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Abstract
Metastatic HER2 + breast cancer is an expanding area of drug development and research, with three new drugs approved in 
2020 alone. While first-line therapy is well-established for metastatic HER2 + breast cancer, the standard of care for second-
line therapy will likely be changing soon based on the results of the DESTINY-Breast03 trial. In the third-line setting, many 
options are available. Considerations in choosing between regimens in the third-line include resistance to trastuzumab, the 
presence of brain metastases, and tolerability. High rates of resistance exist in this setting particularly due to expression of 
p95, a truncated form of HER2 that constitutively activates downstream signaling pathways. We suggest a tyrosine kinase 
inhibitor (TKI)-based regimen because of the activity of TKIs in brain metastases and in p95-expressing tumors. Attempts 
to overcome resistance to anti-HER2 therapies with PI3K inhibitors, mTOR inhibitors, and CDK 4/6 inhibitors are an active 
area of research. In the future, biomarkers are needed to help predict which therapies patients may benefit from the most. We 
review the many new drugs in development, including those with novel mechanisms of action.
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1  Introduction

Approximately 15–20% of breast cancers overexpress HER2, 
a tyrosine kinase receptor that is a member of the epidermal 
growth factor receptor (EGFR) family [1, 2]. Overexpres-
sion of HER2 triggers multiple downstream pathways that 
enhance proliferation of cancer cells [3]. Since levels of 
HER2 strongly correlate with carcinogenesis, it is consid-
ered an adverse prognostic marker [4] and is associated with 
increased resistance to chemotherapeutic agents [5]. How-
ever, normal adult tissue cells do not express much HER2 
and are less sensitive to HER2-targeting agents, making 
HER2 an ideal target for cancer treatment [4].

There are multiple anti-HER2 therapies currently approved 
by the FDA, many of which have emerged within the last 
2 years. It is becoming increasingly difficult for clinicians 
in busy practices to decide on which particular anti-HER2 

therapy to use, especially in the late-line treatment of meta-
static disease. We present this review to highlight these novel 
agents, including their mechanisms of action, efficacy and tox-
icities, and the rationale in choosing between particular agents 
in each line of therapy. We also discuss the future development 
of anti-HER2 therapy in metastatic breast cancer (MBC).

2 � Current anti‑HER2 therapies 
by mechanism of action

2.1 � Monoclonal antibodies

There are three monoclonal antibodies against HER2 that 
are currently approved: trastuzumab, pertuzumab, and mar-
getuximab. Trastuzumab and pertuzumab bind to different 
extracellular domains of the HER2 receptor and thus have 
complementary mechanisms of action. Though pertuzumab 
alone has shown only modest clinical antitumor activity, it 
has a synergistic effect when combined with trastuzumab [6]. 
Margetuximab is a recently approved chimeric antibody that 
shares epitope specificity with trastuzumab and also incorpo-
rates an engineered Fc region to increase immune activation 
against HER2 [7]. This engineered Fc receptor binds with 
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higher affinity to the stimulatory CD16A receptor found on 
macrophages and natural killer cells [8]. There are multiple 
proposed theories for how monoclonal antibodies exert an 
antitumor effect, including inducing antibody-dependent cell-
mediated cytotoxicity (ADCC), inhibiting downstream signal 
transduction pathways (such as PI3K), and interfering with 
DNA repair, among others [4].

2.2 � Tyrosine kinase inhibitors

Tyrosine kinase inhibitors (TKIs) bind to the adenosine 
triphosphate (ATP)-binding domain of EGFR receptors, 
which inhibits tyrosine kinase phosphorylation and sup-
presses downstream signaling [9]. Several TKIs are available 
on the market today, including lapatinib, neratinib, and most 
recently tucatinib [2, 9]. Lapatinib reversibly binds HER1 (also 
known as EGFR) and HER2. Neratinib is a second-genera-
tion TKI that has irreversible pan-HER activity [9]. Tucatinib 
is a potent, highly selective inhibitor of the kinase domain 
of HER2 and minimally inhibits the EGFR receptor, which 
in theory should decrease toxicity [2]. Advantages of TKIs 
include oral administration and better blood–brain barrier pen-
etration [9]. There is also less cardiac toxicity, and patients 
who developed congestive heart failure from trastuzumab may 
safely be treated with lapatinib [10].

