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Background: Early gestational age (GA) assessment using ultrasound is a routine and frequent examination 
performed in hospitals whereby clinicians manually measure the size of the gestational sac using ultrasound 
and calculate GA. However, the error is often substantial, and the process is laborious. To overcome these 
challenges, we propose a new system to assess early GA using a new end-to-end computer vision system and 
a new biometric measurement method based on ultrasound video.
Methods: In this retrospective study, a new system was provided. B-ultrasound videos were first 
decomposed into two-dimensional (2D) images, and the contours of the gestational sac were extracted and 
drawn. The maximum length and short diameter of the gestational sac were then automatically measured and 
GA was calculated using the Hellman formula. Finally, through human-machine comparison, the clinicians’ 
assessment errors were analyzed by SPSS 26.
Results: In this study, 29,829 2D images of 191 B-ultrasound videos were evaluated using the new 
system. Clinicians usually require 15–20 min to complete assessments of GA, whereas with the new system 
assessments can be completed in approximately 30 s. Moreover, a human-machine comparison showed that 
the system helped intermediate skills clinicians improve their relative diagnostic error by 13.45% with an 
absolute error of 7 days. In addition, the new system was used to identify other lesions in the uterus and 
measure their size as a “sanity check”.
Conclusions: The proposed new system is a practical, reproducible, and reliable approach for assessing 
early GA.
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Introduction

In the first trimester of pregnancy, determining gestational 
age (GA) is the basis of obstetric diagnosis and treatment, 
and accurate calculation of the expected date of delivery 
helps determine the timing of prenatal examinations and 
prenatal diagnoses (1,2). A common method to predict 
GA is by manually measuring the maximum length and 
short diameter of the gestational sac using ultrasound 
(3,4). However, a B-ultrasound video is dynamic, and 
the gestational sac is three-dimensional (3D). Individual 
clinicians observe gestational sacs from different angles, 
resulting in various sizes. Each time, clinicians select the 
largest two-dimensional (2D) image of the gestational sac 
in the video based on personal experience and then use the 
electronic ruler of the B-ultrasound machine to manually 
measure the length and short diameter of the gestational 
sac to calculate GA. This is a time-consuming task that 
requires skill and experience and is prone to human error. 
Some pregnant women receive different estimates of GA in 
different hospitals on the same day.

In recent years, there has been considerable research 
into the assessment of GA in the first trimester; however, 
to the best of our knowledge, a fast and accurate clinically 
applicable method has not yet been developed. In 2012, 
Zhang et al. (5) evaluated the use of automatic standard 
plane selection and biological measurements of the early 
pregnancy sac. In their study, a square frame was used 
to measure the gestational sac, and the measurement 
contained large errors (5). In 2015, Chen et al. (6) proposed 
an automatic detection method for a fetal ultrasound 
standard plane based on the knowledge transfer recurrent 
neural network; however, their results contained substantial 
errors. In 2016, Ibrahim et al. (7) proposed a method for the 
automatic segmentation and measurement of the pregnancy 
sac; however, this was based on B-ultrasound static pictures 
instead of videos, and the implementation process was 
cumbersome and inconvenient for clinical application. 
In 2019, Kim et al. (8) used machine learning ultrasound 
images to study fetal head biometrics, but they did not study 
the smaller gestational sac.

Computer vision is an effective technology for 
simplifying the process of medical imaging (9-12). Herein, 
we propose a new biometric measurement method that 

will provide improved accuracy in the measurement of 
medical images. We describe an innovative technique to 
automatically draw the outline and measure the maximum 
length and short diameter of the gestational sac to assess 
GA. We present the following article in accordance with 
the Standards for Reporting of Diagnostic Accuracy Studies 
(STARD) reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-21-837/rc).

Methods

Video data (n=191) were obtained from the Guangzhou 
Women and Children Medical Center, China, for 
ultrasound examinations conducted between January 
and December 2018. A series of experimental steps was 
conducted on the B-ultrasound videos from the first 
trimester of pregnancy (between 4.6 and 11 weeks). 
Notably, in early pregnancy, the gestational sac forms at 
>4.6 weeks GA and then disappears, becoming the placenta 
at >11 weeks. The experimental steps were as follows: (I) 
decomposition of the B-ultrasound video into a 2D plane 
image in the order of the original frames using OpenCV4 
(https://opencv.org/opencv-4-0/); (II) filtering of the 2D 
plane image, followed by detection of the edge of the 
gestational sac and extraction of its outline using computer 
vision; (III) automatic measurement of the length and 
short diameter of the gestational sac using a new biometric 
measurement method; (IV) calculation of the age of the 
gestational sac according to the Hellman formula (13); and 
(V) comparison of the diagnostic capabilities of this new 
system with the diagnostic capabilities of clinicians.

