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Abstract

The immersed boundary (IB) method is a non-body conforming approach to fluid-structure 

interaction (FSI) that uses an Eulerian description of the momentum, viscosity, and 

incompressibility of a coupled fluid-structure system and a Lagrangian description of the 

deformations, stresses, and resultant forces of the immersed structure. Integral transforms with 

Dirac delta function kernels couple the Eulerian and Lagrangian variables, and in practice, 

discretizations of these integral transforms use regularized delta function kernels. Many different 

kernel functions have been proposed, but prior numerical work investigating the impact of the 

choice of kernel function on the accuracy of the methodology has often been limited to simplified 

test cases or Stokes flow conditions that may not reflect the method’s performance in applications, 

particularly at intermediate-to-high Reynolds numbers, or under different loading conditions. 

This work systematically studies the effect of the choice of regularized delta function in several 

fluid-structure interaction benchmark tests using the immersed finite element/difference (IFED) 
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method, which is an extension of the IB method that uses a finite element structural discretization 

combined with a Cartesian grid finite difference method for the incompressible Navier-Stokes 

equations. Whereas the conventional IB method spreads forces from the nodes of the structural 

mesh and interpolates velocities to those nodes, the IFED formulation evaluates the regularized 

delta function on a collection of interaction points that can be chosen to be denser than the 

nodes of the Lagrangian mesh. This opens the possibility of using structural discretizations with 

wide node spacings that would produce gaps in the Eulerian force in nodally coupled schemes 

(e.g., if the node spacing is comparable to or broader than the support of the regularized delta 

functions). Earlier work with this methodology suggested that such coarse structural meshes can 

yield improved accuracy for shear-dominated cases and, further, found that accuracy improves 

when the structural mesh spacing is increased. However, these results were limited to simple test 

cases that did not include substantial pressure loading on the structure. This study investigates 

the effect of varying the relative mesh widths of the Lagrangian and Eulerian discretizations in a 

broader range of tests. Our results indicate that kernels satisfying a commonly imposed even–odd 

condition require higher resolution to achieve similar accuracy as kernels that do not satisfy this 

condition. We also find that narrower kernels are more robust, in the sense that they yield results 

that are less sensitive to relative changes in the Eulerian and Lagrangian mesh spacings, and that 

structural meshes that are substantially coarser than the Cartesian grid can yield high accuracy 

for shear-dominated cases but not for cases with large normal forces. We verify our results in a 

large-scale FSI model of a bovine pericardial bioprosthetic heart valve in a pulse duplicator.

Keywords

immersed finite element/difference method; immersed boundary method; fluid-structure 
interaction; regularized delta functions

1 Introduction

The immersed boundary (IB) method [1] is a non-body conforming approach to fluid-

structure interaction (FSI) introduced by Peskin to model heart valves [2,3]. The 

IB approach to FSI uses an Eulerian description of the momentum, viscosity, and 

incompressibility of the coupled fluid-structure system, and it uses a Lagrangian description 

of the deformations, stresses, and resultant forces of the immersed structure. In the 

continuous formulation, integral transforms with Dirac delta function1 kernels couple 

Eulerian and Lagrangian variables. When these equations are discretized, it is common to 

replace the singular delta function by a regularized delta function [1]. This coupling strategy 

eliminates the need for body-conforming discretizations and thereby facilitates models with 

very large structural deformations [4,5]. The IB method and its extensions have enabled 

simulation studies in a broad range of applications, including cardiac dynamics [6-16], 

platelet adhesion [17], esophageal transport [18-20], heart development [21], insect flight 

[22,23], and undulatory swimming [24-29].

1In fact, the singular Dirac delta function is not a function that is defined pointwise but instead is a generalized function or 
distribution. It is commonly referred to as the delta function within the IB literature, however, and we retain that usage herein.

Lee and Griffith Page 2

J Comput Phys. Author manuscript; available in PMC 2023 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite the popularity of the IB method, most prior studies to examine the impact of the 

form of the regularized delta function on the accuracy of the method [1, 4, 30-39] have 

been limited to simplified test cases (e.g., two-dimensional Stokes problems) that may 

not reflect the method’s performance in applications, particularly at intermediate-to-high 

Reynolds numbers, or under various loading conditions. Peskin [1] constructed a four-point 

regularized delta function that appears to be among the kernels most commonly used with 

the IB method. This function satisfies a certain set of properties, including an even–odd 

condition that is designed to avoid the well-known “checkerboard” instability that occurs 

with collocated discretizations of the incompressible Navier-Stokes equations. Roma et al. 

[31] introduced a three-point kernel function that satisfies the same properties as Peskin’s 

four-point function except for the even–odd condition, which is not clearly needed for 

the staggered-grid fluid solver employed in that work. Stockie [30] introduced a six-point 

IB kernel that yields higher-order accuracy than the three- and four-point IB kernels for 

problems with smooth solutions, albeit at expense of additional computational cost. Yang et 

al. [33] developed smoothed C2 IB kernels that can suppress non-physical high-frequency 

force oscillations that can occur with the standard IB kernels. Bao et al. [36, 37] developed a 

new C3 six-point kernel that improves grid translational invariance and regularity compared 

to the standard three- and four-point kernels and the smoothed kernels of Yang et al. Griffith 

and Luo [4] used the benchmark problem of viscous flow past a cylinder to compare the 

standard three- and four-point kernels as well as the new six-point kernel by Bao et al. 

[36, 37] and demonstrated that the choice of kernel function impacts the accuracy of the 

methodology. Mori [32] analyzed the convergence for the Stokes problem and showed 

that satisfying the even-odd condition improves the convergence properties of the method 

by eliminating high-frequency errors in the far field. Liu and Mori [34] extended the 

work of Mori to analyze convergence for elliptic problems and showed that the smoothing 
order, which generalizes the even–odd condition, of a given delta function influences the 

convergence for the Stokes problem. Hosseini et al. [35] analyzed the convergence of 

regularization for various PDEs with a singular source and demonstrated the substantial 

impact of regularization of the source term on the solutions to these problems. Saito and 

Sugitani [38] studied the convergence of regularization error for a model Stokes problem in 

the context of finite element method. Heltai and Lei [39] provided a priori error estimates 

of regularization for elliptic problems compared to the non-regularized counterpart in the 

context of finite element formulations. However, with the exception of the work by Griffith 

and Luo [4], none of these focus on tests in the intermediate-to-high Reynolds number 

regimes in which the IB method is commonly used in practice. Here, we consider both the 

widely used IB kernels as well as B-spline kernels, which also are widely used delta function 

kernels [40,41] but which, to our knowledge, have not been systematically compared against 

kernels that follow the construction approach of Peskin [1,31,36,37] in the context of the IB 

method.

Herein we examine the impact of different choices of kernels on the dynamics using the 

immersed finite element/difference (IFED) method [4,5], which is an extension of the 

IB method that uses a finite element structural discretization combined with a Cartesian 

grid finite difference method for the incompressible Navier-Stokes equations. An important 

difference between the IFED method and conventional IB methods is that discrete IFED 
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coupling operators use interaction points that can be chosen to be distinct from the control 
points that determine the configuration of the structure (e.g., the nodes of the Lagrangian 

mesh). In this study, we follow the approach of Griffith and Luo [4] and construct 

the interaction points via adaptively chosen Gaussian quadrature rules that distribute the 

interaction points in the interiors of the structural elements. In contrast, the conventional 

IB method spreads forces from the nodes of the structural mesh and interpolates velocities 

to those nodes [1]. In nodally coupled IB methods, catastrophic leakage flows through 
the structure can occur if the node spacing is comparable to or larger than the support of 

the regularized delta function because in such cases, there will be gaps in the Eulerian 

structural force density. (This issue is distinct from the question of the fundamental volume 

conservation of the IB method, which has been the subject of numerous studies, including 

the work of Peskin and Prinz [42] along with more recent work for both immersed 

boundary and immersed finite element-type methods [37,43-47].) The IFED approach of 

using distinct collections of control and interaction points opens the possibility of using 

structural discretizations with wide node spacings while maintaining a contiguous Eulerian 

structural force density. However, prior studies on the impact of the relative node spacing on 

the impact of the IFED method have been limited and, in particular, considered only cases 

with negligible normal forces along the fluid-structure interface [4]. At least in those tests, 

however, it was found that the accuracy of the method actually increases with increasing 

Lagrangian mesh spacing. In this study, we systematically investigate the impact of the 

relative spacings of the Lagrangian and Eulerian discretizations for a broader range of 

test problems in the intermediate-to-high Reynolds number regimes ranging from 70 to 

15000. The results in this study are concordant with earlier work for shear-dominated 

cases in that narrower kernels are more robust and that a broad range of relatively coarse 

structural meshes can be used, but here we also identify that the structural mesh spacing 

must be comparable to or finer than the background Cartesian grid for cases involving 

large pressure loads. Our results also indicate that kernels satisfying a commonly imposed 

even–odd condition require higher resolution to achieve similar accuracy as kernels that do 

not satisfy this condition. We then apply and verify our key findings in a large-scale FSI 

model of bovine pericaridal bioprosthetic heart valve (BHV) in a pulse duplicator [15,16]. 

