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Abstract Amino-terminal fragments from proteolytically cleaved gasdermins (GSDMs) form 
plasma membrane pores that enable the secretion of interleukin-1β (IL-1β) and IL-18. Excessive 
GSDM-mediated pore formation can compromise the integrity of the plasma membrane thereby 
causing the lytic inflammatory cell death, pyroptosis. We found that GSDMD and GSDME were 
the only GSDMs that were readily expressed in bone microenvironment. Therefore, we tested 
the hypothesis that GSDMD and GSDME are implicated in fracture healing owing to their role 
in the obligatory inflammatory response following injury. We found that bone callus volume 
and biomechanical properties of injured bones were significantly reduced in mice lacking either 
GSDM compared with wild-type (WT) mice, indicating that fracture healing was compromised in 
mutant mice. However, compound loss of GSDMD and GSDME did not exacerbate the outcomes, 
suggesting shared actions of both GSDMs in fracture healing. Mechanistically, bone injury induced 
IL-1β and IL-18 secretion in vivo, a response that was mimicked in vitro by bone debris and ATP, 
which function as inflammatory danger signals. Importantly, the secretion of these cytokines was 
attenuated in conditions of GSDMD deficiency. Finally, deletion of IL-1 receptor reproduced the 
phenotype of Gsdmd or Gsdme deficient mice, implying that inflammatory responses induced by 
the GSDM-IL-1 axis promote bone healing after fracture.

Editor's evaluation
We would like to congratulate the authors on this very exciting work that will advance our under-
standing on the contribution of gasdermin – interleukin-1 signaling in fracture healing. We hope 
future work will translate this discovery into human trials.

Introduction
Bone fractures are one of the most frequent injuries of the musculoskeletal system. Despite advances 
in therapeutic interventions, delayed healing, compromised quality of the newly regenerated bone, or 
nonunions remain frequent outcomes of these injuries (Clement et al., 2013; Muire et al., 2020). These 
outcomes are complicated by the advanced age of the patients, infection, or sterile inflammation-
prone comorbidities such as rheumatoid arthritis or diabetes mellitus (Clement et al., 2013; Muire 
et al., 2020; Claes et al., 2012). Although the recovery speed from fracture is greater in small animals 
such as rodents than in large counterparts and humans, the underlying repair mechanisms are shared 
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across species (Claes et al., 2012). Thus, mouse models, which are amenable to genetic manipulation, 
provide opportunities for shedding light onto the mechanisms of fracture healing.

Bone fracture triggers an immediate inflammatory response during which neutrophils and macro-
phages are mobilized to the injury site to remove necrotic cells and debris while releasing factors that 
initiate neovascularization and promote tissue repair by recruiting mesenchymal progenitor cells from 
various sites such as the periosteum and bone marrow (BM) (Claes et al., 2012; Colnot et al., 2006; 
Glass et al., 2011). The repair phase is followed by remodeling events where the balanced activity of 
osteoblasts and osteoclasts culminates in the restoration of the original bone structure and BM cavity 
(Colnot et al., 2006; Hardy and Cooper, 2009; Xing et al., 2010b). Ultimately, inflammation subsides 
stemming from the suppressive actions of immune cells such as regulatory T cells, anti-inflammatory 
macrophages, and mesenchymal stem cells (Al‐Sebaei et al., 2014; Nauta and Fibbe, 2007; Noël 
et al., 2007). Although inflammation declines over time, interfering with its onset immediately after 
injury can be detrimental as mice lacking interleukin-6 (IL-6), tumor necrosis factor-α, or macrophages 
exhibit defective healing (Yang et al., 2007; Wallace et al., 2011; Gerstenfeld et al., 2003; Baht 
et al., 2015; Raggatt et al., 2014; Xing et al., 2010a; Chang et al., 2008). Thus, a fine-tuned level 
of inflammation is critical for adequate fracture healing.

IL-1β is another inflammatory cytokine that impacts fracture healing (Einhorn et al., 1995; Morisset 
et al., 2007). Unlike the aforementioned cytokines, IL-1β and IL-18 lack the signal peptide for secre-
tion through the conventional endoplasmic reticulum and Golgi route. Expressed as pro-IL-1β and 
pro-IL-18, these polypeptides are proteolytically activated by enzymes such as caspase-1, a compo-
nent of the intracellular macromolecular complexes called inflammasomes (Schroder and Tschopp, 
2010; Broz and Dixit, 2016). Caspase-1 also cleaves GSDMD, generating GSDMD amino-terminal 
fragments, which form plasma membrane pores through which IL-1β and IL-18 are secreted to the 
extracellular milieu (Broz and Dixit, 2016; Shi et al., 2015). Although live cells can secrete these 
cytokines, excessive GSDMD-dependent pore formation compromises the integrity of the plasma 
membrane, causing a lytic form of cell death known as pyroptosis (Shi et al., 2015; Evavold et al., 
2018). Pyroptotic cells release not only IL-1β and IL-18 but also other inflammatory molecules including 
eicosanoids, nucleotides, and alarmins (Broz and Dixit, 2016; Shi et al., 2015; Rauch et al., 2017). 
Thus, the actions of GSDMD in inflammatory settings can extend beyond the sole secretion of IL-1β 
and IL-18, and need to be tightly regulated to maintain homeostasis.