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The protocol 
was reviewed and approved by the Ethics Committee of 
the Guangzhou Women and Children’s Medical Centre 
(Scientific Research Ethics Committee permission No. 
GO-2016-017). Written informed consent was provided by 
all participants at the time of their initial hospital visit.

Study design

In this study, a new end-to-end computer vision system 
was proposed. Using the OpenCV library of programming 
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functions, the length and short diameter of the gestational 
sac in B-ultrasound videos were measured quickly and 
accurately to predict GA. Assessment results were compared 
between the new system and those made by intermediate 
skills clinicians. The experimental process was divided into 
8 stages (Figure 1).

For a description of retrieval modes, see Table 1.

Datasets

The B-Ultrasound videos of women in early pregnancy 
who were examined at Guangzhou Women and Children’s 
Medical Centre between January 2018 and December 2018 
were analyzed retrospectively. The dataset included 191 
ultrasound videos of GAs between 4.6 and 11 weeks, each 
acquired at the same magnification. The original video had 
768×576 pixels per frame. The scans were collected by a 
team of 5 experienced sonographers on a Mindray B-mode 

ultrasound apparatus (Mindray, Shenzhen, China) with a  
2–5 µHz probe.

When the videos were decomposed into 2D plane 
images, 12 videos contained <55 frames because the 
measurement time was too short (2 s) to accurately obtain 
the maximum length and short diameter of the gestational 
sac; hence, these videos were filtered. A total of 20 videos 
were used to determine the “gold standard” (as a reliable 
reference standard) of the scale by 2 senior skills clinicians 
(Prof. HYW and CPD), and the remaining 159 videos were 
used for human-machine comparison tests.

Experimental environment

All experimental steps were performed on a personal 
computer (Windows 7 Home Edition, 64-bit operating 
system) using PyCharm Professional 2020.3 (JetBrains, 
Forster City, CA, USA) and OpenCV4 software. The 

Figure 1 Experimental flow.

Table 1 Contour retrieval modes and definitions

Retrieval method Retrieval mode Definition

1 RETR_LIST Subordinate relationships between contours are not established, and all contours 
belong to the same level

2 RETR_TREE Hierarchical affiliations of the profiles completely established

3 RETR_EXTERNAL Only the highest-level contour (i.e., level 0) is found

4 RETR_CCOMP All contours are divided into 2 levels: the outer layer and the inner layer

Experimental flow : Measuring gestational sac size to assess gestational age

Data collecting and
filtering

First and last 15 
frames of the videos 

excluded

Determination of the 
image frame

Using binary graphs
to express frames

RETR_LIST

RETR_TREE

RRETR_EXTERNAL

RETR_CCOMP

RETR_LIST

Filtering specific
areas of In-frame

"Hellman" Formula

Determination of the scale

Calculation of physical size

Selecting 50 frames
with the largest outline

191 Videos in total

12  videos contained 
<55 frames removed

179 videos remaining

20 videos selected to 
determine gold standard scale 

measurements

159 videos selected for 
human–machine comparisons

1. Datasets
2. Video into 
2D frames

4. Selecting
Retrieval Modes

3. Extraction of 
the gestational

sac contour

8. Human-machine 
Comparison

7. Calculating
gestational weeks

6. Measuring the
maximum length

and short diameter
5. Setting

filtration criteria
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personal computer was not equipped with an NVIDIA 
graphics card.

Experimental steps

Gold standard scale
To determine the gold standard scale, the number of 
pixels per centimeter in 2D video images was determined 
by 2 senior skills clinicians (Prof. HYW and CPD) with 
>15 years’ experience. The system provided a pixel-
level accurate measurement of the maximum length and 
short diameter of the gestational sac, and the clinicians’ 
measurement errors come from comparisons with this 
system. The GA was estimated by the Hellman formula, 
widely used in clinical practice, by both the system and 
the clinicians. All B-ultrasound video data were scanned 
correctly and acquired at the same magnification.