Although these investigations are all done within the context of the IFED version of the IB 

method, the large effect of the choice of kernel function on the results suggests the need 

for similar studies for other IB-type methods that use regularized delta functions to mediate 

fluid-structure interaction.

2 Methods

This section describes the continuous formulation of the IFED method and the numerical 

discretization and implementation of the method. We also define the key factors that impact 

the interaction between the Lagrangian mesh and the Eulerian grid such as different types of 

regularized delta functions, as well as the Lagrangian mesh spacing.

2.1 Immersed finite element/difference method

The continuous IFED formulation considers fluid-structure system occupying a fixed three-

dimensional Eulerian computational domain Ω that is partitioned into time-dependent fluid 
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(Ωt
f) and solid (Ωt

s) subdomains, so that Ω = Ωt
f ∪ Ωt

s. Here, x = (x1, x2, x3) ∈ Ω are physical 

coordinates, X = (X1, X2, X3) ∈ Ω0
s  are reference coordinates attached to the structure, N(X) 

is the outward unit normal to ∂Ω0
s  at material position X, and χ(X, t) ∈ Ωt

s is the physical 

position of material point X at time t. The dynamics of the coupled system are described by

ρDu
Dt (x, t) = − ∇p(x, t) + μ∇2u(x, t) + f(x, t), (1)

∇ ⋅ u(x, t) = 0, (2)

f(x, t) = ∫Ω0
sF(X, t)δ(x − χ(X, t)) dX, (3)

∂χ
∂t (X, t) = U(X, t) = ∫

Ω
u(x, t) δ(x − χ(X, t)) dx = u(χ(X, t), t), (4)

in which D
Dt = ∂

∂t + u ⋅ ∇ is the material derivative, u(x, t) and p(x, t) are the Eulerian 

velocity and pressure fields, f(x, t) is the Eulerian structural force density, F(X, t) is the 

Lagrangian force density, U(X, t) is the Lagrangian velocity of the immersed structure, and 

δ(x) = ∏i = 1
3 δ(xi) is the three-dimensional Dirac delta function. For simplicity, we assume 

a uniform mass density ρ and viscosity μ. Eq. (3) implies that the Eulerian and Lagrangian 

force densities are equivalent as densities, and Eq.(4) that the the no-slip condition is 

satisfied along the fluid-structure interface. Note that because ∂χ
∂t (X, t) = u(χ(X, t), t) and ∇ · 

u(x, t) = 0, the immersed structure is incompressible [47].

In our numerical tests, we consider both rigid and elastic immersed structures. For stationary 

structures considered in our examples, F(X, t) in Eq. (3) is a Lagrange multiplier for 

the constraint U(X, t) ≡ 0. We use a penalty formulation [48] that yields an approximate 

Lagrange multiplier force,

F(X, t) = κ(X − χ(X, t)) − ηU(X, t), (5)

in which κ is a stiffness penalty parameter and η is a body damping penalty parameter. Note 

that as κ → ∞, χ(X, t) X and ∂χ
∂t (X, t) 0. We include a damping term in the penalty 

force to reduce spurious oscillations that can occur in practice for finite κ.

We also consider immersed elastic structures in Sections 3.3, 3.4, and 3.5. In the simplest 

version of this methodology, the immersed structure is modeled as a viscoelastic solid, 

in which the viscous stresses in the solid are typically small compared to elastic stresses 

[4,49-51]. In our IFED formulation, the elastic response is that of a hyperelastic material, 

for which the first Piola–Kirchhoff stress ℙ of the immersed structure is related to a strain-

energy functional Ψ(F) via ℙ = ∂Ψ
∂F , in which F = ∂χ ∕ ∂X is the deformation gradient tensor. 
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The resultant structural force F(X, t) generated by deformations of the elastic structure is 

determined in a weak sense by satisfying

∫Ω0
s F(X, t) ⋅ V (X) dX = − ∫Ω0

s ℙ(X, t) : ∇XV (X) dX (6)

for all smooth V(X) [4,52]. This is the so-called unified weak formulation [4], which 

incorporates both internal and transmission forces [52]. Consequently, F can be a 

generalized function or distribution, with force concentrations along the fluid-solid 

interface that are singular like a one-dimensional delta function. As in earlier work using 

finite element-based structural discretizations with the IB framework, these singularities 

are effectively regularized by projecting them onto the finite element shape functions 

[4,49,52,53]. (Griffith and Luo [4] also considered a partitioned formulation that separately 

approximated the (regular) interior force density and the (singular) transmission force 

density. In practice, we have not found cases in which that approach yields substantially 

improved accuracy, but we do find that it yields poorer stability in many cases. 

Consequently, we focus on the unified formulation in this work.) We also use this approach 

as a penalty formulation to model rigid structures by treating the structure as an elastic 

material with a large stiffness parameter.

2.2 Eulerian and Lagrangian discretizations

The Eulerian variables are solved on the computational domain Ω, which includes both the 

solid and fluid subregions, and this domain is described using a block-structured locally 

refined Cartesian grids consisting of nested levels of Cartesian grid patches [7]. This allows 

high spatial resolution to be deployed dynamically near fluid-structure interfaces and near 

flow features that are identified by feature detection criteria (e.g., local magnitude of the 

vorticity) for enhanced spatial resolution. Figure 1 provides an example of the adaptive 

mesh refinement in the test case of flow past a cylinder. We use a second-order accurate 

staggered-grid discretization [46,54] of the incompressible Navier-Stokes that includes a 

version of the piecewise parabolic method (PPM) [55] to approximate the convective term.

The Lagrangian variables are solved on the immersed structure, which is discretized with 

C0 finite elements as described in Griffith and Luo [4]. Briefly, we construct a triangulation, 

Tℎ, with m nodes, in which we define the 3m-dimensional vector-valued approximation 

space as Xℎ ⊂ H1(Tℎ)3. We then define {ϕℓ} to be the standard nodally interpolating finite 

element basis of Xh. We track deformation, velocity, and force at the nodes and use the same 

shape functions for each component, which can be written as

χℎ(X, t) = ∑
ℓ = 1

m
χℓ(t) ϕℓ(X), (7)

Uℎ(X, t) = ∑
ℓ = 1

m
Uℓ(t) ϕℓ(X), and (8)
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Fℎ(X, t) = ∑
ℓ = 1

m
Fℓ(t) ϕℓ(X) . (9)

For the rest of this discussion, we drop the subscript “h” from the numerical approximations 

to the Lagrangian variables to simplify notation.