2.3 � Antibody–drug conjugates

Antibody–drug conjugates (ADCs) are monoclonal antibodies 
that are connected to a cytotoxic agent with a linker. Because 
of the specificity of the antibodies and because of the limited 
number of molecules that enter the cell, the potency of cyto-
toxic drugs used with ADCs are usually much higher than 
with traditional chemotherapy [11]. Currently available ADCs 
for HER2 + breast cancer include ado-trastuzumab emtansine 
(T-DM1) and trastuzumab deruxtecan (T-DXd). For T-DM1, 
trastuzumab is conjugated to a microtubule inhibitor called DM1, 
a derivative of maytansine [12]. The cytotoxic agent of T-DXd 
is a topoisomerase I inhibitor. Compared with T-DM1, T-DXd 
has a higher drug-to-antibody ratio (8 versus 3.5). The payload of 
T-DXd easily crosses the cell membrane and has a short half-life 
to make it more potent while minimizing systemic exposure [13].

Mechanisms of action of available anti-HER2 therapies are 
summarized in Fig. 1.

3 � Currently available options: first‑ 
and second‑line

3.1 � HR + /HER2 + and indolent disease

Evidence suggests that patients without visceral crisis or rap-
idly progressive disease can avoid up-front chemotherapy. 

Based on preclinical evidence, crosstalk between HER2- and 
hormone receptor (HR)-signaling pathways may contribute 
to resistance to endocrine therapy (ET), and by blocking 
HER2, ET may become more effective [14]. Options include 
ET + trastuzumab [15], lapatinib + letrozole [16], and dual 
anti-HER2 therapy with trastuzumab + lapatinib + an aro-
matase inhibitor (AI) [14], the latter of which may be pref-
erable in women who have received prior trastuzumab.

3.2 � ER − or ER + with visceral crisis or hormone 
refractory

For patients who do have rapidly progressive disease or vis-
ceral crisis, chemotherapy is generally required to obtain 
disease control. For first-line treatment, docetaxel + tras-
tuzumab + pertuzumab (THP) is preferred based on the 
results of the CLEOPATRA trial, in which the addition of 
pertuzumab to the backbone of docetaxel + trastuzumab 
significantly improved PFS and OS in previously untreated 
HER2 + MBC [17]. As of today, T-DM1 is the preferred 
second-line treatment per the EMILIA trial, in which it 
improved PFS and OS with less toxicity compared with 
lapatinib + capecitabine [12]. However, trastuzumab der-
uxtecan will likely replace T-DM1 in this setting based 
on the results of the DESTINY-Breast03 trial, which was 
recently presented at the European Society for Medical 
Oncology (ESMO) Congress 2021 meeting. In this trial, 
T-DXd was compared with T-DM1 in the second-line set-
ting in patients with HER2 + MBC who had progressed on 
a taxane and trastuzumab. At 16 months, median PFS was 
not reached with T-DXd but was 6.8 months with T-DM1 
(HR = 0.28; P = 7.8 × 10−22) [18].

T-DM1 can also be used in the first-line setting for 
patients who cannot tolerate THP, as it is less toxic and 
patients maintain health-related quality of life (HRQOL) 
longer [19].

4 � Third‑line treatment: many options

In the third-line setting, multiple options are now avail-
able, and there is no standard of care. We review these 
based on mechanism of action.