GSDMD is a member of the GSDM family proteins, which are encoded by Gsdma1-3, Gsdmc1-4, 
Gsdmd, and Gsdme also known as Dnfa5 in the mouse genome (Liu et al., 2021). Mice lacking GSDMD 
are protected against multi-organ damage caused by gain-of-function mutations of nucleotide-binding 
oligomerization domain-like receptors family, pyrin domain containing 3 (NLRP3) or pyrin inflam-
masome (Xiao et al., 2018; Kanneganti et al., 2018). GSDMD is also involved in the pathogenesis 
of complex diseases including experimental autoimmune encephalitis, radiation-induced tissue injury, 
ischemia/reperfusion injury, sepsis, renal fibrosis, and thrombosis (Li et al., 2019; Xiao et al., 2020; 
Zhang et al., 2019; Silva et al., 2021; Zhang et al., 2021c; Zhang et al., 2021a). Other well-studied 
GSDMs include GSDMA and GSDME (Liu et al., 2021; Zhang et al., 2020; Wang et al., 2021; Zhou 
et al., 2020). GSDME is of particular interest to this study because recent evidence suggests that it 
harbors overlapping and non-overlapping actions with GSDMD, depending on cell contexts. Indeed, 
GSDME can mediate pyroptosis and release cytokines under both GSDMD sufficient and insufficient 
conditions (Wang et al., 2021; Xia et al., 2021; Aizawa et al., 2020; Liu et al., 2020; Chen et al., 
2021). Despite advances in GSDM studies, the role that these proteins play in fracture healing has not 
been studied. Since drugs for the treatment of GSDM-dependent inflammatory disorders and cancers 
are under development, it is imperative to understand their functions in the musculoskeletal system. 
Here, we found that loss of GSDMD or GSDME in mice impeded fracture healing through mechanisms 
involving IL-1 signaling. This discovery has translational implications as drugs that inhibit GSDM func-
tions may contribute to unsatisfactory fracture healing outcomes.

Materials and methods
Mice
Gsdmd knockout mice were kindly provided by Dr VM Dixit (Genentech, South San Francisco, CA). 
Il1r1-/- and Gsdme-/- mice were purchased from The Jackson Laboratory (Sacramento, CA). All mice 
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were on the C57BL6J background, and genotyping was performed by PCR. All procedures were 
approved by the Institutional Animal Care and Use Committee (IACUC) of Washington University 
School of Medicine in St Louis. All experiments were performed in accordance with the relevant 
guidelines and regulations described in the IACUC-approved protocol 19-0971.

Tibia fracture model
Open mid-shaft tibia fractures were created unilaterally in 12-week-old mice. Briefly, a 6-mm-long inci-
sion was made in the skin on the anterior side alongside the tibia. A sterile 26 G needle was inserted 
into the tibia marrow cavity from the proximal end, temporarily withdrawn to allow transection of the 
tibia with a scalpel at mid-shaft, and then reinserted and secured. The incision was closed with 5–0 
nylon sutures. Mice were sacrificed at different time-points as indicated below.

Histological analyses of fracture calluses
Fractured tibias were collected on days 7, 10, 14, 21, and 28 after fracture for histological analyses. 
Excess muscle and soft tissue were excised. Tibias were fixed in 10% neutral buffered formalin for 
24 hr and decalcified for 10–14 days in 14% ethylenediaminetetraacetic acid solution (pH 7.2). Tissue 
was processed and embedded in paraffin, and sectioned longitudinally at a thickness of 5 µm. Alcian 
blue/hematoxylin/orange-g (ABH/OG) and tartrate-resistant acid phosphatase (TRAP) staining were 
performed to analyze the callus composition and osteoclast formation in the fracture region. Images 
were acquired using ZEISS microscopy (Carl Zeiss Industrial Metrology, Maple Grove, MN). Cartilage 
area, bone area, mesenchyme area, and osteoclast parameters were quantified on ABH/OG, TRAP-
stained sections using NIH ImageJ software 1.52a (Wayne Rasband) and Bioquant (Ying et al., 2020).

Micro-computed tomography analysis
After careful dissection and removal of the intramedullary pins in fractured tibias, fracture calluses 
were examined using micro-computed tomography (micro-CT) system (μCT 40 scanner, Scanco 
Medical AG, Zurich) scanner at 10 μm, 55 kVp, 145 μA, 300 ms integration time. Six hundred slices 
(6.3 mm) centered on the callus midpoint were used for micro-CT analyses. A contour was drawn 
around the margin of the entire callus and a lower threshold of 180 per mille was then applied to 
segment mineralized tissue (all bone inside the callus). A higher threshold of 340 per mille was applied 
to segment the original cortical bone inside the callus volume. Quantification for the volumes of the 
bone calluses was performed using the Scanco analysis software. 3D images were generated using a 
constant threshold of 180 per mille for the diaphyseal callus region of the fractured tibia.