Decomposing the B-ultrasound video into a single-
frame plane image
The B-ultrasound videos collected in the experiment 
contained 25 frames/s. Usually, B-ultrasound videos of an 
early pregnancy examination have approximately 200–600 
frames of 2D plane images. In the present study, OpenCV 
framework programming was used to achieve an end-to-
end output from the video to the 2D plane image. The 
original video with 768×576 pixels was used as the input, 
then decomposed into 2D images by the system and read in 
order. Finally, a 2D image of 768×576 pixels, the same size 
as the video, was output and stored.

Extracting the contour of the gestational sac area on 
the 2D decomposed video image
The uppermost and lowermost rows and the leftmost and 
rightmost columns of the 2D image formed the picture 
frame. The width and the height of the image were 768 and 
576 pixels, respectively; as such, the frame composition of 

the image comprised pixels in row 0, row 575, column 0, 
and column 767.

Converting imported images into greyscale images and 
rendering binary images
Pixels with greyscale values of 0 and 1 were called 0-pixels 
and 1-pixels, respectively; (i,j) represented a pixel in the i-th 
row and j-th column in the image and fij represented the 
greyscale value of pixel (i, j). The binarization of an image, F, 
was expressed as F=(fij).

Determining the contours and levels in the graphics
Using the eight contours in Figure 2 as an example, contours 
2 and 2a represent the outer and inner layers, respectively, 
as do contours 3 and 3a. From Figure 2, contours 0, 1, and 
2 are the outermost contours and these were all designated 
at the same contour level, namely level 0. Contour 2a is a 
sub-contour of contour 2, which is the parent contour of 
2a. Contour 2a was designated as level 1. Similarly, as a sub-
contour of 2a, contour 3 was designated level 2; contour 3a, 
as a sub-contour of 3, was designated level 4, and so on (14).

Using the cv.findContours function to select the image 
contour retrieval method
The OpenCV function determined contours with the same 
level and subordinate relationships between the contours. 
There were four contour retrieval methods (Table 1) in this 
study (15).

The focus of the present study was to decompose the 
2D plane image from the B-ultrasound video and extract 
the outline of the gestational sac in the 2D image. The 
hierarchical affiliations between the outlines did not need 
to be established. Therefore, RETR_LIST was selected 
as the retrieval mode in the present study. In addition, the 
cv.RETR_LIST mode was employed in OpenCV because 
of its superior and stable performance.

Filtering in the contour extraction process
In every 2D plane image decomposed in the B-ultrasound 
video, the cv.findContours function automatically extracted 
all contours. Accordingly, the following filtering conditions 
were established:

(I) Contours were extracted from reasonable areas 
within the picture frame; the upper, lower, left, and 
right edge areas of the image were excluded.

(II) According to the comparison table of gestational 
sac size and GA, contours that were too large or 
too small for extraction, namely those smaller than 

Figure 2 Sample diagram of contour outlines and hierarchy.
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0.6 cm × 0.8 cm or larger than 4.6 cm × 3.7 cm, 
were filtered.

(III) During the video capture process with the 
B-ultrasound probe, the 2D plane images captured 
in the first and last short periods were blurred, 
resulting in magnification errors; therefore, the 
first and last 15 frames in the video were excluded.

(IV) The largest contour in the top 50 2D images 
was selected and output. OpenCV extracted the 
contours of other objects, in addition to those of 
the gestational sac, such as a bleeding mass or other 
cysts near the uterus. We extracted contours from 
the 2D images decomposed from the same video and 
sorted them from largest to smallest, with the largest 
50 contours selected as the output. This facilitated 
the clinician selecting the largest gestational sac 
and provided a basis for comprehensive differential 
diagnosis of other lesion areas.

Automatic measurement of the maximum length and 
shortest diameter of gestational sacs by scale
A new effective biometric measurement method was used. 
First, the number of pixels per centimeter in the 2D plane 
image was determined. This scale is then used to convert 
the number of pixels of different gestational sacs into 

physical sizes.
This scale was determined to be the “gold standard” by 

two senior skills clinicians (Prof. HYW and CPD), each 
with >15 years’ experience. The scale was determined by 
measuring 20 gestational sacs using the electronic ruler 
on the B-ultrasound machine and obtaining a mean value. 
All videos were collected using the same method and 
magnification. Finally, the scale was defined as 49.4 pixels 
corresponding to 1 cm.

