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Abstract

Alzheimer’s disease (AD) is the most common form of dementia affecting nearly 45 million 

people worldwide. However, the etiology of AD is still unclear. Accumulations of amyloid-β 
plaques and tau tangles, neuroinflammation, and synaptic and neuronal loss are the major 

neuropathological hallmarks of AD, with synaptic loss being the strongest correlating factor 

with memory and cognitive impairment in AD. Many of these pathological hallmarks influence 

each other during the onset and progression of the disease. Recent genetic evidence suggests 

the possibility of a causal link between altered immune pathways and synaptic dysfunction in 

AD. Emerging studies also suggest that immune system-mediated synaptic pruning could initiate 

early-stage pathogenesis of AD. This comprehensive review is toward understanding the crosstalk 

of neuron-microglia-astrocyte and dynamics of complement, cytokine, and chemokine systems in 

the regulation of synaptic function and dysfunction relevant to AD. We start with summarizing 

several immune pathways, involving complements, MHC-I and CX3CL1, which mediate synaptic 

elimination during development and in AD. We then will discuss the potential of targeting these 

molecules as therapeutic interventions or as biomarkers for AD.
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INTRODUCTION

Contrary to the conventional dogma, the central nervous system is not as “immune-

privileged” as previously considered. Indeed, the immune and central nervous systems 

actively interact and share mechanisms of gene regulation, signaling, and cell 

communication [1]. Immune and neuronal cells interact bi-directionally through extra-

synaptic communication mediated by complements, cytokines, chemokines, neuropeptides, 
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neurotransmitters, neurotrophins, and their receptors [2, 3]. These immune system mediators 

are not only expressed in cells from the peripheral immune system, but they are also 

central nervous system (CNS)-derived. Notably, cells such as microglia, astrocytes, and 

neurons play important roles as immune system modulators. It is well recognized that the 

CNS resident immune cells (microglia and astrocytes) and immune system-mediators play 

essential roles in the synapse formation, neurotransmission, long-term potentiation (LTP), 

and synaptic pruning [4–11]. Conversely, the immune system can also affect the neuronal 

activity under healthy and disease conditions, including AD. Increased neuroinflammation, 

reflected by microglial and astroglial activation, elevated pro-inflammatory cytokine release, 

and early complement activation – all of these have been often observed during AD [12, 

13]. Recent pre-clinical and clinical research evidences suggest that neuroinflammation is 

not merely the response to pathological insults; it may even precede AD pathology and 

drive the pathogenesis of AD [14–16]. GWAS studies have also identified various immune 

genes as risk factors for AD, they are TREM2, MS4A4/MS4A6E, CLU (APOJ), EPHA1, 

MHC II, and CR1 [17–20]. Interestingly, some of these susceptible loci/gene(s) are also 

involved in the regulation of synaptic function. In a recent study, TREM2 overexpression 

has been shown to rescue neuronal and synaptic loss [21] and EPHA1 is thought to regulate 

synapse formation [22]. Therefore, more studies are needed to understand if these AD risk 

gene(s) could contribute to the disease process exclusively via cell-autonomous manner 

by impacting the microglial cell function or if they also directly impair synaptic function, 

independent of microglial involvement. A growing body of research now suggests that the 

CNS resident immune cells are directly involved in synaptic pruning during postnatal brain 

development and AD pathogenesis. In this review, we will discuss these findings and the 

development of therapeutic drugs that may enhance synaptic activity and neuronal function 

in the AD brain.

MICROGLIA-MEDIATED, COMPLEMENT-DEPENDENT SYNAPTIC PRUNING 

IN THE NORMAL AND DISEASE BRAIN

The complement system is a major component of innate immunity. The complement system 

is responsible for recognition and lysis of invading microorganisms, clearance of apoptotic 

cells, and recruitment of immune cells. De novo synthesis of complement factors in the 

brain has been confirmed in neurons, microglia, astrocytes, and oligodendrocytes (more 

information about the complement system in the brain is reviewed in [23]). Surprisingly, 

complements in the brain had an unexpected role in the elimination of inappropriate 

synapses, a process named ‘synaptic pruning’, which is important for the formation of 

mature neuronal circuits during development (see Table 1, Fig. 1A). The mRNA of 

complement component 1, subcomponent q (C1q), the initiating protein of the classical 

complement cascade, was found to be highly upregulated in purified retinal ganglion cells 

(RGCs), which were exposed to astrocytes [24]. In this study, localization of C1q was 

also observed in vivo, in the postnatal, immature synaptic inner plexiform layer at P5. 