Biomechanical torsion testing
Tibias were collected 28 days after fracture and moistened with PBS and stored at –20°C until they 
were thawed for biomechanical testing. Briefly, the ends of the samples were potted with methacry-
late (MMA) bone cement (Lang Dental Manufacturing, Wheeling, IL) in 1.2-cm-long cylinders (6 mm 
diameter). The fracture site was kept in the center of the two potted ends with roughly 4.2 mm of 
the bone exposed. After MMA solidification, potted bones were set up on a custom torsion machine. 
One end of the potted specimen was held in place while the opposing end was rotated at 1 degree 
per second until fracture. Torque values were plotted against the rotational deformation, and the 
maximum torque, torsional rigidity, and work to fracture were calculated.

Cell cultures
Murine primary BM-derived macrophages (BMDMs) were obtained by culturing mouse BM cells from 
femurs and tibias in culture media containing a 1:10 dilution of supernatant from the fibroblastic cell 
line CMG 14-12 as a source of macrophage colony-stimulating factor, a mitogenic factor for BMDMs, 
for 4–5 days in a 15 cm dish as previously described (Xiao et al., 2020; Takeshita et al., 2000). After 
expansion, BMDMs were plated at a density of 1 × 106 cells/well in six-well plate for experiments.

Murine primary neutrophils were isolated by collecting BM cells and subsequently over a discon-
tinuous Percoll (Sigma) gradient. Briefly, all BM cells from femurs and tibias were washed by DPBS 
and then resuspend in 2 ml DPBS. Cell suspension was gently layered on top of gradient (72% Percoll, 
64% Percoll, 52% Percoll) and centrifuged at 1545× g for 30 min at room temperature. After carefully 
discarding the top two cell layers, the third layer containing neutrophils was transferred to a clean 
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15 ml tube. Cells were washed and counted, then plated at a density of 3 × 106 cells/well in six-well 
plate. Neutrophil purity was determined by flow cytometry shown in Figure 5—figure supplement 1.

For inflammasome studies, cells were primed with 100 ng/ml LPS (Sigma Aldrich, L4391) for 3 hr, 
then with 15 μM nigericin (Sigma Aldrich) for 1 hr, 5 mM ATP for 1 hr, or 50 mg/ml bone particles for 
2 hr.

Western blot
Cell extracts were prepared by lysing cells with RIPA buffer (50 mM Tris, 150 mM NaCl, 1 mM EDTA, 
0.5% NaDOAc, 0.1% SDS, and 1.0% NP-40) plus complete protease inhibitor cocktail (Roche, CA). 
For tissue extracts, BM and BM-free bones were lysed with RIPA buffer containing protease inhibitors. 
Protein concentrations were determined by the Bio-Rad Laboratories method, and equal amounts of 
proteins were subjected to SDS-PAGE gels (12%) as previously described (Wang et al., 2018). Proteins 
were transferred onto nitrocellulose membranes and incubated with antibodies against GSDMD 
(1:1000, ab219800, Abcam), GSDME (1:1000, ab215191, Abcam), β-actin (1:5000, sc-47778, Santa 
Cruz Biotechnology, Dallas, TX) overnight at 4°C followed by incubation for 1 hr with secondary goat 
anti–mouse IRDye 800 (Thermo Fisher Scientific, Waltham, MA) or goat anti-rabbit Alexa Fluor 680 
(Thermo Fisher Scientific, Waltham, MA), respectively. The results were visualized using the Odyssey 
infrared imaging system (LI-COR Biosciences, Lincoln, NE).

LDH assay
Cell death was assessed by the release of LDH in conditioned medium using LDH Cytotoxicity Detec-
tion Kit (TaKaRa, San Jose, CA).

IL-1β and IL-18 ELISA
IL-1β, IL18 levels in conditioned media were measured by ELISA (eBioscience, Albany, NY).

ATP assay
ATP levels in conditioned media were measured by RealTime-Glo Extracellular ATP Assay kit (Promega, 
Madison, WI).

Flow cytometry
BM cells were flushed from tibias with PBS. Single cell suspensions were labeled with antibodies for 
30 min at 4°C. Flow cytometry analysis was performed on FACS Canto II. Cell cytometric data was 
analyzed using FlowJo10.7.1. Full gating strategy was shown in Figure 5—figure supplements 1 and 
2.

RNA isolation and RT-qPCR
RNA was extracted from bone or BM cells using RNeasy Plus Mini Kit (Qiagen). Four millimeters of 
fracture calluses free of BM were homogenized for mRNA extraction. cDNA were prepared using 
High-Capacity cDNA Reverse Transcription Kits (Applied Biosystems, Waltham, MA). Gene expression 
was analyzed by qPCR using SYBR Green (Applied Biosystems, Waltham, MA) according to the manu-
facturer’s instruction.

Statistical analysis
Statistical analysis was performed using the Student’s t test, one-way ANOVA with Tukey’s multiple 
comparisons test as well as two-way ANOVA with Tukey’s multiple comparisons test in GraphPad 
Prism 8.0 software.