In practice, clinicians used the electronic ruler on the 
B-ultrasound machine according to the contour of the 
gestational sac to measure the largest long diameter in 
the horizontal direction and the largest short diameter 
in the vertical direction (Figure 3A). However, using our 
new measurement method, we determined the center 
point of the contour through a computer program and 
then obtained the minimum rectangle of the gestational 
sac from different angles to determine the maximum long 
diameter and maximum short diameter (Figure 3B). This 
new measurement method is more accurate than that 
traditionally used by clinicians.

Using the Hellman formula to determine GA according 
to the size of the gestational sac
To determine GA according to the size of the gestational 

Figure 3 Comparison of traditional and new measurement method. (A) Traditional method for clinician measurements of the length and width 
of a gestational sac. (B) New biometric measurement method. The center point of the contour is determined using a computer program, and then 
minimum rectangles of the gestational sac are measured at different angles to determine the maximum long diameter and maximum short diameter.
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sac, the mean inner diameter of the gestational sac must 
first be determined (Eq. [2]):

     
2

maximum diameter minimum diameterMean inner diameter +
=

 [1]
Then, GA is calculated according to the Hellman 

formula as follows:

 
( ) ( )  2.543

0.7
mean inner diameter cm

GA weeks
+

=  [2]

Finally, The GA obtained is automatically marked on the 
2D image by our program based on OPenCV.

Human-machine comparisons
We asked five intermediate skill clinicians (with the same 
duration of service, experience, and ability) to assess GA 
using the same 159 B-ultrasound videos, and their results 
were compared with those obtained using the new system. 
Through human-machine comparison, the absolute error 
and measurement error of the intermediate skills clinicians 
and the system assessments were then statistically analyzed 
by SPSS version 26 (IBM Corp., Chicago, IL, USA).

Results

Using computer vision and the new biological measurement 
method, automatic measurements of the maximum long 
diameter and short diameter of the gestational sac were 
obtained and used to quickly assess GA. Using OpenCV, the 
series of complicated experimental steps was programmed 
on an ordinary personal computer, and the assessment of 
GA were obtained. The results of each of the steps are 
shown in Figure 4.

Under the condition of the same magnification of all 
B-ultrasound videos, the GA calculated by measuring the 
maximum length and short diameter of the gestational sac 
based on the system was considered correct. By comparing 
the assessments made by five intermediate skills clinicians 
with that of the new system, we obtained the absolute error 
and gestational week assessment error (Table 2).

One-sample statistics and independent sample t-tests 
were performed on the data in Table 2 using SPSS version 
26 as shown in Tables 3,4.

Based on the results of one-sample statistics (Table 3) 
and independent sample t-tests (Table 4), which indicated a 
relative error in the assessment of GA by intermediate skills 
clinicians of 11.93–14.98% (mean 13.45%) (16) and a mean 
of absolute error of 1.00 week, it would appear that the new 

system has clinical value.
The relationship between GA and the relative error of 

the clinicians’ assessments is shown in Figure 5A. As can be 
seen in Figure 5B, the relative error of clinicians’ assessment 
of GA exceeded 30% in 8.18% of cases, with most relative 
errors within 25%. Furthermore, the absolute error 
measured by clinicians exceeded 2 weeks in 6.92% of cases, 
but was mostly concentrated in the range 0–2 weeks (Figure 
5C). There were extreme cases; specifically, the absolute 
error exceeded 3 weeks when the actual GA was 8–10 weeks. 
As shown in Figure 5A-5C, the distribution of relative errors 
for clinicians assessing GA at 4.6–10 weeks was uniform, 
so there was no significant correlation between relative 
errors and GA. In addition, the red curves in Figure 5D,5E 
indicate the normal distribution curve of the probability 
density, showing that the relative errors are concentrated in 
the range of 0–20% (17,18). The mean value of the relative 
error was 13.45%, and the absolute error was approximately 
1 week, indicating that there would be a certain deviation 
due only to clinicians’ manual measurement. The relative 
error in Figure 5D exhibits a right-skewed distribution. The 
probability of a relative error >25% was low. The probability 
of relative errors > 50% was 0 (Figure 5D). The right-skewed 
distribution of absolute error in Figure 5E means that the 
probability of the absolute error always exceeded 0.

