Skip to main content
. 2022 Mar 15;104:11–23. doi: 10.1016/j.cag.2022.03.003

Table 1.

Representative deep learning-based methods for Ct-scan COVID-19 diagnosis.

Reference Methodology Performance metrics Task
Keno et al. [3] Used transfer learning to train 3D-U-Net model using an 18-layer 3D ResNet Dice 0.679 Segmentation
Adnan et al. [4] Used SegNet and U-Net deep learning networks PixAcc. 0.908 U-Net 0.907 SegNet Segmentation
Chen et al. [5] Used UNet++ to train in Keras in an image-to-image manner PixAcc. 0.95 Detection
Li et al. [6] Introduced COVNet PixAcc. 0.96 Detection
Ying et al. [7] Proposed DRE-Net PixAcc. 0.86 Detection
Garain et al. [8] Proposed SNNs PixAcc. 0.91 Detection
Stefano et al. [9] Proposed C-ENET Dice. 0.75 Segmentation
Zhang et al. [10] Improved DCNN model PixAcc. 0.93 Detection
Shouliang et al. [11] Proposed DR-MIL method PixAcc. 0.95 Detection