Results
GSDMD and GSDME were expressed in bone microenvironment
The crucial role that gasdermins (GSDMs) play in inflammation, a response that can be induced by 
injury, prompted us to analyze their expression in unfractured and fractured mouse tibias. Gsdmd and 
Gsdme were the only GSDM family members that were readily detected in BM and BM-free tibias 
from wild-type (WT) mice (Figure 1A–D and Figure 1—figure supplement 1A, B; Figure 1—figure 
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Figure 1. GSDMD and GSDME were expressed in bone microenvironment and involved in bone callus formation. (A, C–D) BM and (B) BM-free tibias 
from 12-week-old male WT and Gsdmd-/- mice (n = 4–5 mice). Samples were isolated from unfractured or fractured tibias (3 days after injury). (A–B) qPCR 
and (C–D)  Western blot analyses. qPCR data were normalized to unfractured WT. (E) Bone callus volume was quantified using Scanco software (n = 5). 
(F) Representative 3D reconstructions of bones using µCT. Data were mean ± SD and are representative of at least three independent experiments. Data 
from male and female mice were pooled because there was no sex difference. **p < 0.01; ***p < 0.001; ****p < 0.0001, two-way ANOVA with Tukey’s 
multiple comparisons test. Scale bar, 1 mm. BM, bone marrow; µCT, micro-computed tomography; WT, wild-type.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. qPCR analysis of Gsdmd and Gsdme expression in bone marrow (BM) and BM-free tibias of wild-type (WT) and Gsdmd-/- mice.

Source data 2. Western blots for Figure 1.

Source data 3. Bone callus volume of wild-type (WT), Gsdmd-/-, Gsdme-/-, and Gsdmd-/-;Gsdme-/- mice.

Figure supplement 1. Several gasdermin (GSDM) family members were barely expressed in bones.

Figure 1 continued on next page
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supplement 2A, B). Expression levels of Gsdmd in BM and BM-free tibias (Figure 1A–C and Figure 1—
figure supplement 2A) were consistently higher in fractured compared with unfractured bones. 
The injury did not affect Gsdme mRNA levels (Figure 1A) but it increased GSDME protein levels in 
BM-free tibias (Figure 1—figure supplement 2B). Both GSDMs appeared constitutively cleaved in 
BM (Figure 1C–D) but not BM-free tibias (Figure 1—figure supplement 2A, B). Since Gsdmd was 
predominantly expressed in bones, we determined the impact of its loss on the expression of its family 
members. Gsdmd deficiency increased baseline Gsdme mRNA levels in BM-free tibias but not BM, a 
response that was unaffected by the injury and did not impact GSDME protein levels (Figure 1A–D 
and Figure 1—figure supplement 2A, B). The expression of the other family members was unaltered 
by Gsdmd deficiency or the injury, with exception of Gsdmc, which was reduced in fractured BM-free 
tibias (Figure  1—figure supplement 1A, B). Thus, GSDMD and GSDME are present in the bone 
microenvironment in homeostatic and injury states.

Lack of GSDMD or GSDME delayed fracture healing
When stabilized with an intramedullary inserted pin, fractured murine long bones heal through mech-
anisms that involve the formation of callus structures (Marsell and Einhorn, 2011). To determine 
the role of GSDMD and GSDME in fracture healing, we assessed callus formation in WT, Gsdmd-/-, 
Gsdme-/-, and Gsdmd-/-;Gsdme-/- mice. The volume of bone callus was higher on day 14 compared 
with day 10 post-injury in WT mice (Figure 1E). It increased indistinguishably in Gsdmd-/- and Gsdme-

/- mice on day 14 compared to day 10, but was significantly lower in mutants compared with WT 
mice (Figure 1E–F). Notably, callus volume was comparable between single and compound mutants 
(Figure 1E–F), suggesting that both GSDMs share the same signaling pathway in fracture healing. 
Collectively, these findings indicate that GSDMD and GSDME play an important role in bone repair 
following fracture injury.

To gain insights onto the mechanisms of fracture healing, we focused on GSDMD as its expression 
and proteolytic maturation were consistently induced by fracture. Time-course studies revealed that 
while the callus bone volume increased linearly until day 14 post-fracture and plateaued by day 21 
in WT mice (Figure 2A–B), it continued to expand in Gsdmd-/- mice until day 21 (Figure 2A–B). The 
callus volume declined in both mouse strains by day 28 but it was larger in mutants compared with 
WT controls (Figure 2A). Histological analysis indicated that the areas of the newly formed mesen-
chyme, cartilage, and bone were smaller in Gsdmd-/- compared with WT mice on day 7 (Figure 2C–F). 
This outcome was also observed on day 10, except for the mesenchyme tissue area, which was larger 
in Gsdmd-/- compared with WT. While cartilage remnants were negligible in WT callus on day 14, 
they remained abundant in Gsdmd-/- counterparts (Figure 2F). Additional histological assessments 
revealed that the number osteoclasts, which are involved in the remodeling of the newly formed 
bone, declined after day 14 not only in WT bones as expected, but also in mutants (Figure 2G–I). At 
any time-point, there were more osteoclasts in injured Gsdmd-/- bones compared to WT counterparts. 
Taken together, these results suggest that the healing process is perturbed in mutant mice.