In the contour extraction stage, the system extracted 
areas that were not gestational sacs, such as bleeding or cysts 
near the uterus, which provides more reference information 
for the clinicians’ diagnosis, and helps clinicians to obtain 
a complete diagnostic report (19,20). In addition, filtering 
and outputting 50 valid 2D images from a video containing 
several hundred frames will improve the clinicians’ efficiency 
(Figure 6). The long and short diameters and dimensions are 
the system output results, as shown in Figure 6.

Discussion

Any guidance for pregnant women and their subsequent 
diagnosis and treatment must be based on GA (21). 
Calculation errors related to GA affect follow-up prenatal 
screening. Further, accurate calculation of GA is a key factor 
in determining pregnancy course and outcome. Herein, we 
have proposed a computer vision system for estimating GA 
by measuring biological characteristics and selecting the 
largest gestational sac measurement. This method was shown 
to be robust, efficient, and accurate. After filtering, a group 
of 50 2D pictures marked with the maximum length and 
shortest diameter of the gestational sac were used to calculate 
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Figure 4 Results of each of the steps in the new biometric measurement method based on ultrasound video. (A) An original 2D image 
decomposed from the B-ultrasound video. (B) Extracting contours from the 2D images. (C) Measurement of the gestational sac after 
contour filtering and calculation of GA using the Hellman formula. 2D, two-dimensional; GA, gestational age.

Extracting contours from 2D images

Original 2D image decomposed from B-ultrasound video

B

A

Measurement after contour filtering, calculating gestational age with Hellman formulaC

8.63 weeks 7.82 weeks 6.29 weeks

1.8 cm
2.3 cm

2.4 cm

2.0 cm

3.6 cm

4.6 cm

GA, and the size of other lesion areas were obtained as the 
output, which reduced the complicated process of manual 
screening, measurement, and calculation, and facilitated 
clinicians’ rapid and accurate estimation of GA.

It was difficult for clinicians to select the largest 
pregnancy sac from a B-ultrasound for measurement based 
on human vision and memory. We undertook human–

machine comparisons. The new system can help clinicians 
correct the evaluation errors, particularly when their results 
had large errors.

Although the method behind the new system was 
complicated and contained many development steps, 
the new system is faster and more accurate than existing 
methods. Importantly, all functions in the new system can 
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Table 2 Human-machine comparisons of the assessment of  
gestational age

SN
GA (weeks)

Relative error (%)
Human Machine

1 7 6.6 6.06

2 7.3 7.5 2.67

3 6.3 6.7 5.97

4 7 6 16.67

5 7.3 7.7 5.19

6 6.3 6.2 1.61

7 4.3 5.4 20.37

8 6.3 9.9 36.36

9 5.5 6 8.33

10 7.3 6.5 12.31

11 8.5 10 15.00

12 10 7.5 33.33

13 5.5 8 31.25

14 9.3 8.5 9.41

15 8.3 8.8 5.68

16 8.3 7.7 7.79

17 6.7 5.7 17.54

18 8.3 8.3 0.00

19 6 5.3 13.21

20 6.3 5.7 10.53

21 6.5 8.2 20.73

22 9.3 9.7 4.12

23 9.5 9.8 3.06

24 9.3 8.5 9.41

25 8.3 8 3.75

26 8.3 9.2 9.78

27 5.3 5.7 7.02

28 9.5 10 5.00

29 11 10 10.00

30 9.3 9.9 6.06

31 6.3 6 5.00

32 9.3 8.6 8.14

33 10 9.2 8.70

Table 2 (continued)

Table 2 (continued)

SN
GA (weeks)

Relative error (%)
Human Machine

34 7.5 8.6 12.79

35 8.3 10 17.00

36 6.8 7.8 12.82

37 7.3 6.4 14.06

38 8.7 6.6 31.82

39 6.3 6.1 3.28

40 5 5.9 15.25

41 7.3 8 8.75

42 8.3 7.6 9.21

43 6.5 9.5 31.58

44 8 7.7 3.90

45 8 6.3 26.98

46 8.3 7.1 16.90

47 7 9 22.22

48 8.5 8.8 3.41

49 7.3 6.5 12.31

50 7.3 7.3 0.00

51 7.3 5.7 28.07

52 7.3 7.1 2.82

53 6.8 7.6 10.53

54 8 7.3 9.59

55 6.3 6.4 1.56

56 8.3 7 18.57

57 9.8 10.1 2.97

58 8.3 9.1 8.79

59 8.3 8.7 4.60

60 8.3 6.7 23.88

61 6.3 6.6 4.55

62 11 8.5 29.41

63 7 6.8 2.94

64 5.8 7.2 19.44

65 6.8 7.2 5.56

66 6 4.9 22.45

Table 2 (continued)
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Table 2 (continued)

