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a b s t r a c t

With the Coronavirus disease 2019 (COVID-19) spread, causing a world pandemic, and recently, the
virus new variants continue to appear, making the situation more challenging and threatening, the
visual assessment and quantification by expert radiologists have become costly and error-prone. Hence,
there is a need to propose a model to predict the COVID-19 cases at the earliest possible to control
the disease spread. In order to assist the medical professionals and reduce workload and the time
the COVID-19 diagnosis cycle takes, this paper proposes a novel neural network architecture termed
as O-Net to automatically segment chest Computerised Tomography Ct-scans infected by COVID-19
with optimised computing power and memory occupation. The O-Net consists of two convolutional
autoencoders with an upsampling channel and a downsampling channel. Experimental tests show our
proposal’s effectiveness and potential, with a dice score of 0.86, pixel accuracy, precision, specificity
of 0.99, 0.99, 0.98, respectively. Performance on the external dataset illustrates generalisation and
scalability capabilities of the O-Net model to Ct-scan obtained from different scanners with different
sizes. The second objective of this work is to introduce our virtual reality platform, COVIR, that
visualises and manipulates 3D reconstructed lungs and segmented infected lesions caused by COVID-
19. COVIR platform acts as a reading and visualisation support for medical practitioners to diagnose
COVID-19 lung infection. The COVIR platform could be used for medical education professional practice
and training. It was tested by Thirteen participants (medical staff, researchers, and collaborators), they
conclude that the 3D VR visualisation of segmented Ct-Scan provides an aid diagnosis tool for better
interpretation.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

COVID-19 is a highly spreading contagious respiratory in-
ection that has had a devastating impact on the world. Re-
ently, new variants of COVID-19 continue to appear, making the
ituation more challenging and threatening [1]. The COVID-19
ymptoms may vary from common like (fever, chill, dry, cough,
iredness, fatigue) to less common ones like (sore throat, aches
nd pains, conjunctivitis, diarrhoea, headache, a rash on the skin,
r discolouration of fingers or toes, loss of taste or smell), or se-
ere like (difficulty breathing or shortness of breath/chest pain or
ressure/loss of speech or movement). The estimated incubation
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period is between 2 and 14 days and has a median of 5 days. It
is worthy to mention that some people become infected and do
not develop any symptoms or feel unwell [2].

Other than the symptoms, there are ways to detect the disease.
COVID-19 tests are available that can detect current infection or
past infection:

• A viral test shows current infection. Two types of viral
tests exist antigen tests that use polymerase chain reaction
(PCR) [2], and nucleic acid amplification tests (NAATs).

• An antibody test (also known as a serology test) shows
past infection. For current infection diagnosis, antibody tests
should not be used.

PCR tests are widely used and considered the most accurate form
available today; it takes time before the results are known CT
scan images are preferred by an experienced doctor to detect
the infected lesions in the lungs. CT scan benefits comprise less
cost, provide valuable data, and wide availability [12]. Assess-
ment and quantification of COVID-19 lung abnormalities based
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Table 1
Representative deep learning-based methods for Ct-scan COVID-19 diagnosis.
Reference Methodology Performance metrics Task

Keno et al. [3] Used transfer learning to train 3D-U-Net model using an 18-layer 3D ResNet Dice 0.679 Segmentation
Adnan et al. [4] Used SegNet and U-Net deep learning networks PixAcc. 0.908 U-Net 0.907 SegNet Segmentation
Chen et al. [5] Used UNet++ to train in Keras in an image-to-image manner PixAcc. 0.95 Detection
Li et al. [6] Introduced COVNet PixAcc. 0.96 Detection
Ying et al. [7] Proposed DRE-Net PixAcc. 0.86 Detection
Garain et al. [8] Proposed SNNs PixAcc. 0.91 Detection
Stefano et al. [9] Proposed C-ENET Dice. ∼0.75 Segmentation
Zhang et al. [10] Improved DCNN model PixAcc. 0.93 Detection
Shouliang et al. [11] Proposed DR-MIL method PixAcc. 0.95 Detection
on chest Ct-scans can help determine disease stage, effectively
allocate limited medical resources, and make informed treatment
decisions. During the pandemic, expert radiologists’ visual assess-
ment and quantification of COVID-19 lung lesions have become
costly and error-prone, urgently requiring the development of
stand-alone practical solutions.

As a long-standing topic, accurate boundary segmentation is
till a challenging and critical process in medical imaging. It is
crucial step in clinical treatment. It dates back to the first
ays of medical imagery when radiologists segmented objects in
mages manually. This process benefited primarily from techno-
ogical advancements, which made it automatic and accelerated
ts execution time. The first generations of segmentation methods
ere based on pure mathematical concepts. The next generations
sed algorithms that can learn and adapt, which made themmore
ccurate and precise [13].
Ct-scan images are regarded one of the most useful sensing ap-

roaches since it allows the physicians and radiologists to identify
nternal structures and see their shape, size, density and texture.
ome examples of Ct-scan segmentation and classification meth-
ds in COVID-19 applications based deep learning approaches are
ummarised in Table 1 along with performance obtained and the
sed neural network model of each approach. The mathematical
ormula of Dice, pixel accuracy in addition to other metrics can
e found in Section 3.4.1. The literature states that most of the
echniques used pre-trained models without changes. Notably,
he research done on U-Net [14] achieved positive accuracy on Ct
ans [3–5]. In addition to that, it was noticed that UNet performs
etter when compared to deep learning other models, which
re more complex and have a large number of parameters that
eed to be tuned. This motivated the use of UNet as it is less
omplex. More examples of deep learning-based segmentation
ethods are given in the next section. Ct-scans used in diag-
osing COVID-19 may produce false-negative effects, especially
arly infection; it is one of its significant weaknesses [12]. Vir-
ual reality visualisation can remedy false-negative detection at
arly-stage infection [12]. The user can interact and become im-
ersed in a computer-generated environment in a realistic way
ia virtual reality technology. The key concepts that define VR
re immersion, sense of presence, and the possibility to interact
ith the computer-generated environment [15]. Nowadays, med-