To determine the impact of GSDMD deficiency on the functional result of bone regeneration, unfrac-
tured and 28 days’ post-fracture bones were subjected to biomechanical testing. Injured WT tibias 
exhibited decreased strength and stiffness compared with unfractured counterparts (Figure 3A–C), 
indicating that the healing response has not fully recovered bone function at this time-point. Biome-
chanical properties of unfractured Gsdmd-/- tibias were slightly higher though not statistically signifi-
cant in Gsdmd-/- compared with WT unfractured bones (Figure 3A–C), findings that were consistent 
with the higher bone mass phenotype of Gsdmd-/- mice relative to their littermates (Xiao et al., 2020). 
Notably, fractured bones from Gsdmd-/- mice exhibited lower biomechanical parameters compared 

Figure supplement 1—source data 1. qPCR analysis of Gsdm expression in bone marrow (BM) and BM-free tibias of wild-type (WT) and Gsdmd-/- 
mice.

Figure supplement 2. Fracture-induced GSDMD and GSDME expression.

Figure supplement 2—source data 1. qPCR analysis of gene expression in bone marrow (BM) and BM-free tibias of wild-type (WT) and Gsdmd-/- mice.

Figure supplement 2—source data 2. Western blots for Figure 1—figure supplement 2A and B.

Figure 1 continued
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with WT controls. Thus, the functional competence of the repaired bone structure is compromised in 
GSDMD-deficient mice.

Expression and secretion of IL-1β and IL-18 were attenuated in the 
absence of GSDMD
Inflammation characterized by elevated levels of cytokines including those of the IL-1 family under-
lines the early phase of wound healing (Claes et al., 2012). Since IL-1β and IL-18 are secreted through 
GSDMD-assembled plasma membrane pores (Broz and Dixit, 2016; Shi et al., 2015; Evavold et al., 
2018), we analyzed the levels of these inflammatory cytokines in the BM supernatants from unfrac-
tured and fractured bones (1 day after injury). Baseline secretion levels of IL-1β or IL-18 were compa-
rable between WT and Gsdmd mutants (Figure 4A–B). Fracture increased IL-1β and IL-18 levels in BM 
supernatants in both groups, but they were significantly attenuated in mutant samples compared with 
WT controls (Figure 4A–B). Thus, fracture-induced IL-1β and IL-18 levels in BM are attenuated upon 
loss of GSDMD.

Figure 2. Loss of GSDMD delayed fracture healing. Tibias of 12-week-old male and female WT or Gsdmd-/- mice were subjected to fracture and 
analyzed at the indicated times. (A) Bone callus volume was quantified using Scanco software (n = 6). (B) Representative 3D reconstructions of bones 
using µCT. (C–E) Quantification of tissue area by ImageJ software (n = 5). (F) Representative ABH staining. Quantification of Oc.S/BS (G) and N.Oc/BS 
(H) using Bioquant software (n = 5). (I) Representative images of TRAP staining. Data were mean ± SD. Data from male and female mice were pooled 
because there was no sex difference. *p < 0.05; ***p < 0.001; ****p < 0.0001, two-way ANOVA with Tukey’s multiple comparisons test. Scale bar, 1 mm 
(B), 500 µm (F) ,or 200 µm (I). µCT, micro-computed tomography; WT, wild-type.

The online version of this article includes the following source data for figure 2:

Source data 1. Micro-computed tomography (µCT) and histological, and histomorphometric analyses of wild-type (WT) and Gsdmd-/- mice.

https://doi.org/10.7554/eLife.75753


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation | Medicine

Sun et al. eLife 2022;11:e75753. DOI: https://doi.org/10.7554/eLife.75753 � 8 of 19

To understand transcriptional regulation of IL-1β and IL-18 in this fracture model, we determined 
mRNA levels of these cytokines in the BM and BM-free bone compartments. Baseline levels of Il1b 
and Il18 mRNA were undistinguishable between WT and Gsdmd-/- samples in both compartments 
(Figure 4C–D). Following fracture, the expression of Il1b and Il18 mRNA was induced in WT but not 
Gsdmd-/- mice (Figure 4C–D), suggesting a feedback mechanism whereby these cytokines secreted 
though GSDMD pores amplified their own expression. Since NLRP3 and absent in melanoma 2 (AIM2) 
inflammasomes, which sense plasma stimuli such as membrane perturbations and DNA, respectively, 
are implicated in the maturation of IL-1β, IL-18, and GSDMD (Xiao et al., 2018; Xiao et al., 2020; 
Zhu et al., 2021), we also analyzed the expression of these sensors. Levels of Nlrp3 and Aim2 to some 
extent (Figure 4C–D) as well as those of Asc and caspase-1 (Figure 4—figure supplement 1A, B) 
were comparable between WT and Gsdmd-/- samples in homeostatic conditions. Fracture increased 
the expression of Nlrp3 and Aim2 in WT and mutants only in BM-free bone samples (Figure 4C–D) 
whereas it induced caspase-1 expression in WT cells both compartments. Never was the expression of 
Nlrc4 and caspase-11 mRNA modulated by the fracture injury nor loss of GSDMD (Figure 4—figure 
supplement 1A, B). Thus, the expression of Il1b or Il18 and certain inflammasome components (e.g., 
Nlrp3, Aim2, Asc, and caspase-1) is transcriptionally regulated in the fracture injury model.