2.3 Lagrangian-Eulerian coupling

As briefly described in Section 1, the coupling between Eulerian and Lagrangian variables 

is mediated by integral transforms with delta function kernels as shown in Eq. (3) and 

(4). To approximate f = (f1, f2, f3) in Eq. (3) on the Cartesian grid, we construct a 

Gaussian quadrature rule with Ne quadrature (or interaction) points XQ
e ∈ Ke and weights 

wQ
e , Q = 1, …, Ne for each element Ke ∈ Tℎ. Then f1, f2, and f3 on the faces of the Cartesian 

grid cells are computed as [4]

(f1)i − 1
2, j, k = ∑

Ke ∈ Tℎ
∑

Q = 1

Ne

F1(XQ
e , t) δℎ(xi − 1

2, j, k − χ(XQ
e , t))wQ

e , (10)

(f2)i, j − 1
2, k = ∑

Ke ∈ Tℎ
∑

Q = 1

Ne

F2(XQ
e , t) δℎ(xi, j − 1

2, k − χ(XQ
e , t))wQ

e , (11)

(f3)i, j, k − 1
2

= ∑
Ke ∈ Tℎ

∑
Q = 1

Ne

F3(XQ
e , t) δℎ(xi, j, k − 1

2
− χ(XQ

e , t))wQ
e , (12)

in which F(X, t) = (F1(X, t), F2(X, t), F3(X, t)) are the Lagrangian force densities and δh(x) is 

a regularized delta function. We use the compact notation

f(x, t) = S[χ( ⋅ , t)] F(X, t), (13)

in which S[χ( ⋅ , t)] is the force-prolongation operator. Similarly, the velocity of the structure, 
∂χ
∂t (X, t) in Eq. (4), can be approximated by using the Cartesian grid velocity u(x, t),

∂χ
∂t (X, t) = J[χ( ⋅ , t)] u(x, t), (14)

in which J[χ( ⋅ , t)] is the velocity-restriction operator that is constructed to satisfy the 

adjoint condition, J = S∗ [4]. It is clear that the coupling operators S and J depend on the 

spatial discretization and the choice of regularized delta function kernel, δh.
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2.4 Regularized delta functions

In our computations, we use a regularized delta function δh(x) in our discrete 

approximations to the integral transforms in Eq. (3) and (4). Following Peskin [1], we 

construct the three-dimensional regularized delta function as the tensor product of one-

dimensional delta functions, δℎ(x) = ∏i = 1
3 δℎ(xi), and the one-dimensional regularized delta 

function is defined in terms of a basic kernel function via δℎ(x) = 1
ℎφ x

ℎ . Note that φ 

is different from ϕ used earlier to denote finite element basis functions. Here, φ(r) is 

continuous for all r and zero outside of the radius of support. Figure 2 shows different 

regularized delta functions considered in this study. One-dimensional kernel functions 

introduced by Peskin impose some or all of the following conditions [1]:

zeroth moment: ∑
j

φ(r − j) = 1; (15)

even−odd: ∑
j even

φ(r − j) = ∑
j odd

φ(r − j) = 1
2; (16)

first moment: ∑
j

(r − j) φ(r − j) = 0; (17)

second moment: ∑
j

(r − j)2 φ(r − j) = K, for some constant K . (18)

The zeroth moment condition implies total forces are equivalent in discretized Lagrangian 

or Eulerian form when δh is used for force spreading [1]. The even–odd condition is 

designed to avoid the “checkerboard” instability in a collocated-grid fluid solver and 

thereby to suppress spurious high-frequency modes [1,31,36,37,46]. Note that the even–

odd condition implies the zeroth moment condition. The first moment condition implies 

the conservation of total torque. Along with the zeroth moment condition, it guarantees 

second-order accuracy in interpolating smooth functions [1]. If a kernel function satisfies Eq 

(18) with K = 0, then the second moment condition implies that the kernel achieves higher 

order accuracy in interpolating smooth fields. It is also possible to use the higher-order 

moment condition with K ≠ 0, which can be used to impose higher continuity order on the 

kernel function [36]. Peskin also postulated a sum-of-squares condition,

∑
j

(φ(r − j))2 = C, for some constant C, (19)

which is a weak version of a grid translational invariance property [1].

At present, the kernel functions most commonly used with the IB method appear to be 

what we refer to as the IB kernels, which satisfy some or all of the properties proposed 

by Peskin [1] (Figures 2a and 2b). The three-point IB kernel is constructed by satisfying 
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the zeroth and first moment conditions as well as the sum-of-squares condition, but not 

the even-odd condition [1]. The five-point IB kernel satisfies the same conditions as the 

three-point function along with second and third moment conditions with K ≠ 0 chosen to 

yield higher continuity order [36,37]. The four-point IB kernel is constructed by satisfying 

the even–odd condition (which also implies the zeroth moment condition) and first moment 

conditions as well as the sum-of-squares condition [1]. The six-point IB kernel satisfies the 

same conditions as the four-point function along with second and third moment conditions 

with K ≠ 0 chosen to yield higher continuity order [36,37]. We emphasize that the three- and 

four-point IB kernels satisfy the same properties, except that the three-point kernel does not 

satisfy the even-odd condition. Likewise, the five- and six-point IB kernels satisfy the same 

properties, except that the five-point kernel does not satisfy the even-odd condition.

This study also considers the performance of B-spline kernels (Figures 2f-2i), which are 

recursively constructed by convolution against the zeroth-order B-spline kernel (which is a 

piecewise-constant function):

φn
B‐spline(r) = φn − 1

B‐spline(r) ∗ φ0
B‐spline(r) = ∫

−∞

∞
φn − 1

B‐spline(r − s) φ0
B‐spline(s) ds . (20)

An nth-order B-spline satisfies up to nth-order moment conditions but does not satisfy 

the even–odd condition or the approximate grid translational invariance property. Both the 

radius of support and the smoothness of the B-spline kernel increases with order, and the 

limiting function is a Gaussian [37, 56]. One advantage of using B-spline kernels is that 

they are piecewise polynomial and can be evaluated efficiently. Table 1 shows a summary of 

properties and moment conditions satisfied by the kernels that are considered in this paper.

2.5 Lagrangian mesh spacing

In addition to the choice of the regularized delta function kernel, the coupling strategy used 

in the IFED method allows us to study the impact of the interaction between the Lagrangian 

mesh and the Eulerian grid. We use mesh factor, MFAC, to indicate the approximate ratio 

of Lagrangian element node spacing to the Eulerian grid spacing. MFAC is defined here 

as MFAC ≈ ΔX
EFACΔx , in which ΔX is the Lagrangian element size, Δx is the Eulerian grid 

spacing in each coordinate direction, and the element factor EFAC is 1 for linear elements 

and 2 for quadratic elements, and reflects the fact that, e.g., nodes are approximately ΔX/2 

apart for quadratic elements. See Figure 3. For example, the usual “rule of thumb” described 

by Peskin [1] restricts the structural mesh to be approximately twice as fine as the Eulerian 

grid, which corresponds to MFAC = 0.5, independent of EFAC. We investigate the effect of 

the choice of MFAC, along with the choice of the regularized delta function kernel, in the 

accuracy of our solutions through our FSI benchmarks.

2.6 Time discretization

We use an explicit midpoint rule for the structural deformation, a Crank-Nicolson scheme 

for the viscous term, and an Adams-Bashforth scheme for the convective term, as detailed 

previously [4]. Each time step involves solving the time-dependent incompressible Stokes 
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equations, one force evaluation and force spreading operation, and two velocity interpolation 

operations.

2.7 Stabilization method for hyperelastic material models

In the continuous IFED formulation, the immersed structure is automatically treated as 

incompressible because ∂χ
∂t (X, t) = u(χ(X, t), t) and ∇ · u(x, t) = 0. In the spatially discretized 

equations, exact incompressibility can be lost in the solid. We use a stabilization approach 

[47] that effectively reinforces the incompressibility constraint. This approach uses a 

splitting of the strain energy functional into isochoric and volumetric parts,

Ψ(F) = W (F) + U(J), (21)

in which F = J−1 ∕ 3F , as is commonly done in nearly incompressible elasticity models [57]. 

We use the volumetric part of the strain energy as a stabilization term used to enforce the 

incompressibility of the elastic structures, and here we choose it to be [58]

U(J) = β(J ln J − J + 1), (22)

in which β is a numerical bulk modulus [47]. In this study, we empirically determine 

approximately the largest value of the bulk modulus that allow the scheme to remain stable 

for a given time step size Δt to penalize any volume change in the structural mesh elements 

for each kernel and grid spacing.

2.8 IBAMR

FSI simulations use the IBAMR software infrastructure, which is a distributed-memory 

parallel implementation of the IB method with adaptive mesh refinement (AMR) [59,60]. 

IBAMR uses SAMRAI [61] for Cartesian grid discretization management, libMesh [62] for 

finite element discretization management, and PETSc [63] for linear solver infrastructure.

3 Fluid-Structure Interaction Benchmarks and Results

This section systematically investigates the impact of the choice of regularized delta function 

as well as the relative spacings of the Lagrangian and Eulerian discretization on the 

IFED method using a series of FSI benchmarks. The benchmarks are organized into shear-

dominated and pressure-loaded cases, and we apply our findings from them to a large-scale 

FSI model.

