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Abstract

Alzheimer’s disease (AD) is the most common form of dementia affecting nearly 45 million
people worldwide. However, the etiology of AD is still unclear. Accumulations of amyloid-B
plaques and tau tangles, neuroinflammation, and synaptic and neuronal loss are the major
neuropathological hallmarks of AD, with synaptic loss being the strongest correlating factor

with memory and cognitive impairment in AD. Many of these pathological hallmarks influence
each other during the onset and progression of the disease. Recent genetic evidence suggests

the possibility of a causal link between altered immune pathways and synaptic dysfunction in
AD. Emerging studies also suggest that immune system-mediated synaptic pruning could initiate
early-stage pathogenesis of AD. This comprehensive review is toward understanding the crosstalk
of neuron-microglia-astrocyte and dynamics of complement, cytokine, and chemokine systems in
the regulation of synaptic function and dysfunction relevant to AD. We start with summarizing
several immune pathways, involving complements, MHC-I and CX3CL1, which mediate synaptic
elimination during development and in AD. We then will discuss the potential of targeting these
molecules as therapeutic interventions or as biomarkers for AD.
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INTRODUCTION

Contrary to the conventional dogma, the central nervous system is not as “immune-
privileged” as previously considered. Indeed, the immune and central nervous systems
actively interact and share mechanisms of gene regulation, signaling, and cell
communication [1]. Immune and neuronal cells interact bi-directionally through extra-
synaptic communication mediated by complements, cytokines, chemokines, neuropeptides,
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neurotransmitters, neurotrophins, and their receptors [2, 3]. These immune system mediators
are not only expressed in cells from the peripheral immune system, but they are also

central nervous system (CNS)-derived. Notably, cells such as microglia, astrocytes, and
neurons play important roles as immune system modulators. It is well recognized that the
CNS resident immune cells (microglia and astrocytes) and immune system-mediators play
essential roles in the synapse formation, neurotransmission, long-term potentiation (LTP),
and synaptic pruning [4-11]. Conversely, the immune system can also affect the neuronal
activity under healthy and disease conditions, including AD. Increased neuroinflammation,
reflected by microglial and astroglial activation, elevated pro-inflammatory cytokine release,
and early complement activation — all of these have been often observed during AD [12,
13]. Recent pre-clinical and clinical research evidences suggest that neuroinflammation is
not merely the response to pathological insults; it may even precede AD pathology and
drive the pathogenesis of AD [14-16]. GWAS studies have also identified various immune
genes as risk factors for AD, they are TREM?Z, MS4A4/MS4A6E, CLU (APOJ), EPHAI,
MHC 11, and CR1[17-20]. Interestingly, some of these susceptible loci/gene(s) are also
involved in the regulation of synaptic function. In a recent study, TREM2 overexpression
has been shown to rescue neuronal and synaptic loss [21] and EPHAL is thought to regulate
synapse formation [22]. Therefore, more studies are needed to understand if these AD risk
gene(s) could contribute to the disease process exclusively via cell-autonomous manner

by impacting the microglial cell function or if they also directly impair synaptic function,
independent of microglial involvement. A growing body of research now suggests that the
CNS resident immune cells are directly involved in synaptic pruning during postnatal brain
development and AD pathogenesis. In this review, we will discuss these findings and the
development of therapeutic drugs that may enhance synaptic activity and neuronal function
in the AD brain.

MICROGLIA-MEDIATED, COMPLEMENT-DEPENDENT SYNAPTIC PRUNING
IN THE NORMAL AND DISEASE BRAIN

The complement system is a major component of innate immunity. The complement system
is responsible for recognition and lysis of invading microorganisms, clearance of apoptotic
cells, and recruitment of immune cells. De novo synthesis of complement factors in the
brain has been confirmed in neurons, microglia, astrocytes, and oligodendrocytes (more
information about the complement system in the brain is reviewed in [23]). Surprisingly,
complements in the brain had an unexpected role in the elimination of inappropriate
synapses, a process hamed ‘synaptic pruning’, which is important for the formation of
mature neuronal circuits during development (see Table 1, Fig. 1A). The mRNA of
complement component 1, subcomponent g (C1q), the initiating protein of the classical
complement cascade, was found to be highly upregulated in purified retinal ganglion cells
(RGCs), which were exposed to astrocytes [24]. In this study, localization of C1q was

also observed /n vivo, in the postnatal, immature synaptic inner plexiform layer at P5.