Lack of GSDMD attenuated the secretion of IL-1β and IL-18 induced by 
danger signals
The high levels IL-1β and IL-18 in BM of fractured bones provided a strong rationale for assessing the 
presence of neutrophils, monocytes, and macrophages, which harbor high levels of inflammasomes 
and rapidly accumulate during the first hours after injury (Liu et al., 2021; Xiao et al., 2018; Xiao 
et al., 2020). Flow cytometry analysis revealed that the abundance of these cells in BM of uninjured 
bones was unaffected by loss of GSDMD (Figure 5A–C and Figure 5—figure supplement 2). Frac-
ture increased the percentage of neutrophils and monocytes but not macrophages (Figure 5A–C). 
GSDMD deficiency was associated with a slight decrease and increase in the percentage of neutro-
phils and monocytes, respectively (Figure 5A–C). Thus, neutrophil and monocyte but not macrophage 
populations are expanded in fractured bones. GSDMD deficiency appears to slightly attenuate and 
increase the percentage of neutrophils and monocytes, respectively.

Figure 3. Loss of GSDMD compromised bone biomechanical properties after fracture. Unfractured or fractured tibias (28 days after injury) from 
12-week-old male WT or Gsdmd-/- mice were subjected to a torsion test (n = 6). (A) Bone strength. (B) Bone stiffness. (C) Bone toughness. Data were 
mean ± SD. *p < 0.05; **p < 0.01; ****p < 0.0001; one-way ANOVA with Tukey’s multiple comparisons test; ns, non significant; WT, wild-type.

The online version of this article includes the following source data for figure 3:

Source data 1. Biomechanical analysis of wild-type (WT) and Gsdmd-/- mice.

https://doi.org/10.7554/eLife.75753
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Figure 4. Loss of GSDMD attenuated the expression and secretion of interleukin-1β (IL-1β) and IL-18 induced 
by fracture. (A–B)  BM supernatants and (C)  BM-free bones were from 12-week-old male WT or Gsdmd-/- mice 
(n = 4–5). Samples were isolated from unfractured or fractured tibias (1 day after injury). (A–B)  ELISA and (C–
D)  qPCR analyses. qPCR data were normalized to unfractured WT. Data were mean ± SD. *p < 0.05; **p < 0.01; 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.75753
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Inflammasome assembly signals include those generated by ATP, which is released by dead cells 
(Yang et al., 2021; Zhang and Wei, 2021b). Therefore, we measured the levels of this danger signal 
in BM. ATP levels were comparable between WT and Gsdmd-/- samples at baseline but were induced 
by fourfold after fracture in both groups (Figure 5D). Next, we studied cytokine release by WT and 
Gsdmd-/- cells not only in response to ATP but also bone particles, which are undoubtedly released 
following bone fracture. Bone particles were as potent as the NLRP3 inflammasome activators, 
nigericin and ATP, in inducing GSDMD cleavage by LPS-primed macrophages (Figure 5E). Accord-
ingly, these danger signals induced IL-1β release (Figure 5F) and pyroptosis as assessed by the release 
of lactate dehydrogenase (LDH; Figure 5—figure supplement 3A), responses that were attenuated 
in GSDMD-deficient macrophages. Both nigericin and ATP robustly stimulated GSDMD cleavage and 
IL-1β release by LPS-primed neutrophils through mechanisms that partially involved GSDMD, but they 
did not promote neutrophil pyroptosis (Figure 5—figure supplement 3B). Bone particles had no 
effect on GSDMD maturation and IL-1β and LDH release by neutrophils (Figure 5G–H and Figure 5—
figure supplement 3B). Thus, fracture injury creates a microenvironment that induces cytokine secre-
tion through mechanisms involving GSDMD.

Loss of IL-1 signaling delayed fracture healing
The inability of Gsdmd-/- mice to mount efficient healing responses correlated with low levels of IL-1β 
and IL-18 in BM, suggesting that inadequate secretion of these cytokines may account for the delayed 
fracture repair. While the actions of IL-18 in bone are not well defined, overwhelming evidence posi-
tions IL-1β as a key regulator of skeletal pathophysiology (Mbalaviele et  al., 2017; Novack and 
Mbalaviele, 2016). Therefore, we used IL-1 receptor knockout (Il1r1-/-) mice to test the hypothesis 
that IL-1 signaling was required for bone healing following fracture. Bone callus volume was larger 
on day 14 compared with day 10 in WT and Il1r1-/- tibias, but it was smaller at both time-points in 
mutants compared to WT controls (Figure 6A–B). Histological analysis confirmed that the mesen-
chyme, cartilage, and bone areas were all smaller in Il1r1-/- compared with WT mice (Figure 6C–F). 
Like in Gsdmd-/- tissues, cartilage remnants were prominent within the callus of Il1r1-/- specimens at 
day 14 (Figure 6F), and the number and surface of osteoclasts were significantly higher at all times in 
mutant compared to WT mice at day 14, while cartilage and bone areas remained smaller in mutants 
at day 10 (Figure 6G–I). Although Gsdmd expression was not analyzed in Il1r1-/- mice, these mutants 
exhibited delayed fracture healing like Gsdmd-/- mice, suggesting that functional GSDMD-IL-1 axis is 
important for adequate bone healing after fracture.