cal imagery segmentation is the base where radiologists make
heir noted observations, and doctors provide their diagnoses.
oreover, this process is always under enhancement and im-
rovement to make the error margin near zero. Researchers are
eveloping applications for epidemic illnesses and diseases. Re-
ently, virtual and augmented realities applications have shown
reat potential in the medical field and healthcare [16,17]. VR
echnology designs platforms to reduce the face to face inter-
hange of doctors with the infected COVID-19 patients. Today VR
ystems overcome classical medical imagery problems with novel
D imagery visualisation techniques. In the ongoing pandemic
OVID-19, it has been shown that VR-developed techniques help
ealthcare-related applications [18]. Medical VR applications are
12
frequently used as surgery simulation, student teaching, doctors
training, or generally as observation and analysis tools. With
VR technology, doctors can visualise the data better with more
details and less work fatigue. Ct-scans used in diagnosing COVID-
19 may produce false-negative effects, especially early infection;
it is one of its significant weaknesses [12]. Virtual reality vi-
sualisation can remedy false-negative detection at early-stage
infection [12]. The user can interact and become immersed in
a computer-generated environment in a realistic way via virtual
reality technology. The key concepts that define VR are immer-
sion, sense of presence, and the possibility to interact with the
computer-generated environment [15]. Fig. 1 illustrates the main
work parts. The main contributions of this paper are as follows:

• Firstly, we develop a novel neural network architecture O-
Net to automatically segment lung lesions of chest Ct-scans
infected by COVID-19 with optimised computing power and
memory occupation;

• Secondly, the proposed O-Net improved architecture is
based on U-Net, inspired by the Ki-U-Net, [19], double con-
volutional channels. It newly consists of two convolutional
autoencoders with an upsampling channel and a downsam-
pling channel. The O-Net enhanced the U-Net performance
based on experimental results;

• Finally, a Virtual Reality platform, COVIR, is designed and
deployed. It allows the 3D lungs and infected lung regions
visualisation and 3D interaction. The fundamental useful-
ness of this system are (a) It allows medical practitioners
(radiologists, medical students) to visualise the 2D medical
data onto 3D models, interact, manipulate them, study and
navigate the inside 3D reconstructed segmented Ct-scan
data. (b) It offers a realistic view with stereoscopic depth
perception, which give better insights and comprehension
into medical imaging. It has the capacity for real-time in-
teractivity and accurately visualises dynamic 3D volumetric
data. (c) COVIR platform supplies the COVID-19 diagnosis
by identifying and interpreting the lung damages caused by
COVID-19. It reduces the face to face interaction of doctors
with the infected COVID-19 patients. The developed system
could be used for medical education professional training
and as a tele-health VR platform. The COVIR platform was
tested by a set of 13 participants composed of medical staff,
computer science students, researchers, and collaborators.
They volunteered to investigate and provide their opinions
through user experience.

The remaining of this proposal is organised as follows: Section 2
is the related work about existing classical and deep learning
Ct-scan segmentation based methods for COVID-19 lung lesions
segmentation. A detailed description of the proposed architecture
O-Net is given in Section 3; we introduce experiment settings,
evaluation methods, dataset, and results. Section 4 presents the
virtual reality platform for 3D lungs and lesions visualisation
and manipulation. Section 5 closes this paper by highlighting the
outcome achieved with a conclusion and future work.
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Fig. 1. The workflow of the proposed COVIR: Virtual rendering of the proposed NN COVID-19 lung lesions segmentation.
2. Related works

An exhaustive visual diagnostic process includes critical com-
ponents such as automatic detection and segmentation of abnor-
malities, qualitative and quantitative analysis, and interactive vi-
sualisation tools. Here, we restrict our discussion to work related
to lungs segmentation, virtual 3D visualisation and COVID-19
diagnosis.

2.1. Lung and COVID-19 lesion segmentation

Image segmentation is the process of extracting one or a set of
objects from a given image based on their class. The main idea be-
hind this process is to generate an image where the pixels within
the selected objects and the pixels that are not selected have
different values. In this section, we will address both the classical
and neural network-based segmentation methods. Furthermore,
we will discuss the advantages and inconveniences of each cate-
gory. Region-based segmentation methods are considered as the
classical method; they consist of basic image processing opera-
tions. The most used procedure is thresholding; it sets one or
two thresholds acting as boundaries for the pixel values. The
process then proceeds into neutralising pixels that have values
outside of the interval formed by the two thresholds [20]. An-
other well-known method is Regional-Growth segmentation [20].
This algorithm starts by selecting a set of pixels that will be
considered as seeds. The process of adding neighbouring pixels
into the already formed regions is called an iteration. The al-
gorithm Region growing iterates until it converges, i.e. until all
seeded regions have stopped growing [20]. We can also mention
the Edge-Detection segmentation methods. The logic of these
methods lies in the fact that there is an edge between every
two neighbouring segments. The Edge detection segmentation
method uses a convolution operation on a given image. The
resulted image shows a high contrast difference between the
edges and the background [20]. The type of filter is the main
factor in this operation. The most used are the Sobel and Laplacian
operators [20,21].
13
The Region-based segmentation methods make a well-suited
introduction to the field of image segmentation. Morphological
filters are based on the concept of linear filters, which are simple
to implement and develop. Morphological filters are also less
computationally complex, and their execution process does not
occupy a large size in memory. Due to their simplicity, mor-
phological filters have many weaknesses; they are hard to adapt
to different imagery categories. On account of their limitations,
morphological-filter based methods have poor usability in real-
world medical imagery applications.

Clustering is an unsupervised learning technique that assigns
labels to data based on measures of similarity or dissimilarity.
It is used in medical image segmentation. While conventional
clustering methods seek to group a set of items into clusters, they
can be tuned to group a list of pixels into segments [22]. Its sim-
plicity, dynamicity and the use of a Superpixel can accelerate the
process and lower memory usage. Superpixel techniques segment
an image into regions by considering similarity measures defined
using perceptual features [23]. The drawback of using Superpixel
is the loss of critical information, and details like pixel position.
The outputted result is vague due to many objects grouped in one
segment. The application of this approach stays limited.

To overcome the drawbacks mentioned earlier, we can either
use a combination of these methods or switch to a more recent
method. Recently, deep learning-based segmentation models in
various tasks for automatic medical image segmentation have
shown outstanding performance. Artificial neural networks got
introduced in 1943. Since then, convolutional neural networks
(CNNs) have evolved through many publications introducing new
architectures and enhancing existing ones. The high accuracy and
powerful generalisation allowed neural networks NN methods to
become state of the art in many fields, especially for medical
image segmentation.