Clg and C3 (downstream complement protein) knockout (KO) mice both had significant
defects in eye-specific segregation and synapse elimination, investigated by neuroanatomical
and electrophysiological techniques [24]. A subsequent study by Chu et al. also showed
that C1g KO mice display remarkable seizures due to failure to prune excessive excitatory
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synapses in the layer V pyramidal neurons during the neocortex development [25]. Schafer
et al. later demonstrated that during active synaptic remodeling, it is microglia in the
postnatal dorsal lateral geniculate nucleus (ALGN) of the thalamus phagocytosing RGC
presynaptic terminals in a complement receptor 3 (CR3)/C3-dependent pathway [26]. The
synaptic remodeling was regulated in a developmental- and neuronal activity-dependent
manner and appears to be very specific to microglia since microglia are the only cell type
within dLGN to express CR3 [27]. Genetic manipulations by knocking out CR3 or C3 and
pharmacologically inhibiting microglial activation using minocycline both led to defects

in the synaptic circuitry [26]. The astrocyte-derived factor that upregulates C1q in RGCs
was also discovered to be transforming growth factor-g (TGF-B) [28]. In summary, these
studies suggest a pathway engaging astrocyte-derived TGF-f, neuronal complement, and
microglial phagocytosis for proper synapse elimination during development. However, C1q
and C3 KO mice still display some level of synaptic pruning, suggesting the existence of a
complement-independent pathway for synapse elimination.

Interestingly, complements are also involved in the pathogenesis of AD [29] (see Table 1,
Fig. 1C). The amyloid-p (Ap) plaques were shown to contain complement factors [30], and
the classical complement pathway was observed to be activated in the AD patient brain [31].
In a separate study, both AB and tau were shown to activate the complement pathway [32,
33], especially C1q, which predominantly localized in the frontal cortex and hippocampus
in pre-clinical AD [34]. Deletion of C1q in the Tg2576 and APP/PS1 models of AD
suggested a detrimental role of complement activation in the AD pathogenesis, because
both Tg2576;C1q~/~ and APP/PS1;C1q~"~ mice showed less astrocytes and microglia
surrounding the plaques and increased synaptophysin at 12 and 16 months [35]. In

contrast, at the pre-plaque stage (3—6 months of age), no significant changes were seen

in any of the neuronal or glial markers tested [35]. In a separate study, inhibition of
pro-inflammatory complement factor C5a receptor (C5aR) using a small molecule inhibitor,
PMX205, reduced Ap deposits, decreased glial activation in the hippocampus and cortex,
and improved the behavioral test performance in Tg2576 mice at 12 to 15 months of age
(when accumulation of AR plaque is rapidly developing). A significant decrease in the levels
of hyperphosphorylated tau was also observed in the 3xTg mouse model of AD with a
deficiency of C5aR [36]. However, how exactly the complement system contributes to the
AD pathogenesis was still not clear at that time.

Synaptic loss is one of the early markers for AD and is the strongest correlating factor

for the extent of dementia [37]. Considering the role of complement and microglia in the
synaptic pruning during development, Hong et al. hypothesized that microglia-mediated,
complement-dependent synaptic pruning might be associated to synaptic loss during in early
AD [38]. Hong et al. observed increased expression of C1q in the hippocampus and frontal
cortex of familial AD-mutant human Ap protein precursor (hAPP) (*J20) transgenic mice
[39] at 1 month of age, preceding the synaptic loss [38]. An increase of C1g was also found
in the hippocampus of APP/PS1 AD transgenic mice [38]. The increased C1q expression
was demonstrated in microglia, suggesting that microglia as a major source of C1q in

these pre-plaque brains of AD transgenic mice. Intraperitoneal infusion of compound E, a
y-secretase inhibitor, remarkably reduced soluble Ap and C1q levels in J20 mice [38]. The
significant synaptic loss observed in J20 mice was at 3 to 4 months of age, which are several
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months prior to the Ap plaque deposition. Notably, knocking out C1g/C3 or neutralizing the
Clqg with a C1g-specific antibody ANX-M1 in non-transgenic mice injected with oligomeric
AP blocked excessive pruning of synapses by microglia and prevented synaptic loss [9, 38,
40]. This is the first study to show the detrimental role of microglia in the over-pruning

of synapses that can lead to synaptic loss in early AD, even before the plaques develop.
Importantly, ANX-005, a human form of the antibody that can block C1q, is currently under
Phase 1b clinical trial to be tested for safety in humans. However, the receptors of Clq

and C3 on phagocytosed synapses are yet to be discovered, and the precise mechanism still
needs to be defined.