3.1 Two-dimensional flow past cylinder

We begin by considering the widely used test of viscous incompressible flow past a 

stationary circular cylinder [4,64]. We use the penalty formulation, Eq. (5), to model the 

cylinder. The penalty parameters κ and η are determined to be approximately the largest 

stable values for a given time step size and Lagrangian and Eulerian mesh spacings. The 

cylinder has diameter D = 1 and is embedded in a computational domain Ω with side 

lengths of L = H = 60. Figure 4a provides a schematic diagram. We use a uniform inflow 

velocity boundary condition, u = (1, 0), on the left boundary of the computational domain 
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and specify zero normal traction and tangential velocity conditions on the right boundary. 

For the top and bottom boundaries of the computational domain, we specify zero normal 

velocity and tangential traction conditions. The fluid has density ρ = 1 and viscosity μ = 

0.005, and the Reynolds number is Re =
ρu∞D

μ = 200. We use the lift CL =
Fy

ρu∞2 D ∕ 2
 and 

drag CD =
Fx

ρu∞2 D ∕ 2
 coefficients to evaluate the effect of the choice of regularized delta 

function or mesh factor on the computed dynamics, in which F = (Fx, Fy) is the net force on 

the cylinder and u∞ is the characteristic flow speed (which we take to be x-component of the 

inflow velocity). The computational domain is discretized using a six-level locally refined 

grid with a refinement ratio of two between levels and an N × N coarse grid. The fine-grid 

Cartesian cell size is Δx = H/(32N), and the time step size is Δt = 0.1875/N. Griffith and 

Luo [4] previously conducted an initial study using this benchmark with the three-, four-, 

and six-point IB delta function kernels. Figure 5 shows representative results of lift and drag 

coefficients using the three-point B-spline kernel, which shows converging behavior under 

simultaneous Lagrangian and Eulerian grid refinement (from N = 32 to N = 256) for MFAC 

= 0.5, 1, 2, and 4. The method yields similar convergence behavior under grid refinement for 

the other kernel functions that we consider and for the chosen values of MFAC.

Although the scheme converges under grid refinement for all choices of kernels and for 

all values of MFAC, we observe that four- and six-point IB kernels clearly require high 

grid resolution to yield converged solutions for MFAC = 0.5 and 1. Considering specifically 

the intermediate Cartesian resolution corresponding to N = 64, we find that some kernels 

show markedly lower accuracy for some MFAC values. At the same moderate resolution, the 

three-point IB kernel (along with the piecewise linear and B-spline kernels) are less sensitive 

for MFAC ≥ 1 compared to the four- and six-point IB kernels, which agrees with the results 

reported by Griffith and Luo [4].

Next, we compare results at the same resolution with a broader selection of kernel functions 

to identify which kernels give more consistent results over different values of MFAC at 

intermediate resolution. Table 2 compares lift and drag coefficients and Strouhal numbers 

at N = 64 using different kernel functions for MFAC = 0.5, 1, 2, and 4. These quantities 

converge to CL = ±0.67, CD = 1.361 ± 0.041, and St = 0.200 under grid refinement, and 

we observe that the three-point IB and three- and four-point B-spline kernels with MFAC > 

1 result in the best agreement with the converged values at N = 64. For MFAC = 0.5, lift 

amplitudes differ up to 25% from the converged value, compared to up to 9% for MFAC ≥ 

1 for some kernels. These three kernels also give consistent Strouhal numbers (St = 0.200) 

for the values of MFAC considered. Figure 6 compares lift and drag coefficients as functions 

of time for four representative kernels. Although Table 2 suggests that the three-point IB 

and three-point B-spline kernels yield similar values for lift and drag coefficients with 

similar root-mean-square error with respect to the converged results, Figure 6 shows that 

the lift and drag coefficients for MFAC = 0.5 using the three-point IB kernel clearly deviates 

from the results for other values of MFAC. This suggests that the three-point B-spline 

kernel yields more consistent results as we vary MFAC. These results also are concordant 

with previous work by Griffith and Luo [4] in that refining the Lagrangian mesh while 
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keeping the Eulerian grid resolution fixed generally lowers the accuracy. We find that the 

three-point B-spline kernel shows the least sensitivity at the coarsest grid spacings amongst 

the kernel functions considered in this study. Possible explanations for relatively lower 

accuracy and consistency from other kernels could be that the piecewise linear kernel is not 

sufficiently smoothing out the high-frequency errors and the larger IB and B-spline kernels 

are generating unphysically large numerical boundary layers near fluid-structure interfaces. 

We also note that the four-and six-point IB kernels satisfy the even-odd condition, and they 

yield lower accuracy than the corresponding three- and five-point IB kernels that do not 

satisfy the even-odd condition.

3.2 Two-dimensional channel flow

This section considers the benchmark problem of two-dimensional channel flow test adopted 

from Kolahdouz et al. [65]. We consider a domain Ω = [0, L]2 with two parallel plates, with 

channel width D and wall width w = 0.24D. The exact steady-state solution is described by 

the plane Poiseuille equation,

u(y) = χD
2μ (y − y0) 1 − y − y0

D , (23)

in which y0 is the height of inner wall of the lower channel plate and χ =
2p0
L  is the pressure 

gradient between the inflow and the outflow. To avoid a purely grid aligned test, we consider 

a slanted channel. Figure 7a provides a schematic. This is done by rotating the channel walls 

by an angle θ, so that for every point on the walls (x, y), we transform the y-coordinate 

to y′ = y + x − L
2 tan θ and let (x, y′) be the new coordinates for the walls. The steady-state 

solution is then transformed to

u(η) = χD
2μ (η − η0) 1 − η − η0

D , (24)

in which η = −x sin θ + (y − y0) cos θ and χ =
2p0

L ∕ cos θ + D tan θ . In our computations, we 

use D = 1, μ = 0.01, ρ = 1.0, L = 6D, p0 = 0.2, and θ = π/18. The maximum velocity is 

Umax = 1, and the average velocity is U = 2 ∕ 3, which implies that the Reynolds number is 

Re = ρDU
μ ≈ 66.67. The fine-grid Cartesian cell size is Δx = D/(4N), and the time step size 

is Δt = 0.0375/N. At the inlet and outlet of the channel, the rotated analytical solution of 

the steady-state velocity (Eq. (24)) provides velocity boundary conditions. This benchmark 

assesses which choices of kernel and MFAC give the best accuracy for the flow within a 

confined, stationary geometry.

The channel walls are modeled as a stiff neo-Hookean material with W wall =
cwall

2 (Ī1 − 3), in 

which Ī1 is the modified first invariant of the right Cauchy-Green tensor ℂ̄ = F̄T F̄ = J− 2
3FTF , 

and cwall ∝ Δx
Δt2

 is a penalty stiffness parameter, so that the body becomes infinitely rigid 

as Δt → 0. In addition to the penalty stiffness, we use penalty body and damping forces 
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described in Eq. (5) to enforce rigidity of the structure as well as to keep it stationary. We 

empirically determine approximately the largest values of the penalty parameters that allow 

the scheme to remain stable for a given time step size Δt for each kernel and grid spacing.

Figure 8 shows a convergence study using different error norms for representative kernels 

with MFAC = 2.0. These results indicate that the velocity converges at first order for all 

kernels. Similar convergence rates are observed for MFAC = 0.5, 1.0, 2.0, and 4.0. We find 

that using the piecewise linear kernel leads to the best accuracy for this test. Figure 9 shows 

the error plots in velocity for representative kernels for MFAC = 0.5, 1, 2, and 4 at N = 128. 

In all cases, we observe the general trend that the cases with MFAC ≥ 1, i.e., cases in which 

the structural mesh is coarser than the background Cartesian grids, result in better accuracy. 

This finding is in agreement with the results of Section 3.1. Similar results are obtained at 

all resolutions with all choices of kernels. These results demonstrate that the kernels with 

relatively narrower support (piecewise linear, three-point IB, and three-point B-spline) and 

using a structural mesh that is coarser than the background Cartesian grid yield the best 

accuracy for simulating internal flow within a stationary geometry. As in the tests reported in 

Section 3.1, we observe that the scheme converges under grid refinement for all choices of 

kernels and for all values of MFAC.