In 2015, Ronneberger et al. in [14] developed a convolutional
network architecture named U-Net for biomedical image segmen-
tation. The U-Net architecture contains two parts; the encoder,
which is used to extract the context of the image. The second part
is a decoder used to enable precise localisation using transposed
convolutions [24]. The decoder generates the mask based on the
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ontextual information extracted by the encoder. The encoder is
traditional stack of convolutional and max-pooling layers. The
ncoder and decoder are presented in a set of double convolu-
ional layers, also known as stages; after each stage, a sampling
ethod is added. U-Net has two limitations: its optimal depth

s unknown ahead, requiring extensive architecture search or an
nefficient ensemble of models of varying depths.

After the launch of U-Net architecture, several works were
roposed based on its architecture. Ki-U-Net is a method that
ombines the U-Net architecture with the Ki-Net architecture.
he Ki-U-Net extends the uney architecture with an upsampling
onvolutional channel, it resulted in significant improvements
egarding segmenting tiny segments while staying resilient to
oise. Furthermore, this architecture introduces a high number
f inter-connections between its channels leading to a drastic
ncrease in the number of calculation operations during the back-
ropagation step therefore sacrificing time for more accurate
egmentation. But it sacrifices the time and size of the work to get
etter results [19]. Ki-U-Net has an improved efficiency caused
y the high amount of interconnections between layers. But, it
equires heavy computation and significant space, which makes
t unsuitable for light machines.

SegNet, [25], is a semantic segmentation model submitted by
he University of Cambridge in 2017, this core trainable seg-
entation architecture consists of an encoder–decoder network,

ollowed by a pixel-wise classification layer [25]. The encoder is
ormed based on the VGG-16 architecture, which contains, 13
onvolutional layers and a 2Ã-2 max pooling layer between each
wo convolutional layers [26]. While the decoder is composed
f a set of transposed-convolutional layers which perform the
psampling operations. In the end, to predict the class for each
ixel, there is a K-class softmax classifier used [25]. SegNet is an
fficient segmenting approach. The model size is much smaller
han other approaches, but even with the decent result, it still
annot compete with the recent approaches, including U-Net
odels and its variants, for medical image segmentation. It has
low memory requirement during both training and testing.
Transformers-based U-Net is considered the alternative archi-

ecture to U-Nets. Trans-U-Net uses attention mechanisms that
ely heavily on convolutional layers [27]. Transformers designed
or sequence-to-sequence prediction shows exceptional perfor-
ance in various machine learning tasks. Combined with U-Net

o enhance details by recovering localised spatial information,
ecently proposed, TransU-Net gave promising results [27]. It
chieves more accurate results than a variety of similar archi-
ectures, including CNN-based self-paying methods. Yet, using
ransformers to improve the results added complexity, which
equires much more data to tune the whole model.

As previously shown, architectures like SegNet and U-Net
with their variations) are considered state of the art medical
mages segmentation. Once healthcare centres published the first
egmented images of COVID-19 [28], multiple researchers trained
hese previously mentioned architectures to segment COVID-19
edical scans. One of the first papers that performed segmenta-

ion on COVID-19 Ct-scan is a work published by Deng-Ping Fan
t al. [29] on 22 April 2020. This work proposed an architecture
ased on SegNet, with the only difference being the use of at-
ention mechanisms instead of convolutional layers. The authors
amed this architecture ‘‘Inf-Net’’ as an abbreviation of Infection-
etwork. The model they used had 33.122 million parameters.
fter training it on the Italian dataset [28], and comparing their
esults with results obtained from U-Net based models, they de-
ucted that Inf-Net models succeeded in detecting most infection
egments while U-Net based models failed. However, they also
howed that In-Net models are detecting unexciting segments.

nother work by Keno K. Bressem et al. [3] focused on 3D Ct-scan

14
segmentation. The authors developed a 3D-U-Net; their proposed
model consisted of using a 3D convolutional layer instead of 2D
layers. They increased the number of blocks to 5 and half the
number of filters. They used a pre-trained 18-layer 3D ResNet
encoder. The authors trained their model three times, each time
on a different dataset. The datasets they used are the Chinese
Coronacases dataset [30], the Russian MosMed dataset [28], and
the RICORD dataset [31]. The authors of [3] defended the use of
3D based model rather than 2D by stating that 2D slices may
introduce ‘‘selection bias into the data by excluding slices that
do not show lung or infiltrate area’’. The researchers also argued
that 3D models preserve spatial information and allow the model
to see the entirety of the lung rather than just a slice. However,
training a 3D model comes with multiple obstacles, including the
large memory consumption, the need for a large dataset, and the
long execution time. The paper showed these obstacles when the
authors used an Nvidia Quadro P6000 GPU with more than 22
Gigabytes of VRAM (‘video random access memory’) to train the
model for more than 130 h. In [4], Adnan Saood et al. made a
performance comparison between U-Net and SegNet on the task
of segmenting COVID-19 Ct-scan. Both models were trained on
the Chinese Coronacases dataset [30], the authors also affirmed
that by defining the segmentation as binary-class segmentation
(infected or not infected) rather than a multi-class segmentation
(background, infected areas and perhaps lung tissue), the pixel
accuracy marginally improved by 0.05% [4].

2.1.1. Discussion
The radiological imaging may help support early screening of

COVID-19. While being recently introduced, NN methods showed
great potential at extracting and learning patterns from an in-
putted sample. This feature allowed NN models to succeed in
complex tasks like detection, classification, and image segmenta-
tion. Nevertheless, NN models are subject to multiple drawbacks,
including the necessity of a large dataset, long training time,
high computation power consumption, and the potential collapse
due to data bias selection, poor data flow, or wrong sequencing
of layers. Building a reliable NN model is still a challenging
task requiring familiarity with multiple concepts like overfitting,
underfitting, tunning, and the overall role of functional layers,
activation, and loss functions.