ASTROCYTE-MEDIATED, MEGF10/MERTK- AND APOE-DEPENDENT
SYNAPTIC PRUNING IN THE NORMAL AND DISEASED BRAIN

Astrocytes comprise one-third of the total cells in the brain and are also involved in synaptic
pruning (see Table 2, Fig. 1A, B). In the developing visual system, astrocytes secrete TGF-p
to increase neuronal C1q in order to tag weak synapses for elimination. However, it is also
reported to directly phagocytose synapses during retinogeniculate refinement involving two
phagocytic receptors, Multiple EGF-like—domains 10 (MEGF10) and MER receptor tyrosine
kinase (MERTK) [41]. This process was also strongly related to neuronal activity and the
phagocytic activity of astrocytes even surpassed that of microglia during several different
stages of dLGN development. MEGF10 and MERTK-dependent pruning of both excitatory
and inhibitory synapses by astrocytes continued in the adult CNS [41].

A recent study by Chung et al. has shed light on the role of human apolipoprotein E (ApoE)
in the astrocyte-mediated synapse elimination [42]. ApoE is a lipid transport protein mainly
produced by astrocytes in the CNS. Humans have three common isoforms: E2, E3, and E4.
APOE genotype is the strongest genetic risk factor for late-onset AD, with two copies of the
E4 allele leading to an increased risk by 12-fold [43], with the £2allele being associated
with 2-fold decreased risk for AD [44], and the £3allele being the most common form

and leading to intermediate risk of AD [45]. Chung et al. obtained astrocyte-conditioned
medium (ACM) from APOEZ, APOES3, and APOE4 homozygous knock-in (K1) astrocytes,
in which mouse Apoe gene is replaced with human APOE. Apoe knockout astrocytes were
then treated with tdTomato-positive synaptosomes and different ApoE ACM. Incubation of
ApoE2 ACM strongly enhanced engulfment of synaptosomes by Apoe knockout astrocytes
compared to APOE3and APOE4 ACMs, with the APOE4 ACM showing the minimum
engulfment [42]. In contrast, lipidated recombinant APOE2, 3, and 4 particles did not
induce differential effects on astrocyte-mediated phagocytosis, whereas adding Protein

S simultaneously did. Proteins like Protein S and GAS6 are opsonins, required for
phagocytic receptors like MERTK [46], suggesting that APOE can facilitate or inhibit

the astrocyte-mediated phagocytosis with the presence of opsonins. /n7 vivo experiments
further demonstrated that astrocytes in APOEZ Kl animals showed significantly enhanced
phagocytosis of labeled RGC presynaptic terminals compared with APOE3 KI animals,
whereas those from APOE4 Kl animals showed decreased phagocytic capacity. The amount
of C1q accumulation in the hippocampus was also APOE allele-dependent in the 9- and
18-month-old APOE Kl animals [42]. Although this is the first study to link APOE allele
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risk to synaptic pruning dysfunction during AD, there are still some important questions
that need to be answered: 1) it is not clear which cell type in the hippocampus is the

major source of this increased amount of C1q, since C1q is expressed in neurons, microglial
cells, and astrocytes; 2) astrocyte-dependent synaptic pruning was previously reported to be
complement-independent [41]. Therefore, whether the increased amount of C1q is a result
from defective synaptic pruning by astrocytes needs to be verified. Also, whether the C1q
elevation in the hippocampus affects microglia-mediated, complement-dependent synaptic
pruning remains elusive; 3) how exactly ApoE affects phagocytic capacity of astrocytes

is not clear. The authors hypothesized ApoE may help bridge the binding of synapses to
phagocytic receptors on the astrocyte surface; 4) APOE allele’s effect on the phagocytic
capacity of microglia should be investigated, since microglia can express ApoE receptors
as well; 5) it will be also interesting to see how ApoE, in conjunction with complements,
contributes to the early stage of AD using APP or tau transgenic animal models.