4.1 � TKIs

Prior to the development of neratinib and tucatinib, lapa-
tinib + capecitabine was commonly used in the late-line 
setting based on its superiority over capecitabine alone 
in women who had progressed on standard chemotherapy 
and trastuzumab [20]. More recently, in the NALA trial, 
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lapatinib was compared head-to-head with neratinib (both 
with capecitabine) in patients with metastatic disease who 
had received at least two prior anti-HER2 therapies. The 
ORR (32.8% v 26.7%), clinical benefit rate (44.5% v 35.6%), 
and median duration of response (8.5 v 5.6 months) were all 
higher in the neratinib group, as was PFS (8.8 vs 6.6 months; 
HR 0.76; 95% CI, 0.63 to 0.93; P = 0.003). Notably, fewer 
patients in the neratinib arm required intervention for CNS 
disease (cumulative incidence, 22.8% vs 29.2%; P = 0.043), 
suggesting either prevention or delayed time to development. 
As might be expected, grade 3 diarrhea was more common 
in the neratinib group (24.4% of patients) despite using a 
lower dose of capecitabine and mandatory prophylactic anti-
diarrheals. However, quality of life scores remained similar 
between the two groups [21].

A tucatinib-based regimen is recommended for patients 
with visceral and brain metastases who progress on 
T-DM1 per NCCN guidelines [22] based on the results of 

the HER2CLIMB trial. In this study, heavily pretreated 
patients were randomized to receive capecitabine + trastu-
zumab ± tucatinib. PFS at 1 year was 33.1% in the tucatinib 
group vs 12.3% with placebo (HR for disease progres-
sion or death, 0.54; 95% CI, 0.42 to 0.71; P < 0.001). At 
2  years, OS was 44.9% with tucatinib, compared with 
26.6% in the placebo arm (HR for death, 0.66; 95% CI, 
0.50 to 0.88, P = 0.005) [2]. For the subgroup with brain 
metastases, the risk of intracranial progression or death 
was decreased by 68% (HR, 0.32; 95% CI, 0.22 to 0.48; 
P < 0.0001) [23]. Though there were more side effects in the 
tucatinib group, < 6% of patients discontinued treatment due 
to adverse effects [2].

4.2 � Monoclonal antibodies

Trastuzumab plus chemotherapy has been evaluated in mul-
tiple phase II studies of HER2 + MBC that has progressed 

Fig. 1   Mechanisms of action of current anti-HER2 therapies. Mech-
anisms of action of anti-HER2 therapy by monoclonal antibodies 
(trastuzumab and pertuzumab), Fc-optimized antibody (margetuxi-

mab), tyrosine kinase inhibitors (lapatinib, neratinib, and tucatinib), 
and antibody–drug conjugate (ado-trastuzumab emtansine and trastu-
zumab-deruxtecan)
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on trastuzumab. Chemotherapies studied include capecit-
abine [24], paclitaxel [25], docetaxel [26], vinorelbine [27], 
gemcitabine [28], and eribulin [29]. These regimens appear 
to have similar efficacy, with response rates ranging from 
20–30% and PFS 3–8 months, though the activity in patients 
pretreated with pertuzumab or T-DM1 is unknown. These 
regimens mainly differ in their toxicity profiles, which are 
reflective of their chemotherapy partners.

The FDA also recently approved margetuximab in combi-
nation with chemotherapy in the third-line setting (SOPHIA 
trial). In this study, patients received single-agent chemo-
therapy plus either margetuximab or trastuzumab. In the 
overall population, margetuximab was associated with 
a small (but statistically significant) prolongation of PFS 
by approximately 1 month (4.9 vs 5.8 months, HR 0.76; 
P = 0.03) [7], which was the basis for the FDA approval. 
However, the results of the final OS analysis were recently 
announced, in which there was no difference between the 
groups [30]. SOPHIA was the first prospective trial to inves-
tigate the impact of Fc-gamma receptor alleles. Patients with 
the low-affinity CD16A-158F allele (82% of study patients) 
benefitted more from margetuximab both in terms of PFS 
(6.9 vs 5.1 months; HR, 0.68) [31] and OS (23.3 months vs 
20.8 months; HR = 0.86) [30].