Based on the results of the studies mentioned above dealing
with the COVID-19 Ct-scan segmentation and our experimenta-
tion, we noted that the U-Net based models perform better than
SegNet based models while having a relatively equal number
of parameters. Attention-based models like Inf-Net and U-Net
variations have tens of millions of parameters that help the
model encode more information. The drawbacks of such mod-
els are the long time to converge and the necessity of a large
dataset to help tune their large number of parameters. Some
researchers developed architectures that could provide more ac-
curate segmentation, with the most notable one being Ki-U-Net.
This architecture uses two convolutional channels. The authors
stated that Ki-U-Net is more accurate and can detect fine details
and shapes of tumours and abnormalities better than the U-Net
architecture. Yet, the cost of developing and deploying this archi-
tecture is tremendously higher than the vanilla U-Net. Ki-U-Net
models are relatively small, with around one million parameters
and an enormous forward/backwards pass size that grows expo-
nentially relative to the input resolution. The main drawbacks
of current NN methods are scalability, memory consumption,
and long convergence time. Our work is about developing a
new architecture based on U-Net, inspired by the Ki-U-Net dou-
ble convolutional channels, yet lighter and with less data and
computing-power consuming. Inspired by U-Net appellation [14],
the term O-Net; Net refers to network; is due to the architecture
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f upsampling and downsampling. The term O-Net was previ-
usly used in [32]. The proposed work in this paper consists
f two convolutional channels that coordinate to segment the
ame class of objects. However, in the cited paper, [32], each
onvolutional channel is working on segmenting a different class
blood vessels, blood oxygenation). Another key difference is the
act that in their model, the channels are homogeneous, while in
urs, one channel does the downsampling, and the other does the
psampling. To conclude, the only mutual thing between the two
orks is the, O-Net, name given to the networks.
As shown in Fig. 2, the architecture is in the form of the letter

O’.

.2. VR systems during COVID-19 pandemic

VR could be viewed as an practical solution for 3D visuali-
ation of medical images since it could provide efficient disease
nalysis and diagnosis regarding the classic approaches. VR gives
n chance to immerse users in a fully artificial digital medical
nvironment that involves the human anatomy described in 3D
odels. The authors of [33] suggested that virtual reality when
imulating the clinical environment, can overcome the significant
isruption to in-hospital medical training and can be particularly
seful to supplement the traditional in-hospital medical training
uring the COVID-19 pandemic. Their user study evaluation re-
ults affirmed the positive effect of virtual reality training realistic
or the initial clinical assessment. The medical students were
ffered to complete their practical training online including the
ccess to a virtual reality platform with a variety of clinical case-
ased scenarios of different types and complexity. [18] presented
study on Virtual Reality and its applications for the COVID-19
andemic. They concluded that VR technology develops platforms
o reduce the face to face interaction of doctors with the in-
ected COVID-19 patients. VR has a number of advantages over
raditional rehabilitation approaches for Cognitive Rehabilitation
uring the COVID-19 pandemic [15] by achieving adequate cogni-
ive stimulation in the era of social distancing related to COVID-19
andemic. Few works addressed the 3D virtual visualisation of
egmented COVID-19 lung lesions to the best of our knowl-
dge. Recently, [12] has addressed the virtual reality visualisation
or computerised COVID-19 lesion segmentation. They combined
T imaging tools and VR technology to generate a system for
ccurately screening COVID-19 disease and navigating 3D visu-
lisations of medical scenes to visualise dynamic 3D volumetric
ata. They are using a threshold based method. A DICOM imagery
tack was converted to OBJ file and/or slt formats. In their con-
iguration, they used Blender software framework to import OBJ
iles and generated FBX format directly used to provide 3 lung
isualisations. In [34], an automatic lung segmentation using a
eep learning model is proposed. The authors presented a 2D and
D visualisation application specially tailored for radiologists to
iagnose COVID-19 from chest CT data. They implemented their
isualisation tool; COVID-view; ground-up using VTK and Qt with
simplified and essential interface integrating lungs and lesions
utomatic segmentation, and COVID-19 classification.

. O-Net: new architecture for COVID-19 Ct-scan lung lesions
egmentation

.1. O-Net description

This paper proposes a novel architecture, termed as O-Net,
hat uses U-Net as a base model and introduces several im-
rovements and changes that attempt to render the model more
ccurate with less memory consumption than Ki-U-Net. Our pro-
osed architecture consists of two convolutional auto-encoders.
15
Similar to Ki-U-Net, it has an upsampling channel and a down-
sampling channel. Each channel is composed of building blocks
called stages. A stage is a sequence of two convolution layers,
where each convolutional layer is followed by a batch normal-
isation layer and a ReLU activation layer. Our proposal uses a
decreasing number of filters. In our proposal, we used 64 filters
in the first stage Fig. 2, followed by 32 in the second stage.
Unlike Ki-U-Net, our architecture uses two bottlenecks and no
interconnections between the channels. These changes allowed
us to have a model lighter than Ki-U-Net, with more parameters,
a faster convergence rate, and less computation and memory
footprint based on the results obtained. According to the authors
of Ki-U-Net, U-Net showed a considerable performance drop in
the case of detecting smaller anatomical landmarks with blurred,
noisy boundaries. Their solution includes adding a new convo-
lutional channel that projects the data into higher dimensions.
However, the authors of the Ki-U-Net introduced skip connec-
tions between each level of the channels. This change increased
the convergence time and memory finger of the model drasti-
cally. In our work, we kept the channel that projects the data
into a higher dimension since it had a very interesting concept.
However, we dropped the skip connections between the channels
since it was not cost-effective. We tested both increasing and
decreasing numbers, and based on our experiments, the network
with the decreasing number of kernels performed better. For the
kernel size, we used the standard. The previous sections show
that introducing a second convolutional channel as an upsam-
pling channel increases the model accuracy. However, this may
increase the memory footprint size. Moreover, the high number
of interconnections between the convolutional channels caused
a large memory consumption and slowed the training time ten
times.

3.2. Used COVID-19 Ct-scan datasets, pre-treatment and data aug-
mentation

Throughout our experiments, we used the first and second
versions of the Italian dataset [28] to learn the fundamentals of
segmentation and test basic U-Net models. This dataset, however,
was shown less precise segmentation that led to low perfor-
mance. Eventually, we had to opt for other datasets. The accessi-
ble alternatives were the Chinese Coronocases datasets [30] and
the Russian MedMod dataset [35]. We extracted ten scans from
the Coronocases datasets [30], since the other ten were noisy and
did not match the desired shape.

Moreover, we could only use fifty scans from the MedMod
dataset [35] considering they were the only segmented scans.
The total number of scans was sixty, with each scan having a
number of slices between 63 and 300. The total number of slices
was approximately 4100, with only 2000 slices that contained
infected regions. Before starting any deep learning process, the
collected data had to be adjusted and formatted to fit the in-
ference requirements. First and foremost, we resized the slices
from both datasets to 512 × 512, 256 × 256, and 160 × 160
resolutions. The role of this step is to give us the flexibility of
testing the performance of architectures on images with small
resolutions (160 × 160). Then, we increase the resolution gradu-
ally as we proceed in the experiments. Furthermore, we opted not
to use de-noising processes as the Coronacases dataset provided
clean slices. In contrast, the scans from the MedMod dataset had
a noisy background, probably formed by the capturing machine.
The MedMode dataset’s noise was mainly harmless since it did
not interfere with the pixel-value intervale of infected tissue, and
it was surrounding the lung rather than being inside it.