3.3 Modified Turek-Hron benchmark

Next we consider a version of the Turek-Hron FSI benchmark of flow interacting with 

a flexible elastic beam mounted to a stationary circular cylinder [66]. Figure 10 shows 

a schematic of the setup for this benchmark. In the original Turek-Hron benchmark, the 

domain length is L = 2.5 and height is H = 0.41. Our modification to this benchmark uses 

L = 2.46 = 6.0H for the domain to obtain square Cartesian grid cells, but this change is 

small enough that it does not affect the results substantially. The fine-grid Cartesian cell 

size is Δx = H/(4N), and the time step size is Δt = 0.001025/N. The circular cylinder 

is centered at (0.2, 0.2) with radius r = 0.05. The elastic beam has length l = 0.35 and 

height h = 0.02. The left end of the beam is fixed at the back of cylinder. We track 

the position of the control point A highlighted in Figure 10b, whose initial position is 

A(0) = (0.6, 0.2). The boundary conditions are u(0, y) = 1.5U y(H − y)
(H ∕ 2)2

 for x = 0, in which 

U = 2 is the average velocity, zero normal traction and zero tangential velocity conditions 

for x = L, and zero velocity condition for y = 0 and y = H. The Reynolds number is 

Re = ρUd
μ = 200, in which d = 2r = 0.1 is the diameter of the cylinder, ρ = 1000, and μ = 

1. Notice that without the elastic beam, this problem reduces to a version of the flow past 

a cylinder benchmark already considered in Section 3.1. Results reported in Section 3.1 

indicate that the three-point B-spline kernel provides the best accuracy at a given spatial 

resolution among the kernel functions considered in this study. Consequently, here we use 

the three-point B-spline kernel with MFAC = 2.0 for the cylinder in all cases, so that we 

can isolate the effects of the choice of kernel function and Mfac on the dynamics of the 

elastic beam. Also note that, following the specification of the test by Turek and Hron, the 

immersed body is positioned asymmetrically in the y-direction to ensure a consistent onset 

of beam motion across discretization and solver approaches.
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In this benchmark, we use an incompressible neo-Hookean material for the elastic beam, 

whose strain energy functional is defined as

W NH = 1
2Gs(Ī1 − 3), (25)

in which Gs is the shear modulus. This differs from the problem specification in Turek and 

Hron’s original paper, which uses a compressible St. Venant-Kirchhoff model for the elastic 

beam, but our numerical framework enforces incompressibility on both solid and fluid by 

formulation, and so we cannot readily model the elastic beam as a compressible material. 

However, we also note that our results with an incompressible material model still fall within 

the range of results reported by Turek and Hron using a compressible material model [67]. 

We do not expand on those results because that comparison is not the main focus of this 

study.

Table 3 shows comparisons for the three-point B-spline kernel for MFAC = 0.5, 1, 2, and 4 

under grid refinement. It reports the average and the amplitude of the x- and y-displacements 

(Ax and Ay) of the point A, as well as the Strouhal numbers (Stx and Sty) to quantify the 

oscillations of Ax and Ay. We obtain comparable results under grid refinement, which are 

more consistent between different MFAC values as we refine the resolution. Similar to the 

results from other benchmarks, this benchmark also indicates that under grid refinement, the 

results become independent of MFAC and the type of kernel. We again focus on the effect of 

MFAC and the choice of kernel function at an intermediate spatial resolution. Figures 11 and 

12 compare representative kernels at N = 64 for MFAC = 0.5, 1, 2, and 4. The three-point 

B-spline kernel clearly yields more consistent results for different values of MFAC at this 

resolution. Table 4 summarizes the differences between selected kernels in Figures 11 and 

12. Appendix A provides the results for the remaining IB and B-spline kernels (see Figures 

S1 and S2), and Tables 4 and S1 show that the piecewise linear and three- and four-point IB 

kernels yield displacements that show large discrepancies from the converged displacements 

if we set MFAC = 0.5. The five- and six-point IB and three-, four-, five-, and six-point 

B-spline kernels produce displacements that are relatively consistent. However, Table 3 

yields that the Strouhal numbers converge to 10.8, and only the three-point B-spline kernel 

shows the converged value for Strouhal number consistently for all values of MFAC = 0.5, 1, 

2, and 4 at the intermediate Cartesian resolution of N = 64. These results indicate that the 

three-point B-spline kernel is less sensitive to changes in MFAC, whereas other kernels show 

clear loss of accuracy as we refine the Lagrangian mesh for a fixed Eulerian grid that is of 

intermediate spatial resolution.

3.4 Two-dimensional pressure-loaded elastic band

Results reported in Section 3.1, 3.2, and 3.3 suggest that larger MFAC values generally 

give higher accuracy at a fixed Cartesian grid resolution, independent of the choice of 

kernel function. The tests considered so far, however, are examples of shear-dominant flows. 

Here we consider cases in which pressure loading dominates, as commonly encountered in 

biological and biomedical applications. To do so, we use a pressure-loaded “elastic band” 

model (Figure 13) that is adopted from Vadala-Roth et al. [47]. This uses an incompressible 

neo-Hookean material model, as described in Section 3.3, with the shear modulus Gs = 
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200. We set ρ = 1.0 and μ = 0.01. The computational domain is 2L × L, in which L = 

1. The simulations use a uniform grid with an 2N × N grid with N = 128. The fine-grid 

Cartesian cell size is Δx = L/N, and the time step size is Δt = 0.001/N. Fluid tractions 

τ(x, t) = σ(x, t)n(x) = −h and τ(x, t) = σ(x, t)n(x) = h are imposed on the left and right 

boundaries of the computational domain, in which σ = − pI + μ(∇u + ∇uT ) is the fluid stress 

tensor and h = (5, 0), and zero velocity is enforced along the top and bottom boundaries. 

The elastic band deforms and ultimately reaches a steady-state configuration determined by 

the pressure difference across the band. We use a grid resolution (N = 128) that is fine 

enough so that the elastic bands are well-resolved for all cases to isolate the effect of MFAC 

on the Lagrangian-Eulerian coupling and eliminate the effect of elastic response from the 

band. Moreover, the effective shape of the kernel function changes near the boundary of the 

computational domain. We attempt to isolate the elastic model from issues that may arise 

at or near the physical boundaries by attaching it to the boundary through rigid blocks (of 

height h = 0.1) that are discretized using relatively fine structural meshes (MFAC = 0.5). In 

the continuous problem, there is no flow at equilibrium, but Figure 14 demonstrates that if 

the structural mesh is coarser than the finest background Cartesian grid spacing (MFAC > 1), 

spurious flows clearly develop near the fluid-structure interface. Table 5 confirms that the 

error is an order of magnitude larger when MFAC is increased from 0.5 to MFAC > 1, and up 

to 65 times larger when increased to MFAC = 4. Similar results are obtained for all of the 

kernels considered here.

3.5 Bioprosthetic heart valve dynamics in a pulse duplicator

We aim to verify our key findings in a large-scale FSI model. To do so, we consider a 

dynamic model of a bovine pericaridal bioprosthetic heart valve (BHV) in a pulse duplicator, 

as described in detail by Lee et al. [15,16]. The simulation setup includes a detailed IFED 

model of the aortic test section of an experimental pulse duplicator, and the simulation 

includes both substantial pressure-loads (during diastole, when the valve is closed) and 

shear-dominant flows (during systole, when the valve is open). The bovine pericardial valve 

leaflets are described by a modified version [15] of the Holzapfel–Gasser–Ogden (HGO) 

model [68],

W BHV = C10{exp [C01(Ī1 − 3)] − 1} + k1
2k2

{exp [k2(κĪ1 + (1 − 3κ)Ī4
⋆ − 1)2]

− 1},
(26)

in which Ī4
⋆ = max(Ī4, 1) = max(e0

T ℂ̄e0, 1), and e0 is a unit vector aligned with the mean 

fiber direction in the reference configuration. The parameter κ ∈ [0, 1
3] describes collagen 

fiber angle dispersion. In the our simulations, we use C10 = 0.119 kPa, C01 = 22.59, k1 

= 2.38 MPa, k2 = 149.8, and κ = 0.292 [15]. We use ρ = 1.0 g/cm3 and μ = 1.0 cP, and 

we can calculate the peak Reynolds number [15,16], Repeak =
ρQpeakD

μA ≈ 14800, in which 

D = 25 mm and A are the geometrical diameter and cross-sectional area of the valve, 

respectively. The computational domain is 5.05 cm × 10.1 cm × 5.05 cm. The simulations 

use a three-level locally refined grid with a refinement ratio of two between levels and an 

N/2 × N × N/2 coarse grid with N = 64, which yields a fine-grid Cartesian resolution of 0.4 
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mm. Here, we use the piecewise linear kernel for the test section and consider the effects 

of different choices of kernel functions for the valve leaflets. Three-element Windkessel 

(R–C–R) models establish the upstream driving and downstream loading conditions for the 

aortic test section. A combination of normal traction and zero tangential velocity boundary 

conditions are used at the inlet and outlet to couple the reduced-order models to the detailed 

description of the flow within the test section. Solid wall boundary conditions are imposed 

on the remaining boundaries of the computational domain. See Lee et al. [15] for futher 

details.