C1q and C3 (downstream complement protein) knockout (KO) mice both had significant 

defects in eye-specific segregation and synapse elimination, investigated by neuroanatomical 

and electrophysiological techniques [24]. A subsequent study by Chu et al. also showed 

that C1q KO mice display remarkable seizures due to failure to prune excessive excitatory 
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synapses in the layer V pyramidal neurons during the neocortex development [25]. Schafer 

et al. later demonstrated that during active synaptic remodeling, it is microglia in the 

postnatal dorsal lateral geniculate nucleus (dLGN) of the thalamus phagocytosing RGC 

presynaptic terminals in a complement receptor 3 (CR3)/C3-dependent pathway [26]. The 

synaptic remodeling was regulated in a developmental- and neuronal activity-dependent 

manner and appears to be very specific to microglia since microglia are the only cell type 

within dLGN to express CR3 [27]. Genetic manipulations by knocking out CR3 or C3 and 

pharmacologically inhibiting microglial activation using minocycline both led to defects 

in the synaptic circuitry [26]. The astrocyte-derived factor that upregulates C1q in RGCs 

was also discovered to be transforming growth factor-β (TGF-β) [28]. In summary, these 

studies suggest a pathway engaging astrocyte-derived TGF-β, neuronal complement, and 

microglial phagocytosis for proper synapse elimination during development. However, C1q 

and C3 KO mice still display some level of synaptic pruning, suggesting the existence of a 

complement-independent pathway for synapse elimination.

Interestingly, complements are also involved in the pathogenesis of AD [29] (see Table 1, 

Fig. 1C). The amyloid-β (Aβ) plaques were shown to contain complement factors [30], and 

the classical complement pathway was observed to be activated in the AD patient brain [31]. 

In a separate study, both Aβ and tau were shown to activate the complement pathway [32, 

33], especially C1q, which predominantly localized in the frontal cortex and hippocampus 

in pre-clinical AD [34]. Deletion of C1q in the Tg2576 and APP/PS1 models of AD 

suggested a detrimental role of complement activation in the AD pathogenesis, because 

both Tg2576;C1q−/− and APP/PS1;C1q−/− mice showed less astrocytes and microglia 

surrounding the plaques and increased synaptophysin at 12 and 16 months [35]. In 

contrast, at the pre-plaque stage (3–6 months of age), no significant changes were seen 

in any of the neuronal or glial markers tested [35]. In a separate study, inhibition of 

pro-inflammatory complement factor C5a receptor (C5aR) using a small molecule inhibitor, 

PMX205, reduced Aβ deposits, decreased glial activation in the hippocampus and cortex, 

and improved the behavioral test performance in Tg2576 mice at 12 to 15 months of age 

(when accumulation of Aβ plaque is rapidly developing). A significant decrease in the levels 

of hyperphosphorylated tau was also observed in the 3xTg mouse model of AD with a 

deficiency of C5aR [36]. However, how exactly the complement system contributes to the 

AD pathogenesis was still not clear at that time.

Synaptic loss is one of the early markers for AD and is the strongest correlating factor 

for the extent of dementia [37]. Considering the role of complement and microglia in the 

synaptic pruning during development, Hong et al. hypothesized that microglia-mediated, 

complement-dependent synaptic pruning might be associated to synaptic loss during in early 

AD [38]. Hong et al. observed increased expression of C1q in the hippocampus and frontal 

cortex of familial AD-mutant human Aβ protein precursor (hAPP) (“J20”) transgenic mice 

[39] at 1 month of age, preceding the synaptic loss [38]. An increase of C1q was also found 

in the hippocampus of APP/PS1 AD transgenic mice [38]. The increased C1q expression 

was demonstrated in microglia, suggesting that microglia as a major source of C1q in 

these pre-plaque brains of AD transgenic mice. Intraperitoneal infusion of compound E, a 

γ-secretase inhibitor, remarkably reduced soluble Aβ and C1q levels in J20 mice [38]. The 

significant synaptic loss observed in J20 mice was at 3 to 4 months of age, which are several 
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months prior to the Aβ plaque deposition. Notably, knocking out C1q/C3 or neutralizing the 

C1q with a C1q-specific antibody ANX-M1 in non-transgenic mice injected with oligomeric 

Aβ blocked excessive pruning of synapses by microglia and prevented synaptic loss [9, 38, 

40]. This is the first study to show the detrimental role of microglia in the over-pruning 

of synapses that can lead to synaptic loss in early AD, even before the plaques develop. 