4.3 � Antibody–drug conjugates

Trastuzumab deruxtecan was approved after the single-arm 
phase II DESTINY-Breast01 trial, in which heavily pre-
treated women with HER2 + MBC were treated with T-DXd. 
Results were impressive. Despite a median number lines of 
prior therapy of 6, the ORR was 60.9% (95% CI, 53.4 to 
68.0), and the median duration of response was 14.8 months 
(95% CI, 13.8 to 16.9). However, concerns arose because of 
the relatively high rates of interstitial lung disease (ILD) in 
this study (13.6%), from which four patients died. ILD was 
reported as a late complication of treatment, with a median 
time to onset of 193 days [13]. Rates of ILD in other stud-
ies of T-DXd have somewhat differed. A combined analysis 
of all patients treated with T-DXd in phase I and II studies 
found that 15.5% of patients experienced drug-related ILD. 
Though most cases were mild, 6 patients (2.4%) had grade 5 
ILD. Interestingly, in this analysis the median time to onset 
of ILD was much earlier at 5.6 months, but after 12 months 
the risk was low [32]. In the DESTINY-Breast03 trial, the 
rate of interstitial lung disease was lower than in previous 
trials at 10.5%, with no grade 4/5 ILD [18]. The lower rates 
of ILD in this study may be related to less exposure to prior 
chemotherapy. There has also been increased education and 
awareness about ILD and T-DXd. NCCN guidelines cur-
rently recommend T-DXd as the preferred agent for patients 
with metastatic disease who have progressed on T-DM1 
[22]. As discussed above, trastuzumab deruxtecan will 

likely become the preferred agent in the second-line once 
the results of DESTINY-Breast03 are published. A phase III 
study of trastuzumab deruxtecan versus physician’s choice in 
the third-line setting is also ongoing (DESTINY-Breast02, 
NCT03523585), as is another phase III study looking at its 
activity in metastatic tumors that are HER2-low (DESTINY-
Breast04, NCT03734029).

4.4 � Non‑chemotherapy anti‑HER2 therapy

For those with HR + /HER2 + tumors and indolent dis-
ease, trastuzumab or lapatinib in combination with hor-
monal therapy is an option if the patients have not been 
previously exposed to these agents. For those with HR − /
HER2 + tumors and indolent disease, or for patients who do 
not want or cannot tolerate chemotherapy, “biologics-only” 
with trastuzumab and lapatinib is a viable option (dual-
HER2 blockade) based on data from early-stage disease that 
suggests synergy between the two [33, 34].

5 � Fourth‑line and beyond

In the fourth-line and beyond setting, patients can continue 
anti-HER2 therapy with either a TKI or a monoclonal anti-
body + single-agent chemotherapy. It is likely that dual-
HER2 blockade can be used with other newer anti-HER2 
TKIs such as neratinib or tucatinib and anti-HER2 mono-
clonal antibodies like margetuximab, although we do not 
yet have evidence to demonstrate their efficacy and safety.

A summary of current treatment options is depicted in 
Fig. 2.

Major results from clinical trials are summarized in 
Table 1.

6 � Resistance to anti‑HER2 therapy

Despite these major advances in HER2 + MBC, most 
patients will ultimately die of their disease. Less than 30% of 
HER2-positive patients respond to trastuzumab monotherapy 
[35], and another 70% who initially respond will progress to 
metastatic disease within a year. This suggests both innate 
and acquired resistance mechanisms [36]. Understanding the 
mechanisms of resistance to HER2-targeted treatments will 
be essential in developing new therapeutic strategies and 
improving survival.

6.1 � p95

One known mechanism of resistance to trastuzumab is the 
expression of a truncated version of HER2 called p95, named 
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after its molecular weight. This HER2 lacks the extracellular 
domain to which trastuzumab binds and constitutively acti-
vates downstream signaling through its intracellular tyros-
ine kinase domains. The prevalence of p95 expression in 
HER2 + BC appears to be around 30% [37]. High levels of p95 
expression correlate with increased nodal metastasis [38] and 
lower 5-year disease-free survival [39]. All trastuzumab-based 
therapy, including margetuximab, is unlikely to be effective 
in HER2 + breast cancers with p95 expression due to the lack 
of an extracellular trastuzumab-binding domain. A TKI-based 

regimen is likely the best choice for these tumors. Studies 
have shown that though p95 tumors do not respond to trastu-
zumab [5], lapatinib is equally as effective in tumors express-
ing p95 as those without [40]. Furthermore, a PFS benefit 
favoring neratinib + capecitabine over lapatinib + capecitabine 
in high p95 tumors was observed in a biomarker analysis of 
p95 tumors in the NALA trial [41]. Other splice variants of 
HER2 have been identified, including p100, Δ16-HER2, and 
Herstatin. Though less is known about these variants, these 
can also alter response to anti-HER2 treatment [42].