A most recent study by Ben Barres’s group has shown that the secreted cytokines from
reactive microglia work together to activate reactive astrocytes (A1) /n vitroand in vivo (see
Fig. 1C). The secreted immune mediators are interleukin 1a (IL-1a), TNF, and C1q [47].
Al astrocytes can upregulate many classical complement cascade genes that are involved in
the synaptic pruning. The Al astrocytes formed fewer and weaker synapses and engulfed
50-70% fewer synaptosomes than the control astrocytes. Al astrocytes also displayed
decreased phagocytic capacity for synaptosomes and myelin [47]. Al-astrocyte-conditioned
medium also killed RGCs, cortical neurons, embryonic spinal motor neurons, and mature,
differentiated oligodendrocytes and human dopaminergic neurons [47], suggesting that an
unknown neurotoxic factor(s) secreted from Al astrocytes is/are cytotoxic in the brain.
Complement component 3 (C3)-positive, Al astrocytes were present in the post-mortem
tissue from patients with AD, Parkinson’s disease, Huntington’s disease, amyotrophic lateral
sclerosis, and multiple sclerosis [47]. Especially in human AD, nearly 60% of astrocytes in
the prefrontal cortex were positive for C3, suggesting that Al astrocytes might be playing
an important role in the disease initiation and progression of many neurodegenerative
diseases, including AD. Taken together, it suggests that during AD, reactive microglia

can secrete cytokines that induce reactive astrocytes, which in turn upregulate complement-
mediated synaptic loss and also secrete neurotoxic factors to kill a subset of neurons and
oligodentrocytes [47]. This is another important study to support glial cell-mediated over-
pruning of synapses can alter synaptic function, cause imbalance in the neurotransmitter
system, and may contribute to the AD pathogenesis.

MHC-I-DEPENDENT SYNAPTIC PRUNING IN THE NORMAL AND DISEASED

BRAIN

Another important immune molecule, major histo-compatibility class | (MHC-I) is involved
in synaptic pruning as well (see Table 3, Fig. 1B). It was also found to be expressed

in neurons in the visual cortex, colocalized with postsynaptic proteins, and regulated by
neuronal activity [48]. Knocking out MHC-I or its receptor PirB (paired immunoglobulin-
like receptor B) in animals led to defects in eye-specific segregation and ocular dominance
plasticity [49]. Especially, MHC-I molecules H2-KP and H2-DP were closely associated
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with C1q at the excitatory and inhibitory LGN synapses, suggesting its role in the
retinogeniculate refinement and synapse elimination [50]. Later, MHC-1 molecule H2-DP
was shown to be necessary and sufficient for synapse elimination in the retinogeniculate
system. Since expressing just H2-DP in H2-KPDP(~/-) double knockout mice rescued
defects in synapse elimination, eye-specific segregation, and long-term depression (LTD)
[51]. However, the precise mechanism and the cell type mediating the MHC-1-dependent
elimination of synapse is not yet defined. Since PirB and its human homolog, LilrB2, are
reported to be expressed in neurons and astrocytes, but not in microglia [52], it is intriguing
to see whether astrocytes are involved in the MHC-1-dependent synaptic pruning. MHC-I
is highly expressed by activated microglia as well, suggesting a possible role of microglial
MHC-I in the synaptic pruning.

LilrB2/PirB were shown to be involved in Ap-induced synaptic loss, decreased LTP, and
increased LTD [53]. LilrB2 and PirB are the receptors for Ap oligomers, and the first

two extracellular immunoglobulin (Ig) domains of PirB and LilrB2 are responsible for the
interaction with AP and neuronal cofilin signaling [53]. Knocking out PirB in the APP/PS1
AD transgenic mice rescued not only synaptic and cognitive alterations induced in adult
mice by AB, but also loss of plasticity during early development in the visual cortex of
APP/PS1 mice [53]. The authors are currently testing to see whether blocking PirB, in early
stages of AD before plaques appear, can ameliorate the cognitive decline associated with
synaptic loss [54].

MICROGLIA-MEDIATED, FRACTALKINE-DEPENDENT SYNAPTIC PRUNING
IN THE NORMAL AND DISEASED BRAIN

CX3CL1 or Fractalkine is a unique chemokine primarily expressed in neurons and
moderately by astrocytes, although at lower levels [55]. It exists in two different forms,
membrane-bound form proposed as an anchoring molecule and secreted form as a
chemokine to attract microglia, which exclusively expresses its receptor CX3CR1 in the
CNS. Fractalkine signaling plays essential roles in mediating neuron-microglia crosstalk in
the developing and mature brain, and it has been implicated in various aspects of brain
physiology, including synaptic pruning (see Table 4, Fig. 1A). Fractalkine signaling is
extensively reviewed in [56].