Regarding the augmentation techniques, we mainly used
methods that do not affect or alter the shape of the slices, which
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Fig. 2. The O-Net architecture, where the upsampling channel is on the top and the downsampling channel is in the bottom.
D

an be translated to transformations that do not include elastic
ffects like shearing. Affine transformations were the primary
echniques we used. Through experimentation, we noticed that
otation transformation help NN models adapt to lung position
nd rotation. Moreover, we saw that combining horizontal or
ertical flips with angular rotation help reduce the probability of
erforming the same transformations on the same image multiple
imes. Cropping a border of up to 25 pixels off the images is
armless as long as the lungs, bones, and other tissues are fully
ncluded. Furthermore, we have tested the effect of normalising
he pixel values of images using U-Net and O-Net models, and
e found that normalisation does not improve the performance.
odels that were trained on normalised data took more epochs

o converge and were less stable. On that note, blurring the input
roduced less accurate models, and adding white noise resulted
n a total collapse of the models. Regardless of the used dataset or
he number of training epochs, the outputted masks were black
mages.

.3. Training cycles and training process

To train the models on the full-size dataset, we used a work-
tation that contains two Intel Xeon (R) Silver 4114 (20 cores @
.199 GHz) processor, 256 GB ram, and NVIDIA Quadro P2000
5 GB VRAM) GPU, and a 2TB HDD storage. Although this machine
ad less VRAM, limiting the size of models that we can have, it
ame with a large ram and fast access to local storage, which
eant that loading and treating all the slices became possible.
ased on the work done by [3,29] on segmenting COVID-19 CT
cans, they both concluded that a two cycles training process
s more effective than one cycle. Multi-cycle training refers to
he process of training a model multiple times on different hy-
erparameters. Usually, the first cycles use a large batch size, a
igh learning rate, and a small slice resolution. The batch size
nd learning rate are then decreased while the slice resolution
s increased gradually during the cycles. To find the optimal
ombination of hyperparameters, we trained a U-Net model on
000 CT scan slices. We variated the batch size (8, 16, and 32) and
he learning rate (10−5, 10−4, and 10−3) during this experiment.
ig. 3 shows the results we obtained.
As shown in Fig. 3, a learning rate of 10−3 and 10−4 achieved

he best performance while 10−5 resulted in relatively lower
erformance. On the other hand, variating the batch size did
ot affect the performance of the final models. One more thing
o note is the execution time. A large batch size means a large
umber of iterations per epoch which increases the execution
16
time and leads to high memory consumption. Moreover, A small
learning rate leads to a slow convergence time because the steps
made in each iteration are small. Oppositely, a high learning rate
renders the model unstable, which leads to unpredictable training
results or a model collapse. Finally, a benefit of using a small
batch size and a medium learning rate is reducing memory usage
(fewer samples are loaded into the memory) and stabilising the
training process. The data was split into 30% for testing and 70%
for training.

3.4. Training, validation and test data setting

3.4.1. Evaluation metrics
For our models’ performance assessment and comparison, we

used seven well know evaluation metrics: Pixel-Accuracy ‘‘Pix-
Acc.’’, Sørensen–Dice coefficient also known as F1-Score ‘‘Dice.’’,
Intersection over Union, also known as Jaccard score ‘‘IoU.’’,
Precision ‘‘Prec.’’, Sensitivity ‘‘Sens.’’, Specificity ‘‘Spec.’’, and ‘‘G-
means’’. The Eqs. (1) to (7) describe these metrics. Where (tp)
stands for True Positive; (fp) stands for False Positives; (fn) stands
for False Negatives; (tn) stands for True Negatives.

PixAcc. =
tp + tn

tp + fp + tn + fn
(1)

ice. =
2 × tp

2 × tp + fp + fn
(2)

IoU =
tp + fn + fp

tp
(3)

Prec. =
tp

tp + fp
(4)

Sens. =
tp

tp + fn
(5)

Spec. =
tn

tn + fp
(6)

G − mean. =

√
sensitivity ∗ specificity (7)
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Fig. 3. A plot showing the performance of different hyperparameters combinations.
Fig. 4. O-Net Dice coefficient: validation vs. training.

.4.2. Experiments, results and evaluation
We trained our models on the Coronacases dataset [30] for

wo cycles with each cycle having 20 epochs. Fig. 4 shows the
ice coefficient at each epoch of an O-Net model trained on
60 × 160 slices. The figure illustrates that the model takes
pproximately three epochs to reach the highest Dice score value
around 0.80). Moreover, we notice that both the validation and
raining plots are close, suggesting that our model is not facing
n Overfitting problem. Furthermore, we wanted to test the effect
f normalising the inputted slices on the model convergence rate
nd the adaptation to unseen data. We applied two experiments,
ne with normalised data and the other with regular data. Fig. 4
erves the role of showing that the model is not overfitting. For
hat, we plotted the data from the first experiment. For Fig. 5, we
howed the data from both experiments. The validation set was
nly used to test the model’s performance and was not included
n weights adjustment. The Fig. 5 shows a comparison between a
odel trained on normal data and another on normalised data.
Based on Fig. 5, we can confidently note that the normalisation

id not help the model to converge faster or become more stable.
odels trained on normalised data took four epochs to reach the
ighest Dice score, and throughout the training process, these
odels failed to outperform models trained on regular data. Fig. 6
hows a list of samples and infection masks predicted by O-Net.
igs. 6 and 7 illustrate the O-Net and U-Net visual assessment
esults respectively using Coronacases dataset [30].

For statistical evaluation, we calculated the COVID-19 infec-
ion rate (Eq. (8)): with Nlung : number of pixels segmented as
ung, NCOVID−19: number of pixels segmented as COVID-19 lesions.

OVID − Rate. =
NCOVID−19 (8)
Nlung + NCOVID−19

17
Fig. 5. The effect of normalisation on the convergence and adaptation, Nrm:
normalisation.

Fig. 6. COVID-19 infection masks predicted by O-Net using Coronacases
dataset [30].

Fig. 7. COVID-19 infection masks predicted by U-Net using Coronacases
dataset [30].
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Table 2
Performance comparison between normalised and normal O-Net models.
O-Net PixAcc. Dice. IoU. Prec. Sen. Spec. G-mean.