33,34

Fig. 2   Current treatment algorithm for anti-HER2 therapy in the metastatic setting

Table 1   Currently available anti-HER2 therapy in third-line setting. Summary of major results from clinical trials

* Reported as mean OS
** Reported as time to progression (TTP) rather than PFS
Abbreviations: RR response rate, PFS progression free survival, OS overall survival, NR, not reached

Lapat-
inib + capecitabine20,115 
(n = 163)

NALA: Ner-
atinib + capecitabine21 
(n = 307)

HER2CLIMB: 
Trastu-
zumab + capecit-
abine + tucatinib2 
(n = 320)

Trastu-
zumab + capecitabine24 
(n = 56)

SOPHIA: Mar-
getuximab + sin-
gle-agent 
chemotherapy7,30 
(n = 266)

DESTINY-
Breast01: 
Trastuzumab 
deruxtecan13 
(n = 184)

RR, no. (%) 35 (22) 84 (32.8) (n = 256) 138 (40.6) 28 (50) 67 (25.2) 112 (60.9)
Median PFS 

(months)
8.4 5.6 7.8 9.2** 5.7 16.4

Median OS 
(months)

17.3 (n = 207) 24.0* 21.9 25.6 21.6 NR
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6.2 � PI3K/AKT/mTOR pathway

Other mechanisms of resistance to anti-HER2 therapies have 
been described, most of which involve activating alternative 
(such as IGF-1R) or downstream signaling pathways [5, 43]. 
The most clinically important of these appears to be the PI3K/
AKT/mTOR pathway. The PI3K pathway can be activated by 
loss of PTEN expression, mutations in PIK3CA, and ampli-
fication of AKT [44, 45]. PIK3CA mutations are present in 
about 20% of HER2 + breast cancers [46]. Activation of the 
PI3K pathway is associated with resistance to trastuzumab 
[47]. Patients with both loss of PTEN and PIK3CA mutations 
have a significantly shorter PFS and OS after trastuzumab 
therapy than those without [44, 45], and in the neoadjuvant 
setting, patients with PI3K mutations are less likely to achieve 
a pathologic complete response even when dual anti-HER2 
therapy is used [46]. This suggests that the PI3K pathway is a 
major determinant of resistance to trastuzumab [44].

In light of this, the use of mTOR inhibitors and PI3K 
inhibitors to overcome resistance to current HER2 therapies 
is an active area of research [43]. In the BOLERO-3 trial, the 
addition of everolimus (an mTOR inhibitor) to chemother-
apy + trastuzumab improved PFS from 5.8 to 7 months in 
patients with trastuzumab-resistant HER2 + MBC. Patients 
with loss of PTEN expression appeared to derive more ben-
efit than those without [48]. This data supports the idea that 
mTOR inhibition may help overcome trastuzumab resist-
ance, though where this fits in the context of other therapies 
is not currently defined. As for PI3K inhibition, a phase III 
clinical trial is ongoing evaluating alpelisib in combination 
with trastuzumab and pertuzumab following induction with 
THP for patients with HER2 + MBC and PI3K mutations 
(NCT04208178). ADCs may play a role as well in PI3K-
mutated tumors. In an exploratory analysis of the EMILIA 
trial, in the T-DM1 group, there was no difference in out-
comes based on PI3K mutational status, suggesting that 
T-DM1 may be effective for PIK3CA-mutated tumors [49].