Importantly, ANX-005, a human form of the antibody that can block C1q, is currently under 

Phase 1b clinical trial to be tested for safety in humans. However, the receptors of C1q 

and C3 on phagocytosed synapses are yet to be discovered, and the precise mechanism still 

needs to be defined.

ASTROCYTE-MEDIATED, MEGF10/MERTK- AND APOE-DEPENDENT 

SYNAPTIC PRUNING IN THE NORMAL AND DISEASED BRAIN

Astrocytes comprise one-third of the total cells in the brain and are also involved in synaptic 

pruning (see Table 2, Fig. 1A, B). In the developing visual system, astrocytes secrete TGF-β 
to increase neuronal C1q in order to tag weak synapses for elimination. However, it is also 

reported to directly phagocytose synapses during retinogeniculate refinement involving two 

phagocytic receptors, Multiple EGF-like–domains 10 (MEGF10) and MER receptor tyrosine 

kinase (MERTK) [41]. This process was also strongly related to neuronal activity and the 

phagocytic activity of astrocytes even surpassed that of microglia during several different 

stages of dLGN development. MEGF10 and MERTK-dependent pruning of both excitatory 

and inhibitory synapses by astrocytes continued in the adult CNS [41].

A recent study by Chung et al. has shed light on the role of human apolipoprotein E (ApoE) 

in the astrocyte-mediated synapse elimination [42]. ApoE is a lipid transport protein mainly 

produced by astrocytes in the CNS. Humans have three common isoforms: E2, E3, and E4. 

APOE genotype is the strongest genetic risk factor for late-onset AD, with two copies of the 

E4 allele leading to an increased risk by 12-fold [43], with the E2 allele being associated 

with 2-fold decreased risk for AD [44], and the E3 allele being the most common form 

and leading to intermediate risk of AD [45]. Chung et al. obtained astrocyte-conditioned 

medium (ACM) from APOE2, APOE3, and APOE4 homozygous knock-in (KI) astrocytes, 

in which mouse Apoe gene is replaced with human APOE. Apoe knockout astrocytes were 

then treated with tdTomato-positive synaptosomes and different ApoE ACM. Incubation of 

ApoE2 ACM strongly enhanced engulfment of synaptosomes by Apoe knockout astrocytes 

compared to APOE3 and APOE4 ACMs, with the APOE4 ACM showing the minimum 

engulfment [42]. In contrast, lipidated recombinant APOE2, 3, and 4 particles did not 

induce differential effects on astrocyte-mediated phagocytosis, whereas adding Protein 

S simultaneously did. Proteins like Protein S and GAS6 are opsonins, required for 

phagocytic receptors like MERTK [46], suggesting that APOE can facilitate or inhibit 

the astrocyte-mediated phagocytosis with the presence of opsonins. In vivo experiments 

further demonstrated that astrocytes in APOE2 KI animals showed significantly enhanced 

phagocytosis of labeled RGC presynaptic terminals compared with APOE3 KI animals, 

whereas those from APOE4 KI animals showed decreased phagocytic capacity. The amount 

of C1q accumulation in the hippocampus was also APOE allele-dependent in the 9- and 

18-month-old APOE KI animals [42]. Although this is the first study to link APOE allele 
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risk to synaptic pruning dysfunction during AD, there are still some important questions 

that need to be answered: 1) it is not clear which cell type in the hippocampus is the 

major source of this increased amount of C1q, since C1q is expressed in neurons, microglial 

cells, and astrocytes; 2) astrocyte-dependent synaptic pruning was previously reported to be 

complement-independent [41]. Therefore, whether the increased amount of C1q is a result 

from defective synaptic pruning by astrocytes needs to be verified. Also, whether the C1q 

elevation in the hippocampus affects microglia-mediated, complement-dependent synaptic 

pruning remains elusive; 3) how exactly ApoE affects phagocytic capacity of astrocytes 

is not clear. The authors hypothesized ApoE may help bridge the binding of synapses to 

phagocytic receptors on the astrocyte surface; 4) APOE allele’s effect on the phagocytic 

capacity of microglia should be investigated, since microglia can express ApoE receptors 

as well; 5) it will be also interesting to see how ApoE, in conjunction with complements, 

contributes to the early stage of AD using APP or tau transgenic animal models.