Normalised 0.996 0.818 0.695 0.998 0.991 0.722 0.845
Normal 0.995 0.866 0.764 0.998 0.984 0.708 0.834

Fig. 8. Comparison between U-Net [14] and O-Net on convergence rate; Orange:
O-Net with normalised data; Blue: O-Net with normal data; Pink: U-Net.

Table 3
Adaption comparison between U-Net [14] and O-Net.
Model PixAcc. Dice. IoU. Prec. Sen. Spec. G-mean.

U-Net [14] 0.997 0.507 0.372 0.999 0.997 0.834 0.911
O-Net 0.997 0.584 0.428 0.999 0.997 0.817 0.901

Table 2 compares normalised models to normal models.
To visualise the enhancement in convergence slop, we reg-

stered the loss values of O-Net and compared them to loss
alues from U-Net training (Eq. (9)). We tested both models on
ormalised and non-normalised data. Fig. 8 illustrated the results.
e used binary cross-entropy, as shown in Eq. (9). We calculate

he entropy H of a q distribution, where y is a label, N is a number
f points, p is the predicted probability.

p(q) = −
1
N

N∑
i=1

yi · log(p(yi)) + (1 − yi) · log(1 − p(yi)) (9)

Fig. 8 shows O-Net models converge faster due to having fewer
arameters than U-Net models.

.5. Generalisation: Assessment on an external dataset, and scalabil-
ty.

One of the essential factors of a well developed NN model
s adaptation. An adaptive NN model does not rely only on the
ataset it was trained on but should generalise its understanding
o similar datasets. To evaluate the adaptation of O-Net models,
e took a model trained on the Coronacases dataset [30], and
ested it on MosMed dataset [35]. We compared the values we
btained to a similar test performed on a U-Net model. Table 3
hows the results.
From Table 3, we can conclude that adaptation is still an

ntricate task. O-Net model witnessed a drop in performance.
owever, when we compare the O-Net performance to the U-Net
erformance on an unseen dataset, O-Net models adapt better
o the new data. Figs. 9 and 10 present the visual evaluation for
daptation performance. As mentioned before in this work, we
ad access to three publicly available datasets. The publishers of
hese datasets had different kinds of scanning equipment which
enerated data with different ranges and values of noise. CT-
cans use a Hounsfield scale which has a wide range (−1000 to
20,000). Figs. 9-d and 10-d present the visual assessment of
isclassified pixels of the unseen data. However, we wanted to
nhance the U-Net model by giving it another channel to further
xtract and encode more data. While it might appear that both
18
Fig. 9. COVID-19 infection masks predicted by O-Net using MosMed
dataset [35].

Fig. 10. COVID-19 infection masks predicted by U-Net using MosMed
dataset [35].

Table 4
Scalability: Testing U-Net and O-Net on 256 × 256 slices.
Model PixAcc. Dice IoU Prec Sen. Spec. G-mean

U-Net [14] 0.996 0.779 0.641 0.999 0.992 0.821 0.901
O-Net 0.997 0.844 0.731 0.998 0.991 0.547 0.734

models scored best at two metrics each, however, the G-means is
calculated by multiplying the sensitivity by the specificity, which
gave the U-Net a slightly higher score.

Our final test evolved around the ability to well-perform on
higher-resolution slices. For this test, we used an O-Net model
trained on 160 × 160 slices and tested it on 256 × 256 slices.
Moreover, we performed the same test on a U-Net model, and
the results are presented in Table 4.

Based on the Table 4, we can see that the O-Net model per-
formed well when tested on higher resolution slices. This note
means that an O-Net model can be trained on low-resolution data
and properly perform when tested on high-resolution data. U-
Net scored better than O-Net in three matrices. Two of which
were with an increase of 0.001. The remaining one is specificity
which measures the correctly negatively classified pixels. More-
over, O-Net scores better on dice coef and IoU (Jaccard). This
remark means that O-Net is more concerned about finding the
right shapes of the infected regions. This makes the model a
bit conservative when detecting the outer layer or pixels within
infected regions.

3.6. Performance comparison

Multiple characteristics must be taken into consideration to
initiate a comparison between NN models. Furthermore, we col-
lected the number of parameters and the pass-size of various
models. Table 5 compares O-Net with U-Net [19] and Ki-U-

Net [19]. As can be seen in Table 5, O-Net stands in the middle
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Table 5
Comparison between O-Net, U-Net [14], and Ki-U-Net [19].
Model Number of parameters Pass size Minutes per epoch

U-Net [14] 31,036,481 363 MB 7
Ki-U-Net [19] 213,828 3767 MB 73
O-Net 476,321 1643 MB 11

Table 6
Comparison of performance between U-Net [14], 3D-U-Net [3], SegNet [25], and
O-Net on the task of segmenting COVID-19 Ct-scan.
Model PixAcc Dice IoU Prec Sen. Spec. G-mean

U-Net [14] 0.949 0.749 – – 0.956 0.9542 0.955
3D-U-Net [3] – 0.648 – – – – –
SegNet [25] 0.954 0.583 – – 0.964 0.948 0.956
O-Net 0.995 0.866 0.764 0.998 0.984 0.708 0.834

ground between U-Net, which has a high number of parameters
but a smaller pass size, and Ki-U-Net, which has a small number
of parameters and a gigantic pass size.

Moreover, Table 6 shows the evaluation results of different
odels on the Coronacases dataset [30]. Unfortunately, due to

he Ki-U-Net enormous pass size, we could not train it or test
t. Regarding the 3D-UNET the authors trained the model for
10 epochs. In comparison, the U-Net and SegNet needed 160
pochs. Our O-Net was trained on a total of 40 epochs. Our model
cored lower on specificity compared to other models because it
ttempts to match the shape of the infected regions as much as
ossible. This led our model to consider the outer layer of pixels
urrounding the infected regions as infected. Since specificity is
alculated based on the true negative (not infected), it caused the
odel to drop by about 0.2 compared to other models.
Based on the comparison made in the previous section, it is fair

o say that O-Net performed better than all the previously men-
ioned state-of-the-art NN models. The strength of O-Net lies in
ts double convolutional layers. The Up/Down sampling method
howed the potential of adapting to new datasets. After each
tage, the data is downsampled in the encoder and upsampled in
he decoder. The low number of parameters means that O-Net can
onverge faster than U-Net, and it is less likely to overfit due to its
implicity. The major drawback of O-Net architecture is relatively
ts high pass-size. This problem limits the resolution to which O-
et can be trained. However, as we previously saw, O-Net can be
rained on a low-resolution input and perform relatively equal to
odels trained on high-resolution inputs.