Discussion
GSDMs are implicated in a variety of inflammatory diseases but their role in bone regeneration after 
fracture is largely unknown. We found that fracture healing was comparably delayed in mice lacking 
GSDMD or GSDME; yet concomitant loss of GSDMD and GSDME did not worsen the phenotype. This 
outcome was unexpected because these GSDMs are activated via distinct mechanisms as GSDMD is 
cleaved by caspase-1, caspase-11 (mouse ortholog of human caspase-4 and -5), neutrophil elastase 
and cathepsin G, or caspase-8 whereas GSDME is processed by caspase-3 and granzyme B (Zhang 
et  al., 2020; Liu et  al., 2020). The phenotype of double knockout mice suggested complex and 

***p < 0.001; ****p < 0.0001, two-way ANOVA with Tukey’s multiple comparisons test. BM, bone marrow; WT, 
wild-type.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. ELISA analysis of interleukin-1β (IL-1β) and IL-18 levels in bone marrow (BM) supernatants of wild-
type (WT) and Gsdmd-/- mice.

Source data 2. qPCR analysis of gene expression in bone marrow (BM) and BM-free tibias of wild-type (WT) and 
Gsdmd-/- mice.

Figure supplement 1. Fracture induced the expression of certain inflammasome components.

Figure supplement 1—source data 1. Percentage of lactate dehydrogenase (LDH) release in wild-type (WT) and 
Gsdmd-/- cell culture supernatants.

Figure 4 continued

https://doi.org/10.7554/eLife.75753
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Figure 5. Loss of GSDMD attenuated the secretion of interleukin-1β (IL-1β) and IL-18 induced by danger signals. Cells were isolated from the tibias 
from 12-week-old female WT or Gsdmd-/- mice. (A–C) Cell counts (n = 4–5). BM was harvested from unfractured or fractured tibias (2 days after fracture). 
(D) ATP levels. BM supernatants were harvested from unfractured or fractured tibias (24 hr after fracture). (E–G) Immunoblotting analysis of GSDMD 
cleavage or (F–H) IL-1β ELISA run in triplicates. Bone marrow-derived macrophages (BMDMs) were expanded in vitro whereas neutrophils were 

Figure 5 continued on next page
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possibly convergent actions of these GSDMs in fracture healing. Indeed, the phenotype of either 
single mutant strain implied non-redundant functions of both GSDMs whereas the outcomes of 
compound mutants suggested that they shared downstream effector molecules. The latter view was 
supported by the ability of either GSDM to mediate pyroptosis and IL-1β and IL-18 release in cell a 
context-dependent manner (Wang et al., 2021; Xia et al., 2021; Aizawa et al., 2020; Liu et al., 
2020; Chen et al., 2021). Furthermore, functional complementation of GSDMD by GSDME has also 
been reported (Wang et al., 2021). Thus, although additional studies are needed for further insights 
onto the mechanism of differential actions of GSDMD and GSDME in bone recovery after injury, our 
findings reinforce the crucial role that inflammation plays during the bone fracture healing process.

In addition to IL-1β and IL-18, inflammatory mediators such as ATP, alarmins (e.g., IL-1α, S100A8/9), 
high mobility group box 1, and eicosanoids (e.g., PGE2) are expected to be uncontrollably released 
during pyroptosis (Rauch et al., 2017; Nyström et al., 2013). Since these inflammatory and danger 
signals work in concert to inflict maximal tissue damage, we anticipated a milder delay in fracture 
healing in mice lacking IL-1 receptor compared with GSDM-deficient mice. Contrary to our expecta-
tion, callus volumes and the recovery time were comparable among all mutant mouse strains. These 
observations suggested that IL-1 signaling downstream of GSDMs played a non-redundant role in 
fracture healing. This view was consistent with the reported essential role of IL-1α and IL-1β in bone 
repair and aligned with the high expression of these cytokines by immune cells, which are known to 
massively infiltrate the fracture site (Claes et al., 2012). Thus, although IL-1 signaling has been exten-
sively studied in various injury contexts, the novelty of this work is its demonstration of the role of 
GSDM-IL-1 axis in fracture repair.