We first consider the effect of MFAC when using the three-point B-spline kernel for the 

valve leaflets. Figures 15a and 15b compare cross-section views of velocity magnitude for 

the bovine BHV models for MFAC = 0.75 and 1.5. It is clear in Figure 15b that there 

is significant spurious flows through the structure during diastole, but not in Figure 15a. 

Figures 15c, 15d, and 15e compare simulated and experimental flow rates and pressure 

waveforms. The spurious velocities that are evident in Figure 15b are also reflected in 

these measurements. Using MFAC = 0.75, the flow rate and pressure data are in excellent 

agreement with those from the corresponding experiment, whereas we clearly observe the 

effect of spurious velocities through the structure that are reflected as negative flow rates 

when the valve is closed and supporting a physiological pressure load (Figure 15c). We 

also remark that the simulation using MFAC = 1.5 is not able to proceed beyond t ≈ 0.25 

s without significantly reducing the time step size because of the high spurious velocities 

in the regions highlighted in Figure 15b. The BHV leaflets in the MFAC = 1.5 case also 

experience unphysical deformations at the free edges of the leaflets during systole.

We also look at the effect of different kernels under a fixed value of MFAC. In Figure 16, 

we compare three cases in which we use the three-point B-spline kernel, the three-point 

IB kernel, and the four-point IB kernel for the valve leaflets, and for all of them use 

the piecewise linear kernel for the aortic test section and set MFAC = 0.75. We observe 

immediately during diastole that there is unphysical velocity through the valve leaflets when 

using the four-point IB kernel (Figure 16c).

4 Discussion

This study explores the impacts of various choices of regularized delta functions to 

approximate the integral transforms that connect the Lagrangian and Eulerian variables, 

Eqs. (3) and (4), in the IFED method. It also investigates the effect of variations in the 

structural mesh spacing relative to the background Cartesian grid spacing for different 

kernels on the accuracy using standard FSI benchmark studies. Our results suggest that 

kernels satisfying the even–odd condition require higher resolution to achieve similar 

accuracy as kernels that do not satisfy this condition (e.g., the four- and six-point IB 

kernels versus the three- and five-point IB kernels). We also find that, at least for the 

tests considered herein, narrower kernels are more robust, and that structural meshes that 

are coarser than the background Cartesian grid can yield improved accuracy compared 

to structural meshes that are comparable to or finer than the background grid for shear-

dominated cases, but not for cases with large normal forces along the fluid-structure 

interface. This suggests that to handle both cases within a single model, one needs to use 
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structural meshes with resolutions that are at least as fine as the background grid to avoid 

instabilities along with a narrower kernel. The impact of the choice of regularized delta 

function or relative mesh spacings will likely depend on the many details of the Lagrangian 

and Eulerian spatial discretizations. For instance, different Lagrangian-Eulerian coupling 

strategies, such as node-based approximations to the integral transforms, may not be suitable 

for general use with MFAC > 1. A possible explanation for why narrower kernels yield 

higher accuracies for a given resolution is that the kernels with smaller support result in 

smaller numerical boundary layers along the fluid-structure interface. In cases in which 

the numerical boundary layer is comparable to or larger than the physical boundary layer, 

changes in numerical boundary layer thicknesses may substantially impact accuracy. For 

instance, the channel flow benchmark is an interesting case in which the piecewise linear 

kernel leads to the best accuracy, as opposed to other cases in which the three-point B-spline 

kernel yields the best accuracy. Unlike in other tests considered herein, however, in laminar 

channel flow, the flow field is completely tangential to the immersed structures, so the 

dominating factor that affects the accuracy here is indeed the numerical boundary layer.

The piecewise linear kernel leads to the smallest numerical boundary layer effect on the 

solution, and it provides the best accuracy for this test. It is evident in Figures 8 and 9 

that the error increases as the radius of support of the kernel increases. More broadly, 

these results suggest that smoother kernels do not necessarily yield improved accuracy. 

Indeed, based on these results, we speculate that there is a benefit in accuracy to using 

the minimal amount of smoothing required for a particular model. Specifically, kernel 

functions that smooth out spatial variations in the Lagrangian force when it is spread to 

the Eulerian grid effectively prevent those variations from impacting the dynamics of the 

fluid-structure system. Similarly, kernel functions that smooth out spatial variations in the 

Eulerian velocity field prevent those variations from influencing the motion of the structure. 

This can allow such modes to persist in the computed solution unless otherwise suppressed 

through physical or numerical smoothing mechanisms. In the present models, viscous 

dissipation is the primary physical smoothing mechanism, and some additional smoothing 

is provided by numerical dissipation from the PPM-type discretization of the convective 

terms in the momentum equation. The physical viscosity may have a limited impact on the 

computed dynamics at moderate-to-high Reynolds numbers at practical spatial resolutions, 

particularly in three spatial dimensions. This suggests that the overall methodology may 

benefit from additional stabilization that is tailored to the Lagrangian-Eulerian coupling 

operators, although the construction of such stabilization procedures is beyond the scope 

of the present study. As with the higher-order kernel functions, kernels that satisfy the 

even–odd condition will be oblivious to grid-scale even-odd oscillations in the velocity field 

when interpolating the velocity to the structure, and instead will only see the mean velocity. 

Specifically, interpolating an alternating +U/ − U velocity pattern will yield a structural 

velocity that is identically 0 for any value of U when using a kernel that satisfies the even–

odd condition. Although such oscillations will be damped by viscosity, if viscosity is small, 

these modes may decay slowly. We believe that this can allows oscillatory modes to persist 

near or inside the structure, like those that appear in Figure 16 when the valve is closed for 

the four-point IB kernel but not for the three-point B-spline or IB kernels.
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The results in Section 3.1, 3.2, and 3.3 indicate that we obtain improved accuracy with 

a given Cartesian grid resolution for these shear-dominant cases by using relatively 

coarser Lagrangian nodal spacing (MFAC > 1). This means that the structural mesh in 

the IFED method can be coarser than that follows the “rule of thumb” (MFAC = 0.5) 

for the nodally interacting IB method by a factor of 8 (MFAC = 4), which results in a 

significant improvement in both accuracy and efficiency. However, in the pressure-loaded 

case considered in Section 3.4, we observe that the Lagrangian mesh needs to have a 

resolution that is similar to or relatively finer than the Cartesian grid (MFAC ≤ 1) to avoid 

spurious velocities through the structure. In fact, it is common in simulations using complex 

geometries to have many mesh elements that are comparable to or finer than the background 

Cartesian grid to preserve fine-scale geometric features. Understanding this transition in 

accuracy between shear-dominant and pressure-loaded cases is another possible future area 

of research.

The benchmarks suggest that the three-point B-spline kernel is the best overall choice 

considering both shear- and pressure-dominant flows because it is less sensitive to the 

relative structural mesh spacing. We emphasize, however, that under sufficiently fine 

grid resolution, different kernels all appear ultimately to converge to the same results. 

However, this study also suggests that optimal choices of numerical and discretization 

parameters can provide consistent solutions at the coarser grid resolutions that are needed 

to facilitate the deployment of the methodology to large-scale three-dimensional models. 

Using these results, we also applied our findings from benchmark studies to an FSI model 

of bovine pericardial BHV in a pulse duplicator, which involves both pressure-loaded and 

shear-dominant flows in a rigid and stationary channel with immersed elastic structures 

inside. Results obtained using this large-scale model are consistent with the key findings 

of benchmark test cases, and we obtain accurate results only for MFAC < 1. For the case 

in which MFAC = 1, the results are in excellent agreement with results using MFAC = 

0.5 and 0.75, except for a slight discrepancy during closure as shown in Figures 15c-15e 

because some elements have MFAC > 1. A limitation of this study is that not all possible 

kernel function constructions are considered. Another limitation is that it considers specific 

Lagrangian and Eulerian spatial discretizations. Although this study is done within the 

context of the IFED method, the effect of different kernels could be important not just 

for this method, but more generally for other IB-type methods that use regularized delta 

functions to mediate fluid-structure interaction.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Systematically studies the effect of the choice of regularized delta function.