A most recent study by Ben Barres’s group has shown that the secreted cytokines from 

reactive microglia work together to activate reactive astrocytes (A1) in vitro and in vivo (see 

Fig. 1C). The secreted immune mediators are interleukin 1α (IL-1α), TNF, and C1q [47]. 

A1 astrocytes can upregulate many classical complement cascade genes that are involved in 

the synaptic pruning. The A1 astrocytes formed fewer and weaker synapses and engulfed 

50–70% fewer synaptosomes than the control astrocytes. A1 astrocytes also displayed 

decreased phagocytic capacity for synaptosomes and myelin [47]. A1-astrocyte-conditioned 

medium also killed RGCs, cortical neurons, embryonic spinal motor neurons, and mature, 

differentiated oligodendrocytes and human dopaminergic neurons [47], suggesting that an 

unknown neurotoxic factor(s) secreted from A1 astrocytes is/are cytotoxic in the brain. 

Complement component 3 (C3)-positive, A1 astrocytes were present in the post-mortem 

tissue from patients with AD, Parkinson’s disease, Huntington’s disease, amyotrophic lateral 

sclerosis, and multiple sclerosis [47]. Especially in human AD, nearly 60% of astrocytes in 

the prefrontal cortex were positive for C3, suggesting that A1 astrocytes might be playing 

an important role in the disease initiation and progression of many neurodegenerative 

diseases, including AD. Taken together, it suggests that during AD, reactive microglia 

can secrete cytokines that induce reactive astrocytes, which in turn upregulate complement-

mediated synaptic loss and also secrete neurotoxic factors to kill a subset of neurons and 

oligodentrocytes [47]. This is another important study to support glial cell-mediated over-

pruning of synapses can alter synaptic function, cause imbalance in the neurotransmitter 

system, and may contribute to the AD pathogenesis.

MHC-I-DEPENDENT SYNAPTIC PRUNING IN THE NORMAL AND DISEASED 

BRAIN

Another important immune molecule, major histo-compatibility class I (MHC-I) is involved 

in synaptic pruning as well (see Table 3, Fig. 1B). It was also found to be expressed 

in neurons in the visual cortex, colocalized with postsynaptic proteins, and regulated by 

neuronal activity [48]. Knocking out MHC-I or its receptor PirB (paired immunoglobulin-

like receptor B) in animals led to defects in eye-specific segregation and ocular dominance 

plasticity [49]. Especially, MHC-I molecules H2-Kb and H2-Db were closely associated 
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with C1q at the excitatory and inhibitory LGN synapses, suggesting its role in the 

retinogeniculate refinement and synapse elimination [50]. Later, MHC-I molecule H2-Db 

was shown to be necessary and sufficient for synapse elimination in the retinogeniculate 

system. Since expressing just H2-Db in H2-KbDb(−/−) double knockout mice rescued 

defects in synapse elimination, eye-specific segregation, and long-term depression (LTD) 

[51]. However, the precise mechanism and the cell type mediating the MHC-I-dependent 

elimination of synapse is not yet defined. Since PirB and its human homolog, LilrB2, are 

reported to be expressed in neurons and astrocytes, but not in microglia [52], it is intriguing 

to see whether astrocytes are involved in the MHC-I-dependent synaptic pruning. MHC-I 

is highly expressed by activated microglia as well, suggesting a possible role of microglial 

MHC-I in the synaptic pruning.

LilrB2/PirB were shown to be involved in Aβ-induced synaptic loss, decreased LTP, and 

increased LTD [53]. LilrB2 and PirB are the receptors for Aβ oligomers, and the first 

two extracellular immunoglobulin (Ig) domains of PirB and LilrB2 are responsible for the 

interaction with Aβ and neuronal cofilin signaling [53]. Knocking out PirB in the APP/PS1 

AD transgenic mice rescued not only synaptic and cognitive alterations induced in adult 

mice by Aβ, but also loss of plasticity during early development in the visual cortex of 

APP/PS1 mice [53]. The authors are currently testing to see whether blocking PirB, in early 

stages of AD before plaques appear, can ameliorate the cognitive decline associated with 

synaptic loss [54].

MICROGLIA-MEDIATED, FRACTALKINE-DEPENDENT SYNAPTIC PRUNING 

IN THE NORMAL AND DISEASED BRAIN

CX3CL1 or Fractalkine is a unique chemokine primarily expressed in neurons and 

moderately by astrocytes, although at lower levels [55]. It exists in two different forms, 

membrane-bound form proposed as an anchoring molecule and secreted form as a 

chemokine to attract microglia, which exclusively expresses its receptor CX3CR1 in the 

CNS. Fractalkine signaling plays essential roles in mediating neuron-microglia crosstalk in 

the developing and mature brain, and it has been implicated in various aspects of brain 

physiology, including synaptic pruning (see Table 4, Fig. 1A). Fractalkine signaling is 

extensively reviewed in [56].