IL-1 signaling induces the expression of cytokines, chemokines, and growth factors that govern 
bone remodeling, a process that is initiated by the osteoclasts (Kitazawa et al., 1994). Consistent 
with the critical actions of GSDM-IL-1 cascades in bone repair and the osteoclastogenic actions of 
IL-1β, loss of GSDMD in mice resulted in increased bone mass at baseline as the result of decreased 
osteoclast differentiation (Xiao et al., 2020). Here, we found that lack of GSDMD was associated 
with increased number of osteoclasts and their precursors, the monocytes. We surmised that this 
result was simply a reflection of delayed osteoclastogenesis in mutant mice as the consequence of 
delayed responses such as neovascularization and development of BM cavity. This view is based by 
the fact that BM is the site of hematopoiesis in adult animals and vascularization is important for 
the traffic of osteoclast progenitors. As a result, disruption in either hematopoiesis or vascularization 
should undoubtedly impact osteoclastogenesis (Buettmann et al., 2019). Although our mechanistic 
studies revolved around myeloid cells from which the osteoclasts arise, it is worth noting that the 
inflammasome-GSDM pathways are functional in the osteoblast lineage (Zhang and Wei, 2021b; Lei 
et al., 2021; Jiang et al., 2021). Therefore, osteoblast lineage autonomous actions of these pathways 
in bone healing cannot be ruled out.

Fracture injury increased the levels of NLRP3 and its activator ATP in BM, suggesting that the 
inflammasome assembled by this sensor may be responsible for the activation of GSDMs, particularly, 
GSDMD. However, more studies are needed to firm up this conclusion since Aim2 was also expressed 
in BM. Other limitations of this study included (i) the lack of data comparing biomechanical prop-
erties of fractured bones from all the mutant mouse strains used; (ii) the unknown function of IL-18 
pathway in fracture healing; (iii) the contribution of systemic factors such as glucocorticoids, which 
are regulated by inflammasome-IL-1β pathways and affect bone healing and strength (Stangl et al., 

immediately after purification. Cells were primed with 100 ng/ml LPS for 3 hr, then with 15 μM nigericin for 1 hr, 5 mM ATP for 1 hr, or 50 mg/ml bone 
particles for 2 hr. Data are mean ± SD and were representative of at least three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 
0.0001, two-way ANOVA with Tukey’s multiple comparisons test. BPs, bone particles; cGSDMD, cleaved GSDMD; WT, wild-type.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. ELISA analysis of interleukin-1β (IL-1β) and IL-18 levels in wild-type (WT) and Gsdmd-/- cell culture supernatants.

Source data 2. Micro-computed tomography (µCT) and histological, and histomorphometric analyses of wild-type (WT) and Il-1r-/- mice.

Figure supplement 1. Gating strategy and purity of isolated neutrophil fractions.

Figure supplement 2. Gating strategy.

Figure supplement 3. Effects of GSDMD loss on LDH release.

Figure 5 continued

https://doi.org/10.7554/eLife.75753
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Figure 6. Loss of interleukin-1 (IL-1) receptor delayed fracture healing. Tibias of 12-week-old male WT or Il1r1-/- mice were subjected to fracture 
and analyzed at the indicated times. (A) Bone callus volume was quantified using Scanco software (n = 5). (B) Representative 3D reconstructions of 
bones using micro-computed tomography (µCT). (C–E) Quantification of tissue area by ImageJ software (n = 5). (F) Representative ABH staining. 
(G)  Quantification of Oc.S/BS and (H)  Oc.S/BS using Bioquant software (n = 5). (I) Representative images of TRAP staining. Data were mean ± SD. 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.75753
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*p < 0.05; ***p < 0.001; ****p < 0.0001, two-way ANOVA with (A, C–E) Tukey’s multiple comparisons test or (G–H) unpaired t-test. Scale bar, 1 mm 
(B), 500 µm, (F) or 200 µm (I). Il1r1, IL-1 receptor 1; WT, wild-type.

The online version of this article includes the following source data for figure 6:

Source data 1. Callus parameters of WT and Il1r-/- mice.

Figure 6 continued

Figure 7. A model of gasdermin (GSDM)-interleukin-1 (IL-1) signaling in fracture healing. Bone fracture is followed 
by the repair and remodeling phases, which ultimately lead to the restoration of the original bone structure. 
Fracture causes the release of DAMPs, which activate the inflammasomes and other pathways, leading to the 
maturation of GSDMD and GSDME, and processing and secretion of IL-1β-IL-18. This model is based on the 
findings in bold texts indicating that mice lacking GSDMD, GSDME, or defective in IL-1 signaling (owing to the 
deletion of IL-1 receptor) exhibit delayed fracture healing. Levels of ATP (DAMP), AIM2, NLRP3, and IL-18 are 
elevated following fracture, but whether these factors are involved in fracture healing was not assessed in this 
study.

https://doi.org/10.7554/eLife.75753
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2020; Blair et al., 2011; Hachemi et al., 2018); (iv) the knowledge gap on differential expression of 
GSDMD and GSDME by the various cell types that are activated in response to fracture; and (v) the 
lack of translational studies using drugs such as disulfiram, which inhibits the processing or functions 
of GSDMD and GSDME (Wang et al., 2021), to validate genetic mouse findings. Despite these short-
comings, this study has revealed the crucial role that GSDMD and GSDME play in fracture healing 
(Figure 7). It also suggests that drugs that inhibit the functions of these GSDMs may have adverse 
effects on this healing process.
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