During the first postnatal weeks, Cx3crl KO mice had transient decrease in the microglial
number, increase in the excitatory postsynaptic density and dendritic spine density on

CAL pyramidal neurons, accompanied by significantly increased LTD [57]. This suggests
that deficient fractalkine signaling in microglia can lead to defects in synaptic pruning.
Another study also confirmed that a deficit in fractalkine signaling can cause decrease

in the microglial number, defects in synaptic pruning, and ultimately contribute to
neurodevelopmental and neuropsychiatric disorders in mice [58]. However, it remains
elusive whether fractalkine serves as a chemokine to attract microglia to the synapses for
phagocytosis or affects microglial proliferation or perhaps directly contributes to the pruning
process by facilitating synapse recognition for pruning. Fractalkine has been shown to serve
as a “find-me” signal released by neurons, which undergoes ethanol-induced apoptosis
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[59], suggesting that fractalkine might also serve as a “find-me” signal for synapses for
phagocytosis by microglia.

Fractalkine signaling has been shown be deficient in AD brains [60], and the role of
fractalkine signaling during AD pathogenesis is controversial. Deficiency of fractalkine
signaling was found to aggravate microglia-mediated hyperphosphorylation of tau and
inflammatory responses in a mouse model of systematic inflammation in hTau [14] mice
and worsened plaque-independent cognitive retention in hAPP-J20 mice [60]. On the
contrary, CX3CR1 deficiency is anti-amyloidogenic in an APP/PS1 transgenic mouse model
of AD [61] and fractalkine deletion can prevent neuronal loss in 5XTg mice [62]. The
contradicting roles of fractalkine signaling against Ap versus tau pathology might be due to
the requirement of pro-inflammatory/pro-phagocytic role for microglia against Ap plaques
versus antiinflammatory role of microglia against tau pathology. This is a key consideration
to prevent collateral damage caused by reactive microglia when it is performing the anti-
amyloidogenic function. Additional studies suggested that IL-1p is the major cytokine

that links both exacerbation of tau pathology (in tau models [14, 63]) and attenuation of
AP pathology (in APP/PS1 mouse model of AD [61]). At present, the role of fractalkine-
CX3CR1 signaling axis in mediating synaptic loss during AD is still rudimentary.

Since IL-1p was one of the potential links identified in the above described studies and

may regulate synaptic structure and function, in a recent study, the direct incubation of
cultured neurons with IL-1f upregulated MHC-I and reduced the number of synapses on
the cell surface [64]. Contrariwise, low-ering MHC-I rescued synapses from the detrimental
effects of IL-1p. It is also reported that IL-1p can prevent synapse stabilization in zebrafish
larvae and deficiency of IL-1p or depletion of microglia prevented the synaptic loss [64].
Additionally, IL-1p has been implicated in loss of synapses in obese mice [65]. Collectively,
these data suggest a potential role of IL-1p in synaptic pruning during development and
various neurological disease conditions, including AD.

SUMMARY AND CONCLUSIONS

Emerging studies now suggest that during CNS development and neurodegenerative
processes, microglia, astrocyte, and neurons interact actively for synaptic pruning and
regulation of neurotransmission through several different pathways. This involves immune
molecules like complements, chemokines, MHC complexes and cytokines. Pharmacological
inhibition using small molecule inhibitors, neutralization by antibodies, or genetic
manipulation of immune molecules rescued synaptic loss and ameliorated behavioral deficits
in animal models of AD. Therefore, complements/MHC-1/cytokine/chemokine systems
could serve as novel, promising therapeutic targets in ameliorating AD-related synaptic
dysfunction, which is the best measure for memory loss in AD. Specifically, antibody
therapies or small molecule pharmaceuticals inhibiting human complements [66], IL-1a and
TNF are already FDA-approved and used for other diseases, which may help accelerate
testing of cytokine/complement-targeted therapeutics against AD.