SN
GA (weeks)

Relative error (%)
Human Machine

67 7 6.5 7.69

68 5 5.8 13.79

69 6.3 6.7 5.97

70 7.3 6.8 7.35

71 7.7 7.8 1.28

72 8 6.8 17.65

73 8 8.1 1.23

74 7.7 7.4 4.05

75 6.3 6.9 8.70

76 6.3 5 26.00

77 6.3 5.5 14.55

78 5 5.8 13.79

79 11 9.7 13.40

80 7.3 7.6 3.95

81 8.3 9 7.78

82 8.3 6.5 27.69

83 6.3 6.8 7.35

84 7 8 12.50

85 6 9.5 36.84

86 7.5 9.2 18.48

87 7.3 8.1 9.88

88 7.3 7.4 1.35

89 8.7 8.4 3.57

90 9.3 8.8 5.68

91 6.3 8.1 22.22

92 6.3 9.2 31.52

93 7.3 6.6 10.61

94 7.3 8.2 10.98

95 7.8 6.8 14.71

96 9.3 6.7 38.81

97 11.5 8.3 38.55

98 9 9.2 2.17

99 7.3 6.5 12.31

Table 2 (continued)

Table 2 (continued)

SN
GA (weeks)

Relative error (%)
Human Machine

100 12 10 20.00

101 8.3 6.3 31.75

102 8.3 6.9 20.29

103 8.3 8.5 2.35

104 6.5 8.3 21.69

105 8.7 7.1 22.54

106 8.3 8.8 5.68

107 9 7.9 13.92

108 7.5 6.3 19.05

109 8.3 8 3.75

110 6 6.7 10.45

111 7.3 7.5 2.67

112 5.5 6 8.33

113 6.5 7.8 16.67

114 7.3 6.8 7.35

115 7.3 5.5 32.73

116 8 6 33.33

117 6.3 5.5 14.55

118 9 7.2 25.00

119 5.5 7.4 25.68

120 8.3 6.8 22.06

121 8.3 6.8 22.06

122 7.5 6.2 20.97

123 8.3 8 3.75

124 8.3 8.4 1.19

125 4.8 6.3 23.81

126 4.8 5.5 12.73

127 8.3 6.7 23.88

128 7 6.1 14.75

129 8.5 9.6 11.46

130 6.5 8.4 22.62

131 7.3 8 8.75

132 7.3 7.8 6.41

Table 2 (continued)
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Table 2 (continued)

SN
GA (weeks)

Relative error (%)
Human Machine

133 7.3 8.1 9.88

134 8.3 7 18.57

135 6.3 7.6 17.11

136 5.5 8 31.25

137 6.3 5.2 21.15

138 7.3 6.7 8.96

139 7.8 7.5 4.00

140 5 4.8 4.17

141 9 7.9 13.92

142 12 8.3 44.58

143 7.5 8.3 9.64

144 6.5 7.7 15.58

145 7.5 8.6 12.79

146 8 9.4 14.89

147 6.7 6.8 1.47

148 6.7 6.3 6.35

Table 2 (continued)

Table 4 Independent sample t-test

Error
Test value =0

Mean difference (95% CI)
t d.f. P value (2-tailed)

Relative error (%) 17.431 158 0.000 13.45252 (11.93–14.98)

Absolute error (week) 16.594 158 0.000 1.00063 (0.8815–1.1197)

CI, confidence interval.

Table 3 One-sample statistics

Error n Mean Standard deviation Standard error of the mean

Relative error (%) 159 13.45% 9.73% 0.77%

Absolute error (week) 159 1.0006 week 0.76037 0.06030

Table 2 (continued)

SN
GA (weeks)