. COVIR: Our COVID-19 lung lesions virtual rendering

Our VR platform, COVIR, acts as a reading and visualisation
upport for medical practitioners to diagnose the COVID-19 lung
nfection. In this part, we dealt with improving the medical di-
gnostic proposed method. We provide radiologists with an im-
ersive and interactive VR platform for diagnosis process en-
ancement to visualise and interact with 3D lesions and 3D lungs
nfected by COVID-19. Another benefit of VR diagnosis support
s the possibility to offer valuable learnings for medical students
nd learners for COVID-19 management situations in hospitals
nd clinics [33]. This section presents the COVIR platform for
irtual visualisation and manipulation of 3D lungs and lesions
aused by COVID-19. Making a VR visualisation takes many steps
o completion, starting by treating the data, 3D reconstruction,
reating the 3D module, and lastly, build a VR environment to
how and present the result. To accomplish this, we used 3D-
licer [36], which allows the treating of the data, showing the
t-scan in detail while enabling the representation of the seg-
ented parts in 3D (Fig. 11). Most importantly, it reconstructs
19
Fig. 11. ScreenShot of 3D-Slicer application.

Fig. 12. Screenshot of Blender application.

the segmentation creating a 3D model file (.OBJ), which allows
us to use it in Blender [37]. Blender supports the entirety of
the 3D pipeline from modelling, simulation, rigging, rendering,
animation, video editing and 2D animation pipeline, compositing
and motion tracking. Lastly, we use Unity to create the virtual
environment [38]; it gives complete access to any object created
and imports 3D modules (.OBJ), which we needed to import our
lung 3D model in the VR scene. Fig. 12 shows the interface of
the software. The VR pipeline is summarised into the following
points:

-Load the segmented CT scan in 3D slicer;
-Export the segmentations (lungs and COVID-19 lesions) in

one file;
-Load it in Blender and fix any export problems (optional);
-Use the VR application, Unity 3D, to load the 3D object.

4.1. 3D Reconstruction, virtual visualisation and 3D interaction

We integrated different packages, including the interaction
package for human–computer interaction management, the pack-
ages for 3D lesions, 3D lungs design, data manager package for
data exchange between packages and 3D scene updates.

The hardware necessary to develop the COVIR platform should
support VR rendering capacity for devices connected to the Ocu-
lus Rift S Head Mounted Display (HMD), [39] display. We used
an MSI personnel computer PC with Core i9-10900KF CPU, 32
Go RAM and AMD Radeon RX 5700 XT. After treating the data in
3D-slicer and blender, we started the work in Unity. We created
two scenes: The first scene represents the application description
with some information on how to use it. Fig. 13 shows the COVIR
platform interface. The second scene created allows the Control
of 3D objects (Fig. 14).

The possible 3D interactions that users can use to interact with

the application are:
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Fig. 13. COVIR platform: Description interface.

Fig. 14. COVIR platform: Control interface.

Size control. The option of controlling the size of the 3D module
is to see the small parts better, with the possibility of controlling
the speed of the resizing from slow to fast.

Rotation control. Controlling the rotation of the 3d module per-
mits us to see all the sides with different speeds from slow to
fast. If the rotation and the size get out of control, there is a reset
button to reset to the default start.

Lung visibility. There is the lung visibility control, with the option
to remove the lung to see the infection alone.

Infection visibility. There is the visibility of the infection, with
the option to remove it to see the lung alone. COVIR platform
functionalities with different interactions are presented on Fig. 15
for better explanation.

4.2. COVIR platform results

We developed a VR platform that allows 3D data generation,
visualisation, and 3D interaction from medical Ct-scan images.
Fig. 15 shows the different 3D interaction and above-mentioned
functionalities. Fig. 15-a illustrates a user wearing the HMD Ocu-
lus Rift S Head and interacting with the COVIR platform. Fig. 15-b
presents the virtual rendering of lungs and infected COVID-19
regions. The different 3D VR interactions are illustrated on Fig. 15-
c, -d, and -e . Fig. 15-f and -e showcase the lung lesions caused
by COVID-19, in addition to the COVID-19 infection rate, COVID−

Rate, deduced from the lesions segmentation results (Eq. (8)).
Fig. 15-h presents the 3D virtual view of two infected patients
with COVID − Rate equals to 20.21% and 3.81% respectively.

4.3. COVIR platform: user study

The second contribution of this paper is to develop a VR plat-
form for 3D visualisation and 3D interaction of automated COVID-
19 lung lesion segmentation. We performed preliminary tests to
20
provide guidance. Medical staff, computer science students and
collaborators volunteered to explore our COVIR platform. They
provide their statements through user experience in a subjective
questionnaire.

4.3.1. Participants
We made a subjective evaluation to explore our proposed VR

COVID-19 Aid diagnosis system’s efficiency. A set of 13 partici-
pants composed of medical staff, computer science students, re-
searchers, and collaborators volunteered to investigate our COVIR
platform and provide their opinions through user experience. We
used Oculus Rift S Head Mounted Display (HMD) to track the
participant’s head and hands movement in our subjective evalu-
ation. 46.2% of participants are used to employing VR equipment
in different context. Fig. 16 displays the percentage of VR use
equipment context; 50% were used to use the VR tools in gaming
activities, 37.5% in professional activities, and 12.5% in leisure
activity (watching films).

4.3.2. Procedure
The main procedures and scripts of the experiment are intro-

duced in this subsection. As a brief introduction, the researcher,
one of the authors, explains the global project concept and the
different VR platform functionalities to the participant, and he
was asked to read fulfil the first part of the questionnaire, includ-
ing information about the demographic profile and the VR use
experience ever before. Before starting the evaluation, the partic-
ipant was able to ask any questions. To start, the experimenter
shows a Ct-Scan simple viewing of lungs infected by COVID-19
to the participant. Then, the participant wears the Oculus Rift S
Head Mounted Display (HMD) for the virtual visualisation and
interact with the virtual lung and lesions via the triggers. The
experimenter initiates the test session and lunches the VR visu-
alisation application. After completing the trials, the participant
fulfilled the second part of the questionnaire.