The possibility of complements as biomarkers has also been revealed. The autosomal
dominant form of Alzheimer’s disease (ADAD) is far less predominant than late onset
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Alzheimer’s disease, however, increasing evidence suggest ADAD can be a good model

for studying late-onset AD. Muenchhof et al. investigated plasma protein changes at the
asymptomatic and symptomatic stages of ADAD [67]. Levels of complement components
C3, C5, and C6 differed significantly between non-carriers and asymptomatic mutation
carriers. Similarly, the proteins that associated with the cognition or neuroimaging markers
were also turned out to mainly have functions in the complement system (complement
factors B and I, complement components C2, C4-A, C6, and C8 B chain, complement

C1R subcomponent, C4b-binding protein p chain, and C1 inhibitor) and lipid metabolism
(ApoAl, ApoM, and ApoE) [67]. A recent study by Hakobyan et al. measured five
complement proteins and four activation products in the plasma samples of donors with mild
cognitive impairment, AD, and controls. Clusterin, a complement analyte, was significantly
elevated in AD plasma compared to control [68]. The levels of three analytes (clusterin,
complement factor I, terminal complement complex) were significantly different between
mild cognitive impairment patients who converted to dementia one year later compared to
those who did not. Alteration in these three analytes was highly predictive of the conversion
[68]. A subsequent study by the same group looked at five different complement markers in
the plasma of 93 AD patients and found that plasma clusterin level showed an association
with overall AD polygenic risk score, while clusterin, C1 inhibitor, and C-reactive protein
levels each displayed some association with the inflammatory-specific AD polygenic risk
score [69]. Taken together, these studies suggest that the plasma complement factors and
associated proteins can serve as biomarkers in the disease prediction for AD.

Although the aberrant synaptic pruning by multiple cellular pathways seem to be a
promising target for AD therapy and biomarker development, there are still certain

important unanswered questions: 1) immune molecules (C1q, MHC-I, PirB, APOE receptor,
fractalkine) involved in synaptic pruning are not specific to certain type of cells in the CNS,
but rather simultaneously expressed in neurons, microglia, astrocytes. Therefore, spatial
(cell-specific) and temporal (timely) targeting of these molecules without affecting other

cell types remains to be investigated; 2) how different synaptic pruning pathways (microglia-
mediated, C1g-dependent pathway versus Astrocyte-mediated, MEGF10/MERTK- and
APOE-dependent pathway versus MHC-I-dependent pathway versus microglia-mediated,
fractalkine-dependent pathway) synergistically work during development and AD remains to
be investigated; 3) finally, the crosstalk among different cell types in the CNS (microglia,
astrocytes, neurons) during development and AD need to be investigated in detail.
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Fig. 1.

Nguron-microglia—astrocyte interaction during synaptic pruning in healthy and AD brain. A)
During development and in adult, astrocytes secrete TGFB, which upregulates neuronal C1q
expression. Microglia then eliminates weak synapses in C1q/C3/CR3-dependent pathway.
Fractalkine (CX3CL1) from neurons might also serve as a “find-me” signal for microglia to
phagocytose weak synapses through CX3CL1/CX3CR1-dependent pathway. B) Astrocytes
are also shown to phagocytose weak synapses during development through MEGF10/
MERTK phagocytic receptors. ApoE mainly produced by astrocytes might help bridge
opsonin-tagged synapses for phagocytosis by astrocytes. MHC-I is expressed in neurons
and its receptor PirB/LilrB2 are expressed in astrocytes. MHC-1 is also closely associated
with C1g. These suggest astrocyte might prune synapses in an alternative pathway involving
MHC-I, its receptor and C1q. C) In case of AD, increased C1q expression and synaptic loss
are seen in AD animal models during early AD, even before plaques develop. Knocking

out C1q rescued synaptic loss; suggesting complement-mediated over-pruning of synapses
by microglia can contribute to the pathogenesis of AD. A recent study also showed that
microglia activated by oligomeric AP can secrete several cytokines, IL-1a, TNF, and C1q.
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These cytokines in turn activate reactive astrocytes (Al astrocytes). Al astrocytes upregulate
several complement genes that are involved in synaptic pruning. Al astrocytes can also
secrete an unknown neurotoxic factor X, which Kills neurons. All these can contribute to

the synaptic and neuronal loss in AD. It is also reported that IL-1p can upregulate MHC-I,
reduce the number of synapses on the cell surface and prevent synapse stabilization.
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