• Systematically studies the effect of relative size of the structural meshes.

• Relatively coarse structural meshes can be used for shear dominated cases.

• Narrower kernels are more robust; even-odd condition requires higher 

resolution.

• The findings underscore the need for similar studies for other IB-type 

methods.
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Figure 1: 
Vortices shed from a stationary circular cylinder at Re = 200. The computational domain 

is described by block-structured adaptively refined Cartesian grid that dynamically tracks 

vortices shed from the immersed structure.
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Figure 2: 
Selected choices of regularized delta functions. One family of kernel functions is determined 

by imposing some or all of the conditions described by Peskin [1], and they present different 

properties depending on which of the moment conditions are satisfied. We can also consider 

B-spline kernels that are constructed by recursive convolution against piecewise-constant 

kernels.

Lee and Griffith Page 25

J Comput Phys. Author manuscript; available in PMC 2023 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Description of MFAC, which is the ratio between background Cartesian grid spacing and 

finite element node spacing. In the case shown here, there are about five Cartesian grid cells 

between two finite element nodes for a second-order triangular (P2) element, so we say that 

MFAC ≈ 5.
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Figure 4: 
(a) Schematic of two-dimensional flow past a cylinder benchmark. Arrows represent the 

inflow boundary, where a uniform velocity boundary condition, u = (1, 0), is applied. Zero 

normal traction and tangential velocity at the outflow boundary. For the top and bottom 

boundaries, we use zero normal velocity and tangential traction. We choose Re = 200 in our 

tests. (b) A magnified view of the vortices shed from a stationary circular cylinder from our 

simulation.
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Figure 5: 
Representative lift (CL) and drag (CD) coefficients for flow past a stationary cylinder at Re = 

200 using the three-point B-spline kernel. The computational domain Ω is discretized using 

a six-level locally refined grid with a refinement ratio of two between levels and an N × N 
coarse grid. We observe that the lift and drag coefficients show converging behavior under 

simultaneous Lagrangian and Eulerian grid refinement (from N = 32 to N = 256) for all 

values of MFAC. Similar accuracy is observed with the other kernels except for the six-point 

IB kernel, which requires higher resolution to yield comparable accuracy.
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Figure 6: 
Representative results of lift (CL) and drag (CD) coefficients for flow past a stationary 

cylinder at N = 64 using four representative regularized delta functions and different relative 

structural mesh spacing for a fixed Eulerian grid (MFAC = 0.5, 1, 2, and 4).
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Figure 7: 
(a) Schematic of two-dimensional flow through a slanted channel. (b) Representative steady-

state velocity solution vector field for the two-dimensional slanted channel flow benchmark. 

This simulation uses a three-level locally refined grid with a refinement ratio of two between 

levels and an N × N coarse grid with N = 256. The computation uses a piecewise linear 

kernel and MFAC = 2.0.
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Figure 8: 
Representative log-log plot of different error norms in velocity with respect to the finest 

Eulerian mesh width h for various kernels with MFAC = 2.0. The piecewise linear kernel 

shows the smallest errors. Notice that first-order convergence is obtained with all choices of 

kernels and for all values of MFAC.
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Figure 9: 
Plot of the error norms in velocity for values of MFAC = 0.5, 1, 2, and 4 at N = 128 for 

various kernels. It shows that the structural mesh that is relatively coarser than the finest 

background Cartesian grids yields the lowest error. The piecewise linear kernel shows the 

smallest errors. Note that similar results are obtained at all resolutions with all choices of 

kernels.
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Figure 10: 
(a) Schematic of the Turek-Hron benchmark [66]. (b) Detail of the immersed cylinder and 

flexible beam.
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Figure 11: 
x-displacement (Ax) of the point A for different values of MFAC for the modified Turek-

Hron benchmark using different kernels at a Cartesian resolution of N = 64. Panels in the 

rightmost column show the periodic oscillations between t = 11.5 and t = 12.
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Figure 12: 
y-displacement (Ay) of the point A for different values of MFAC for the modified Turek-

Hron benchmark using different kernels at a Cartesian resolution of N = 64. Figures in the 

rightmost column show the periodic oscillations between t = 11.5 and t = 12.
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Figure 13: 
Schematic of two-dimensional pressure-loaded elastic band adopted from Vadala-Roth et 

al. [47]. The loading on the band (blue) is driven by fluid forces induced by the pressure 

gradient between the left and right boundaries of the computational domain. The effective 

shape of the kernel function changes near the boundary of the computational domain. So we 

avoid issues that may arise from using a finer structural mesh (MFAC = 0.5) for the two rigid 

blocks (yellow) by which the top and bottom of the band are fixed in place. In this figure, 

MFAC = 2 for the band away from the boundary.
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Figure 14: 
Comparison of velocity fields from the pressure-loaded two-dimensional elastic band for 

MFAC = 0.5, 0.75, 1, 2, and 4. The simulations use an N × N grid with N = 128. The three-

point B-spline kernel is used for this figure, but we observe the similar results with other 

kernels. If the structural mesh is relatively coarser (MFAC > 1) than the finest background 

Cartesian grids, then we obtain low accuracy for simulating pressurized elastic band.
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Figure 15: 
Representative comparison of cross-section views of simulated velocity magnitudes for the 

bovine pericardial valve models for (a) MFAC = 0.75 and (b) 1.5 during diastole (pressure-

loaded when the valve is closed) and systole (shear-dominant flow when the valve is open). 

The simulations use a three-level locally refined grid with a refinement ratio of two between 

levels and an N/2 × N × N/2 coarse grid with N = 64, which corresponds to N = 256 at the 

finest level. We also look at comparisons of (c) flow rates (QAo), (d) downstream pressure 

(PAo), and (e) upstream pressure (PLV) waveforms measured from simulations with MFAC = 

0.5, 0.75, 1, 1.5. In panel (b) we see spurious velocities through the structure during diastole 

as well as local regions with unphysical velocity concentrations during systole (red dashed 

circles). All comparisons in panels (c)–(e) also indicate that MFAC = 0.5 and 0.75 are in 

excellent agreement and MFAC = 1 shows minor discrepancy during closure as shown in the 

magnified views. This is because for the case of MFAC = 1, not all elements have MFAC 

exactly equal to 1, but some element have MFAC > 1. However, we clearly observe spurious 

velocities in (b) with MFAC = 1.5, which are reflected as negative flow rate measurement as 

shown in (c). As a result, we also observe discrepancies in both downstream and upstream 

pressure for MFAC = 1.5.
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Figure 16: 
Representative comparison of cross-section views of simulated velocity magnitudes for the 

bovine pericardial valve models for (a) the three-point B-spline kernel, (b) the three-point 

IB kernel, and (c) the four-point IB kernel during diastole. In all of the cases, we use the 

piecewise linear kernel for the housing and set MFAC = 0.75. We observe that with the 

four-point IB kernel, there are relatively large unphysical flows “through” the valve leaflets, 

whereas the only flow we see with the three-point B-spline kernel and the three-point IB 

kernel are small leakage flows through the middle gap between the valve leaflets, which 

appear to be physical.
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Table 1:

Selected choices of regularized delta functions with properties and moment conditions that are satisfied. In the 

higher moment columns (second-fifth moment), the value of K that satisfies the given moment condition is 

given.

Kernel Even–Odd Zeroth
Moment

First
Moment

Second
Moment

Third
Moment

Fourth
Moment

Fifth
Moment

Sum of
Squares

Piecewise-linear × ✓ ✓ × × × × ×

IB (3-point) × ✓ ✓ × × × ×
1
2

IB (4-point) ✓ ✓ ✓ × × × ×
3
8

IB (5-point) × ✓ ✓ 38
60 − 69

60 ≈ 0 × × ≈ 0.393

IB (6-point) ✓ ✓ ✓ 59
60 − 29

20 ≈ 0 × × ≈ 0.326

B-spline (3-point) × ✓ ✓
1
4 × × × ×

B-spline (4-point) × ✓ ✓
1
3 0 × × ×

B-spline (5-point) × ✓ ✓ ≈ 0.417 ≈ 0 ≈ 0.479 × ×

B-spline (6-point) × ✓ ✓ ≈ 0.500 ≈ 0 ≈ 0.700 0 ×
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Table 2:

Comparison of lift (CL) and drag (CD) coefficients for flow past a stationary cylinder at an intermediate 

Cartesian resolution of N = 64 using different regularized delta functions and relative structural mesh spacing 

(MFAC). These values converge to CL = ±0.67, CD = 1.361 ± 0.041, St = 0.200 under further grid refinement. 