During the first postnatal weeks, Cx3cr1 KO mice had transient decrease in the microglial 

number, increase in the excitatory postsynaptic density and dendritic spine density on 

CA1 pyramidal neurons, accompanied by significantly increased LTD [57]. This suggests 

that deficient fractalkine signaling in microglia can lead to defects in synaptic pruning. 

Another study also confirmed that a deficit in fractalkine signaling can cause decrease 

in the microglial number, defects in synaptic pruning, and ultimately contribute to 

neurodevelopmental and neuropsychiatric disorders in mice [58]. However, it remains 

elusive whether fractalkine serves as a chemokine to attract microglia to the synapses for 

phagocytosis or affects microglial proliferation or perhaps directly contributes to the pruning 

process by facilitating synapse recognition for pruning. Fractalkine has been shown to serve 

as a “find-me” signal released by neurons, which undergoes ethanol-induced apoptosis 
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[59], suggesting that fractalkine might also serve as a “find-me” signal for synapses for 

phagocytosis by microglia.

Fractalkine signaling has been shown be deficient in AD brains [60], and the role of 

fractalkine signaling during AD pathogenesis is controversial. Deficiency of fractalkine 

signaling was found to aggravate microglia-mediated hyperphosphorylation of tau and 

inflammatory responses in a mouse model of systematic inflammation in hTau [14] mice 

and worsened plaque-independent cognitive retention in hAPP-J20 mice [60]. On the 

contrary, CX3CR1 deficiency is anti-amyloidogenic in an APP/PS1 transgenic mouse model 

of AD [61] and fractalkine deletion can prevent neuronal loss in 5xTg mice [62]. The 

contradicting roles of fractalkine signaling against Aβ versus tau pathology might be due to 

the requirement of pro-inflammatory/pro-phagocytic role for microglia against Aβ plaques 

versus antiinflammatory role of microglia against tau pathology. This is a key consideration 

to prevent collateral damage caused by reactive microglia when it is performing the anti-

amyloidogenic function. Additional studies suggested that IL-1β is the major cytokine 

that links both exacerbation of tau pathology (in tau models [14, 63]) and attenuation of 

Aβ pathology (in APP/PS1 mouse model of AD [61]). At present, the role of fractalkine-

CX3CR1 signaling axis in mediating synaptic loss during AD is still rudimentary.

Since IL-1β was one of the potential links identified in the above described studies and 

may regulate synaptic structure and function, in a recent study, the direct incubation of 

cultured neurons with IL-1β upregulated MHC-I and reduced the number of synapses on 

the cell surface [64]. Contrariwise, low-ering MHC-I rescued synapses from the detrimental 

effects of IL-1β. It is also reported that IL-1β can prevent synapse stabilization in zebrafish 

larvae and deficiency of IL-1β or depletion of microglia prevented the synaptic loss [64]. 

Additionally, IL-1β has been implicated in loss of synapses in obese mice [65]. Collectively, 

these data suggest a potential role of IL-1β in synaptic pruning during development and 

various neurological disease conditions, including AD.

SUMMARY AND CONCLUSIONS

Emerging studies now suggest that during CNS development and neurodegenerative 

processes, microglia, astrocyte, and neurons interact actively for synaptic pruning and 

regulation of neurotransmission through several different pathways. This involves immune 

molecules like complements, chemokines, MHC complexes and cytokines. Pharmacological 

inhibition using small molecule inhibitors, neutralization by antibodies, or genetic 

manipulation of immune molecules rescued synaptic loss and ameliorated behavioral deficits 

in animal models of AD. Therefore, complements/MHC-I/cytokine/chemokine systems 

could serve as novel, promising therapeutic targets in ameliorating AD-related synaptic 

dysfunction, which is the best measure for memory loss in AD. Specifically, antibody 

therapies or small molecule pharmaceuticals inhibiting human complements [66], IL-1α and 

TNF are already FDA-approved and used for other diseases, which may help accelerate 

testing of cytokine/complement-targeted therapeutics against AD.