6.3 � Cyclin D1/CDK4/CDK6

In addition to the PI3K/AKT/mTOR pathway, previous work 
in mouse models has demonstrated that cyclin D1/CDK4 can 
mediate resistance to HER2 therapy and that by inhibiting 
CDK4/6, tumors can be re-sensitized to anti-HER2 treat-
ments [50]. The PATRICIA trial combined palbociclib with 
trastuzumab in postmenopausal women with HER2 + MBC 
who had received 2–4 lines of anti-HER2 therapy. Interim 
analysis showed a marked difference in PFS between 
patients with luminal versus non-luminal disease (10.6 vs 
4.2 months). These results were intriguing in that they not 
only demonstrated a benefit for the addition of a CKD4/6 
inhibitor, but also suggested a specific biomarker to predict 
the patients who would benefit [51].

6.4 � Genetic heterogeneity

Another challenge that arises with HER2 + breast cancer is 
the issue of intra- and intertumoral heterogeneity. Since the 
advent of trastuzumab, guidelines published by the Ameri-
can Society of Clinical Oncology (ASCO) and College of 
American Pathologists (CAP) have attempted to optimize 
thresholds for defining HER2 positivity [52]. Several pat-
terns of HER2 expression have emerged, leading to the term 
“HER2 heterogeneity” [53]. HER2 status may differ between 
cells within the same tumor, known as intratumoral hetero-
geneity, or may differ between the primary tumor and its 
metastases, so-called intertumoral heterogeneity. HER2 het-
erogeneity is significantly more common in HER2 equivocal 
cases, and frequencies as high as 40% have been described 
[54].

Clinically, HER2 heterogeneity has been associated with 
larger size, higher grade histology, increased frequency of 
lymph node metastasis, and shorter disease-free and overall 
survival. Notably, patients appear to be less responsive to 
anti-HER2 therapy [53]. Filho et al. recently prospectively 
evaluated this in a phase II clinical trial, in which patients 
with HER2 + BC were treated with T-DM1 and pertuzumab 
prior to surgery. No patients with heterogeneous tumors 
achieved a pathologic complete response (pCR), while the 
pCR rate was 55% in those without heterogeneous tumors 
[55].

6.5 � HER2 low

One exciting development is the activity of newer anti-HER2 
agents in HER2-low disease, which typically is defined as 
those with a HER2 immunohistochemistry (IHC) score of 
1 + or 2 + with negative in situ hybridization (ISH). More 
than half of patients with breast cancer may qualify as 
HER2-low [56]. Though previously HER2-targeted agents 
(including T-DM1) have not been effective in this subset 
of patients, results with novel ADCs are encouraging. In a 
phase I study, T-DXd produced a response rate of 37% in 
heavily pre-treated patients with HER2-low MBC, and the 
median duration of response was 10.4 months [57]. Simi-
larly, a partial response was achieved in 28–40% (depending 
on ER status) of patients with HER2-low disease treated 
with trastuzumab duocarmazine [58]. The presence of 
cleavable linkers and higher membrane permeability likely 
accounts for the activity of the newer ADCs in HER2-low 
disease, as they produce a prominent bystander effect on sur-
rounding non-antigen-expressing cancer cells. The activity 
of T-DXd may be independent of HER2 expression. Other 
therapies, such as vaccines and bispecific antibodies, have 
been tested in HER2-low disease as well with promising 
results. Defining HER2-low remains a challenge, as the 
current methods of HER2 testing may not be adequate to 
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identify tumors with low levels of HER2 expression that 
could benefit from these newer therapies [56].

6.6 � Activating HER2 mutations without copy 
number gain

Even in the presence of a normal HER2 gene copy number, 
HER2 signaling can be activated by somatic mutations, most 
frequently in the tyrosine kinase domains [59]. In breast can-
cer, the frequency of these mutations is about 2–5%, though 
in a study of patients with highly pretreated metastatic dis-
ease and high tumor burden, the frequency was 8.9%. This 
and other literature suggests that these mutations may be 
induced by anti-cancer therapies [60]. HER2 mutations may 
be enriched in certain histological subtypes such as invasive 
high-grade lobular carcinomas [61]. These mutations may 
affect sensitivity to anti-HER2 therapy by activating onco-
genic signaling pathways independent of drug-target bind-
ing [59]. Somatic mutations also appear to confer resistance 
to endocrine therapy in HR + MBC [62]. However, many 
of these mutations are actionable and represent a HER2-
targeting opportunity even in HER2-negative breast cancers. 
Preclinical work suggested that many of these mutations are 
sensitive to neratinib (but not lapatinib) [63], and subse-
quently several clinical trials have demonstrated a benefit 
with neratinib in patients with HER2-mutated nonamplified 
MBC [62, 64, 65]. Notably in the SUMMIT trial, neratinib 
demonstrated activity in all types and classes of HER2 muta-
tions in breast cancer [65].