We observe that the three-point IB and three- and four-point B-spline kernels result in the highest accuracies 

and least variation across MFAC values at N = 64.

MFAC = 0.5 MFAC = 1.0 MFAC = 2.0 MFAC = 4.0

Kernel C L C D St C L C D St C L C D St C L C D St

Piecewise-linear ± 0.45
1.350
±0.045 0.180 ± 0.61

1.346
±0.030 0.200 ± 0.69

1.389
±0.039 0.200 ± 0.70

1.400
±0.042 0.200

IB (3-point) ± 0.53
1.375
±0.045 0.200 ± 0.61

1.347
±0.028 0.200 ± 0.66

1.357
±0.036 0.200 ± 0.66

1.358
±0.036 0.200

IB (4-point) ± 0.44
1.359
±0.042 0.200 ± 0.62

1.446
±0.047 0.180 ± 0.64

1.347
±0.031 0.200 ± 0.64

1.348
±0.031 0.200

IB (5-point) ± 0.46
1.360
±0.044 0.180 ± 0.55

1.432
±0.053 0.200 ± 0.64

1.346
±0.032 0.200 ± 0.64

1.343
±0.033 0.200

IB (6-point) ± 0.51
1.366
±0.042 0.180 ± 0.70

1.467
±0.043 0.180 ± 0.63

1.332
±0.029 0.200 ± 0.63

1.332
±0.029 0.200

B-spline (3-point) ± 0.51
1.354
±0.042 0.200 ± 0.62

1.336
±0.032 0.200 ± 0.67

1.363
±0.037 0.200 ± 0.67

1.366
±0.037 0.200

B-spline (4-point) ± 0.50
1.350
±0.043 0.200 ± 0.61

1.355
±0.031 0.200 ± 0.66

1.357
±0.035 0.200 ± 0.66

1.356
±0.035 0.200

B-spline (5-point) ± 0.49
1.358
±0.043 0.200 ± 0.60

1.389
±0.040 0.200 ± 0.65

1.351
±0.034 0.200 ± 0.65

1.349
±0.034 0.200

B-spline (6-point) ± 0.49
1.368
±0.044 0.180 ± 0.56

1.422
±0.051 0.200 ± 0.64

1.346
±0.032 0.200 ± 0.64

1.344
±0.032 0.200
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Table 3:

Results for the modified Turek-Hron benchmark using the three-point B-spline kernel with various values of 

MFAC under different grid resolutions. N is the number of grid cells on coarsest grid level, Ax and Ay are x-, 

y-displacements of the point A, and Stx and Sty are Strouhal numbers for the oscillations of Ax and Ay.

MFAC = 0.5 MFAC = 1.0 MFAC = 2.0 MFAC = 4.0

N Ax (×10−3) Stx Ax (×10−3) Stx Ax (×10−3) Stx Ax (×10−3) Stx

32 −2.30 ± 2.16 10.4 −2.63 ± 2.47 10.4 −2.89 ± 2.85 10.4 −3.16 ± 3.00 10.8

64 −2.57 ± 2.44 10.8 −2.69 ± 2.55 10.8 −2.76 ± 2.66 10.8 −3.03 ± 2.89 10.8

128 −2.75 ± 2.61 10.8 −2.77 ± 2.63 10.8 −2.83 ± 2.70 10.8 −2.88 ± 2.73 10.8

256 −2.79 ± 2.64 10.8 −2.82 ± 2.67 10.8 −2.83 ± 2.69 10.8 −2.85 ± 2.70 10.8

N Ay (×10−3) Sty Ay (×10−3) Sty Ay (×10−3) Sty Ay (×10−3) Sty

32 1.47 ± 30.5 5.00 1.67 ± 32.4 5.00 1.56 ± 34.9 5.00 1.23 ± 36.1 5.42

64 1.41 ± 32.7 5.00 1.44 ± 33.4 5.00 1.41 ± 34.2 5.00 1.49 ± 35.3 5.00

128 1.42 ± 33.9 5.00 1.43 ± 34.0 5.00 1.44 ± 34.5 5.00 1.42 ± 34.7 5.00

256 1.42 ± 34.2 5.00 1.43 ± 34.3 5.00 1.42 ± 34.4 5.00 1.42 ± 34.5 5.00
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Table 4:

Results for the modified Turek-Hron benchmark using kernels in Figures 11 and 12. The number of Cartesian 

grid cells on the coarsest level is N = 64, Ax and Ay are x-, y-displacements of the point A, and Stx and Sty are 

Strouhal numbers for the oscillations of Ax and Ay.

MFAC = 0.5 MFAC = 1.0 MFAC = 2.0 MFAC = 4.0

Kernel Ax (×10−3) Stx Ax (×10−3) Stx Ax (×10−3) Stx Ax (×10−3) Stx

Piecewise-linear −2.20 ± 2.14 10.4 −2.74 ± 2.53 10.8 −2.80 ± 2.68 10.4 −3.10 ± 2.95 10.8

B-spline (3-point) −2.57 ± 2.44 10.8 −2.69 ± 2.55 10.8 −2.76 ± 2.66 10.8 −3.03 ± 2.89 10.8

IB (3-point) −2.03 ± 1.97 10.4 −2.69 ± 2.54 10.4 −2.76 ± 2.65 10.8 −3.02 ± 2.87 10.8

IB (4-point) −1.55 ± 1.56 10.4 −2.51 ± 2.39 10.4 −2.69 ± 2.58 10.8 −2.94 ± 2.80 10.8

Kernel Ay (×10−3) Sty Ay (×10−3) Sty Ay (×10−3) Sty Ay (×10−3) Sty

Piecewise-linear 1.38 ± 30.8 5.00 1.46 ± 33.2 5.00 1.45 ± 34.4 5.00 1.47 ± 35.9 5.00

B-spline (3-point) 1.41 ± 32.7 5.00 1.44 ± 33.4 5.00 1.41 ± 34.2 5.00 1.49 ± 35.3 5.00

IB (3-point) 1.37 ± 29.2 5.00 1.45 ± 33.3 5.00 1.42 ± 34.1 5.00 1.48 ± 35.2 5.00

IB (4-point) 1.04 ± 25.9 5.00 1.46 ± 32.2 5.00 1.41 ± 33.5 5.00 1.47 ± 34.6 5.00
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Table 5:

Quantification of errors in velocity fields from the pressure-loaded two-dimensional elastic band using 

different regularized delta functions and relative structural grid refinement (MFAC = 0.5, 0.75, 1, 2, and 4). If 

the structural mesh is relatively coarser (MFAC > 1) than the finest background Cartesian grids, then we obtain 

low accuracy for simulating pressurized elastic band.

MFAC = 0.5 MFAC = 0.75 MFAC = 1.0 MFAC = 2.0 MFAC = 4.0

Kernel L2

(×10−4)
L∞

(×10−3)
L2

(×10−4)
L∞

(×10−3)
L2

(×10−4)
L∞

(×10−3)
L2

(×10−4)
L∞

(×10−3)
L2

(×10−4)
L∞

(×10−3)

IB (3-point) 0.36 1.26 0.88 2.48 1.49 3.88 6.27 9.77 17.01 42.25

IB (4-point) 0.52 1.26 1.20 4.44 0.95 2.41 5.99 12.27 21.66 19.19

IB (5-point) 1.06 2.12 1.92 4.18 1.80 5.73 5.91 10.8 20.45 18.63

IB (6-point) 2.33 2.81 3.19 3.76 3.94 5.96 6.19 13.69 23.92 19.79

B-spline (3-point) 0.33 0.61 0.65 2.05 1.61 5.41 6.53 10.62 16.93 39.40

B-spline (4-point) 1.26 2.86 1.85 4.62 2.10 8.08 6.42 8.44 15.83 9.59

B-spline (5-point) 1.81 4.47 2.50 4.63 2.56 9.06 6.90 11.04 18.15 10.51

B-spline (6-point) 1.74 3.09 2.48 4.46 2.29 7.77 5.97 9.37 20.21 17.39
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