Relative error (%)
Human Machine

149 7.5 8.4 10.71

150 8.5 9.7 12.37

151 8.3 7.8 6.41

152 7.5 9.1 17.58

153 9 8.7 3.45

154 7.3 7.8 6.41

155 7.3 7.3 0.00

156 7.3 8.3 12.05

157 8 6.2 29.03

158 7.3 8.9 17.98

159 6.3 6.7 5.97

The table shows the assessment of 1–159 video human-machine  
comparisons. “GA (weeks) Human” represents the gestational 
age assessed by the intermediate skills clinicians. “GA (weeks) 
Machine” represents the gestational age assessed by the 
new system. “Relative error (%)” represents the relative error  
assessed by the intermediate skills clinicians. “Absolute error 
(weeks)” represents the absolute error assessed by the intermediate  
skills clinicians. GA, gestational age; SN, serial number.

be implemented using a simple computer program, and the 
accuracy of the assessment using the automatic system was 
the same as the “gold standard”. The evaluation of GA in 
early pregnancy is a routine and frequent examination in 
hospitals (22), making it crucial to improve the efficiency 

and accuracy of diagnosis.
The proposed system had certain limitations: some 

images extracted from the video were unclear and the 
boundary of the gestational sac area was blurred, making 
it difficult for the system to extract the contour. Further 
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Figure 5 Analysis of clinician error and gestational age. (A) Relative error of manual assessment according to GA. The red dashed line 
means the trend line of relative error. (B,C) Scatter plots of relative (B) and absolute (C) errors. (D,E) Histograms showing the probability 
density distribution of relative (D) and absolute (E) errors. GA, gestational age.

research is needed in this area. Similar to any computer-
aided diagnosis tool, it is recommended that clinicians 
perform “sanity checks” on a few special outputs (23,24). 
In addition, because a scale bar was used in the proposed 
method, the video had to be scanned at the same 
magnification. This study cannot eliminate errors caused by 
improperly oriented scans, and the new system cannot help 
with pathological diagnosis.

The GA was accurately predicted and evaluated by 

estimating the maximum size of the gestational sac using 
2D images. Although 3D ultrasound is better than 2D 
ultrasound in terms of the accuracy of fetal biometrics 
(25,26), 2D imaging exhibited solid clinical relevance, with 
the costs of B-ultrasound also lower.

In summary, this study has demonstrated the advantages 
of a new program that automatically captures the contours 
of the pregnancy sac. This program can also locate other 
lesion areas and measure their size to facilitate a “sanity 
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Figure 6 The “sanity checks” using the new system. Gestational sacs are outlined in green, whereas the areas of myomas, cysts, hematocele, 
scars, effusions, and other areas around the gestational sac are outlined in red.

check” for clinicians. This simple computer program 
integrates complex experimental procedures, it is easy to 
run on an ordinary personal computer, and it is convenient 
enough to be readily used for clinical diagnosis. The new 
biometric measurement method accurately measured the 

maximum length and short diameter of the gestational sac, 
and then automatically calculated GA. Compared with the 
computer vision system, the clinicians’ assessment error 
of GA was 13.45%. Using the system, clinicians were able 
to obtain an accurate estimate of GA in early pregnancy 
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in approximately 30 s, compared with 15–20 min typically 
required for manual assessments. In addition, the system 
was able to evaluate the GA of B-ultrasound videos in 
batches, which was convenient for batch correction before 
giving the diagnosis report to patients.

The method proposed in this study could assist clinicians 
improve the efficiency and accuracy of GA calculation in 
early pregnancy.

Conclusions

Here, we automatically extracted the contour of the 
gestational sac using computer vision. Then, the new 
biometric measurement method automatically calculated the 
maximum length and short diameter of the pregnancy sac 
from multiple angles using the center of the pregnancy sac 
as a reference, with almost no error. Comparisons between 
the system and the intermediate skills clinician group 
showed that the efficiency and accuracy of the system were 
better than those of the intermediate skills clinicians. The 
system can also automatically estimate GA by measuring 
many B-ultrasound videos simultaneously. In addition, 
clinicians were able to complete the assessment of GA in 30 
s, on average, making it a practical, repeatable, and reliable 
technique for clinical examinations in early pregnancy. 
This system would be useful for clinical application in 
routine and large-scale diagnoses, especially in basic rural 
hospitals where there is a shortage of experienced clinicians. 
This study also provided 159 video datasets and we have 
made them publicly available (https://drive.google.com/
drive/folders/1cP25UNROveiafvumT9vInQ2OQj3-
xdug?usp=sharing) so that more researchers can participate 
in improving and clinically verifying this method. In the 
future, we hope to expand and improve this computing 
framework through deep learning, artificial intelligence, 
and image segmentation (27-29).
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