4.3.3. Questionnaire
Once the participant completed his trials, the researcher asked

him to fill a questionnaire. Responses are recorded on a five point-
Likert scale from Strongly agree to Strongly disagree (1: Strongly
Disagree, 2: Disagree, 3: Neutral, 4: Agree, and 5: Strongly Agree).
The fifteen participants’ survey questions concern: Utility, Ease of
learning, Ease of use, and Satisfaction. The category questions are
listed in Table 7.

4.3.4. Discussion and analysis
Participants were asked to state the degree to which they

consented or contradicted.
Our user study yielded the stacked chart (Fig. 17). It is preva-

lent that the most dominant answer is ‘‘agree’’. Moreover, many
candidates felt ‘‘strongly agree’’ in questions related to learning
difficulty and satisfaction from using the application.

According to questions concerning the utility of the COVIR
platform (Q1, Q2, Q3, Q4), 62.7% of the participants agreed on
the system utility, and 23.5% provided a strongly agreed opinion.
Question 2 showed that 46,2% strongly agreed and found the
application helps to visualise the lungs and Covid-19 lesions
better. Based on question 3, 76.9% of the participants arranged
on the realistic view of the VR rendering. In question 5, 61.5%
of the participants judged the application easy to learn to use;
they strongly agreed, whereas 15.4% were neutral. 69.2% of the
participants believed that they easily remembered how to use
the platform. About the presence in the virtual environment, Q8,
92.3% of the participants affirmed that the COVIR platform was
responsive to actions that they initiated. For the engagement,
Q9, 84.6% of the participant asserted that the sense of moving
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Fig. 15. COVIR platform: VR functionalities, (a) VR used devices, (b) Lungs and COVID-19 lesions VR view, (c) VR interaction: 1st Rotation, (d) VR interaction: 2nd
otation, (e) VR interaction: Resizing, (f) Infection visibility, (g) Lung visibility, (h) Two lungs VR view.
Table 7
Evaluation study’s questionnaires.
Evaluation
criteria

Utility Ease of learning Ease of use Satisfaction

Questions Q1. Is it useful?
Q2. Does it help to visualise the
lungs and Covid-19 lesions better?
Q3. Is the view of the lung and
the infected regions realistic?
Q4. Does it everything I would
expect it to do?

Q5. Is it easy to learn to use it?
Q6. I learned to use it quickly?
Q7. I easily remember how
to use it?

Q8. Presence: The virtual environment was
responsive to actions that I initiated? Q9.
Engagement: The sense of moving around
inside the virtual environment was
compelling? Q10. Immersion: I felt stimulated
by the virtual environment. Q11. Flow: I felt I
could perfectly control my actions. Q12.
Usability: I found it easy to use the apparatus
(Oculus headset, trigger).
Q13. Technology adoption: If I use again the
same virtual environment, my interaction with
the environment would be clear and
understandable for me.

Q.14. I enjoyed being in
the virtual environment?

Q.15. I enjoyed using the
COVIRplatform?
Fig. 16. VR equipment use context.

round inside the virtual environment was compelling. Based on
uestion 12, 30% of the participants were neutral to the ease
f use of the VR apparatus (Oculus headset, trigger). For the VR
mmersion, 66.7% of the participants felt stimulated by the virtual
nvironment, whereas others, 8.3%, were neutral. 84.6% of the
articipants enjoyed being in this virtual environment based on
uestion 14. Question 15 showed that all the participants en-
oyed using the COVR platform (46.2% of the participant strongly
greed, and 53.8% agreed).
21
However, we noted that many researchers and students
wanted to include more diseases and show more organs, as
they felt this application has educational potential. One doc-
tor expressed less interest in the visualisation and requested
displaying more technical details regarding the patient and the
Ct-Scan. Another doctor found information like the percentage
more critical than the displaying Ct-Scan. Regardless, he proposed
that information about which lung is more infected may also help.
This user study does not intend to generalise the findings due
to the target application. Therefore, the need for more in-depth
analysis is revealed and required with practical evaluations and
feedback.

5. Conclusion and future work

COVID-19 has been considered the world’s most threatening
challenge of the current century. Due to new emerging COVID-19
variants, the number of COVID-19 daily cases is still increasing in
many areas. It is, consequently, imperative for healthcare experts
and authorities across the globe to find practical solutions to
manage the COVID-19 pandemic. With the COVID-19 spread,
radiologists faced massive overwork, which may cause fatal errors
in patients diagnoses. This work presented a new NN architecture
to automatically segment infected Ct-scans caused by COVID-19,
which gives fast and accurate results based on the results ob-
tained with optimised computing power and memory occupation.
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Fig. 17. Evaluation study: Utility, Ease of use and satisfaction.
ur work started by collecting segmented COVID-19 datasets we
ould only get access to publicly published data. However, we
till faced a data shortage. To solve that issue, we used different
ata augmentation methods to increase the size of our dataset.
sing the augmented data, we tested NN models known for be-
ng well-performing in the medical imagery segmentation. After
omparing the results and weighing the advantages and draw-
acks of each NNmodel, we proposed a novel NN model that aims
o enhance these state of the art models performance. Termed
s O-Net, our improved architecture is based on U-Net, inspired
y the Ki-U-Net double convolutional channels. It consists of
wo convolutional autoencoders with an upsampling channel and
downsampling channel. The O-Net enhanced the U-Net per-

ormance based on experimental results. Evaluating our model
ave remarkable results compared to the other state-of-the-art
odels. Our O-Net model scored 0.86 on the Dice coefficient.
fter building and testing multiple variations of O-Net, we noted
he excellent performance it showed even with small networks
izes. However, in future work, we are interested in replacing
he Up/Down sampling architecture with transformer encoders
hat may be more robust and optimal. Once we were confident
ith our segmentation system, we developed a COVIR, which is
VR platform to visualise the segmented Ct-scan lung lesions

aused by COVID-19. We created a user-friendly interface, and
e integrated a function that loads and shows Ct-scan in the
irtual environment, with many interactions like rotation and
caling, which gave better visualisation of the results. Our second
ontribution is the VR visualisation and 3D interaction of COVID-
9 lesions in an immersive virtual environment. We provide
adiologists with an aid COVID-19 diagnosis tool with a clear and
ealistic view to provide preliminary analysis and interpretation.
ased on the user evaluation study results, the COVIR platform
rovides a clear and realistic view of lungs and COVID-19 lesions
or preliminary analysis and interpretation. Future works plan to
ptimise the application and expand its use case to include other
ulmonary infections diseases. We plan to include more details
nd informations about the infected regions.
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