The possibility of complements as biomarkers has also been revealed. The autosomal 

dominant form of Alzheimer’s disease (ADAD) is far less predominant than late onset 
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Alzheimer’s disease, however, increasing evidence suggest ADAD can be a good model 

for studying late-onset AD. Muenchhof et al. investigated plasma protein changes at the 

asymptomatic and symptomatic stages of ADAD [67]. Levels of complement components 

C3, C5, and C6 differed significantly between non-carriers and asymptomatic mutation 

carriers. Similarly, the proteins that associated with the cognition or neuroimaging markers 

were also turned out to mainly have functions in the complement system (complement 

factors B and I, complement components C2, C4-A, C6, and C8 β chain, complement 

C1R subcomponent, C4b-binding protein β chain, and C1 inhibitor) and lipid metabolism 

(ApoA1, ApoM, and ApoE) [67]. A recent study by Hakobyan et al. measured five 

complement proteins and four activation products in the plasma samples of donors with mild 

cognitive impairment, AD, and controls. Clusterin, a complement analyte, was significantly 

elevated in AD plasma compared to control [68]. The levels of three analytes (clusterin, 

complement factor I, terminal complement complex) were significantly different between 

mild cognitive impairment patients who converted to dementia one year later compared to 

those who did not. Alteration in these three analytes was highly predictive of the conversion 

[68]. A subsequent study by the same group looked at five different complement markers in 

the plasma of 93 AD patients and found that plasma clusterin level showed an association 

with overall AD polygenic risk score, while clusterin, C1 inhibitor, and C-reactive protein 

levels each displayed some association with the inflammatory-specific AD polygenic risk 

score [69]. Taken together, these studies suggest that the plasma complement factors and 

associated proteins can serve as biomarkers in the disease prediction for AD.

Although the aberrant synaptic pruning by multiple cellular pathways seem to be a 

promising target for AD therapy and biomarker development, there are still certain 

important unanswered questions: 1) immune molecules (C1q, MHC-I, PirB, APOE receptor, 

fractalkine) involved in synaptic pruning are not specific to certain type of cells in the CNS, 

but rather simultaneously expressed in neurons, microglia, astrocytes. Therefore, spatial 

(cell-specific) and temporal (timely) targeting of these molecules without affecting other 

cell types remains to be investigated; 2) how different synaptic pruning pathways (microglia-

mediated, C1q-dependent pathway versus Astrocyte-mediated, MEGF10/MERTK- and 

APOE-dependent pathway versus MHC-I-dependent pathway versus microglia-mediated, 

fractalkine-dependent pathway) synergistically work during development and AD remains to 

be investigated; 3) finally, the crosstalk among different cell types in the CNS (microglia, 

astrocytes, neurons) during development and AD need to be investigated in detail.
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Fig. 1. 
Neuron-microglia-astrocyte interaction during synaptic pruning in healthy and AD brain. A) 

During development and in adult, astrocytes secrete TGFβ, which upregulates neuronal C1q 

expression. Microglia then eliminates weak synapses in C1q/C3/CR3-dependent pathway. 

Fractalkine (CX3CL1) from neurons might also serve as a “find-me” signal for microglia to 

phagocytose weak synapses through CX3CL1/CX3CR1-dependent pathway. B) Astrocytes 

are also shown to phagocytose weak synapses during development through MEGF10/

MERTK phagocytic receptors. ApoE mainly produced by astrocytes might help bridge 

opsonin-tagged synapses for phagocytosis by astrocytes. MHC-I is expressed in neurons 

and its receptor PirB/LilrB2 are expressed in astrocytes. MHC-I is also closely associated 

with C1q. These suggest astrocyte might prune synapses in an alternative pathway involving 

MHC-I, its receptor and C1q. C) In case of AD, increased C1q expression and synaptic loss 

are seen in AD animal models during early AD, even before plaques develop. Knocking 

out C1q rescued synaptic loss; suggesting complement-mediated over-pruning of synapses 

by microglia can contribute to the pathogenesis of AD. A recent study also showed that 

microglia activated by oligomeric Aβ can secrete several cytokines, IL-1α, TNF, and C1q. 
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These cytokines in turn activate reactive astrocytes (A1 astrocytes). A1 astrocytes upregulate 

several complement genes that are involved in synaptic pruning. A1 astrocytes can also 

secrete an unknown neurotoxic factor X, which kills neurons. All these can contribute to 

the synaptic and neuronal loss in AD. It is also reported that IL-1β can upregulate MHC-I, 

reduce the number of synapses on the cell surface and prevent synapse stabilization.
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