects of (2R,6R)-HNK are still unknown. AMPA recep-
tors play a role in the antidepressant-like activity of 
ketamine [37]. Ketamine-induced glutamate release 
activates AMPA receptors by acting on NMDA recep-
tors, resulting in the synthesis and release of BDNF [38], 
which has been identified as an important mediator of 
synaptic plasticity [39]. Multiple studies have suggested 
that BDNF-TrkB signaling is important in the patho-
physiology of depression and as a therapeutic target 
for antidepressants [8, 14, 15]. In this study, we found a 
marked increase in the AMPA receptor subunits GluA1 
and GluA2 in the hippocampus after (2R,6R)-HNK 
administration in CRS mice, whereas pretreatment 
with NBQX significantly blocked the effects of (2R,6R)-
HNK, which is consistent with the recent finding that 
(2R,6R)-HNK administration induces the upregulation 
of synaptic AMPA receptors [13, 29]. The results pro-
vide evidence that (2R,6R)-HNK rescues chronic stress-
induced depression-like behavior through increased 
AMPA receptors expression in the hippocampus. Fuku-
moto et al. found that the antidepressant-like actions of 
(2R,6R)-HNK were inhibited by knocking in the BDNF 
Val66Met allele (which blocks the processing and release 
of BDNF) or by injecting an anti-BDNF antibody into 
the medial prefrontal cortex (mPFC), demonstrating 
(2R,6R)-HNK induces long-lasting antidepressant behav-
ioral responses via activity-dependent BDNF release [8]. 
A recent study also reported that the administration of a 
neutralizing BDNF antibody or inhibitors of the BDNF 
signaling pathway in the ventrolateral periaqueductal 
gray 30 min before the (2R,6R)-HNK treatment blocked 
the actions of (2R,6R)-HNK. However, the BDNF RNAi 
attenuated the actions of (2R,6R)-HNK [40]. As shown in 
the present study, the BDNF levels and the p-TrkB/TrkB 
ratio in the hippocampi of CRS mice both increased after 
(2R,6R)-HNK administration. The antidepressant-like 
effects of (2R,6R)-HNK were blocked by ANA-12, a TrkB 
receptor antagonist. Taken together, these findings sug-
gest that AMPA receptor-driven BDNF-TrkB signaling 
plays a contributing role in mediating the antidepressant-
like effects of (2R,6R)-HNK.

It has been reported that Narp is a direct transcrip-
tional target of BDNF [5]. Acute BDNF withdrawal 
results in the downregulation of Narp, whereas BDNF 
greatly increases Narp transcription [5]. Furthermore, 
Narp knockout mice exhibit anxiety- and depression-
like behaviors [16, 41]. The selective serotonin reup-
take inhibitor (SSRI) fluoxetine increased hippocampal 
Narp mRNA expression in healthy control rats [42]. 
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These findings suggest that Narp plays a role in BDNF-
induced antidepressant activity. In this study, we found 
that Narp expression in the hippocampi of CRS mice 
increased after a single injection of (2R,6R)-HNK, 
and its expression could be blocked by coadministra-
tion with ANA-12. Thus, CRS may cause a decrease 
in BDNF levels in the hippocampus, which leads to a 
decrease in Narp expression, resulting in depression-
like behaviors in mice, whereas (2R,6R)-HNK exerts its 
antidepressant-like actions via BDNF/TrkB receptors 
and the Narp pathway in the hippocampus.

The mechanism by which Narp mediates the thera-
peutic activity of antidepressants is still unknown. 
Narp, which is expressed by pyramidal neurons and 
secreted by axon terminals, uniquely mediates the 
activity-dependent strengthening of pyramidal neu-
ron excitatory synapses by promoting AMPA recep-
tor accumulation [42]. Overexpression of Narp results 
in synaptic targeting and AMPA receptor stabiliza-
tion at excitatory synapses [43]. Furthermore, Narp 
can promote neuronal migration and dendritic neu-
rite outgrowth, and it is upregulated following long-
term potentiation (LTP) induction [44]. These features 
underlie the contributions of Narp to synaptic plastic-
ity, which is considered to be one of the neurobiological 
mechanisms of depression [45]. We found that (2R,6R)-
HNK administration in CRS mice increased PSD95 
protein levels, which is involved in synaptic plasticity 
and the anchoring of synaptic proteins [46]. Studies on 
the enhanced synaptic function of spine synapses have 
provided additional evidence that synaptic function is 
involved in the actions of (2R,6R)-HNK [8, 13]. More 
mechanistic research is needed in the future, such as 
observing spine morphology changes and applying 
brain-specific gene deletion or overexpression methods 
to investigate the role of Narp in the antidepressant-like 
effects of (2R,6R)-HNK.

In summary, these results demonstrate that (2R,6R)-
HNK induces robust antidepressant behavioral 
responses by stimulating the BDNF-TrkB signaling 
pathway, which further increases Narp expression. 
The current results provide critical insights into the 
mechanism of action of (2R,6R)-HNK, which will 
aid in the development of more effective and safer 
antidepressants.
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