6.7 � Overexpression of HER1 and HER3

The HER2 receptor is unique in that it does not have a 
ligand, but instead is activated by either heterodimerization 
with other members of the EGFR family (particularly EGFR 
and HER3) or homodimerization with itself when HER2 is 
expressed at very high levels [66]. Overexpression of EGFR 
and HER3 can activate HER2 cell signaling pathways (such 
as PI3K) and lead to tumor proliferation [67, 68]. Evidence 
suggests that overexpression of EGFR is a negative predic-
tor of pathologic complete response and is associated with 
decreased overall survival. Similarly, patients with high 
HER3 expression levels have been shown to have shorter 
PFS and OS compared with patients with low HER3 expres-
sion. Targeting EGFR with EGFR inhibitors, though promis-
ing in pre-clinical studies, has not proven to be efficacious in 
clinical trials [68]. Both neratinib and lapatinib have shown 
activity in EGFR-amplified breast cancer cell lines. The 
irreversible, pan-HER activity of neratinib may ultimately 
make neratinib more effective in this population, because 
the more selective inhibition of HER receptors by lapatinib 
could allow resistance to develop through activation of other 
HER family receptors [69].

6.8 � Reduced expression of HER2

One final mechanism of resistance to trastuzumab-based 
therapy is decreased expression of HER2, which has been 
detected in a wide range of T-DM1-resistant cell lines [70], 
and has been associated with reduced rates of pCR and poor 
recurrence-free survival [71].

6.9 � Biomarker testing

In the era of precision oncology, the development of bio-
markers to predict response to anti-HER2 therapy is urgently 
needed to both improve outcomes and reduce toxicity. 
Tumor heterogeneity and the complexity of drug resist-
ance mechanisms make this research challenging [43]. It is 
currently unknown if p95 or other biomarkers may be used 
to guide clinicians to choose one anti-HER2 therapy over 
another. One promising area of biomarker testing is the role 
of circulating tumor DNA (ctDNA), which is currently being 
studied in a large number of solid tumors. Evidence for the 
use of ctDNA in breast cancer is rapidly evolving. Though 
tissue analysis is the gold standard for identifying tumor 
mutations, this is invasive and not practical for serial moni-
toring to identify mutations that may be acquired through 
treatment. Tissue analysis may also fail to capture intra- and 
intertumor heterogeneity [72]. ctDNA allows for sensitive 
and specific serial testing over time, is safer and less expen-
sive, and can overcome issues with tumor heterogeneity [73, 
74]. Changes in ctDNA levels also correlate with changes in 
tumor burden, making it a sensitive biomarker for monitor-
ing tumor response [74, 75]. In breast cancer, ctDNA can be 
used to detect somatic HER2 [60], PI3K, PTEN, and AKT 
mutations, among others [76, 77]. Loss of HER2 expression 
has also been detected in ctDNA and was associated with 
resistance to T-DM1 [70]. Issues remain, however. ctDNA 
assays may fail to capture mutations detected by genotyp-
ing tumor specimens, and the majority of ctDNA assays in 
advanced cancer have insufficient evidence to guide their use 
in clinical practice [78]. Further research is needed to clarify 
the role of ctDNA in the clinic (Fig. 3).

7 � Choice of therapy in the third‑line setting

Although there is no standard anti-HER2 therapy to choose 
in the third-line setting, two principles of drug sequencing 
still apply: 1) To avoid cross-resistance, drugs used in later 
lines of therapy should have different mechanisms of action 
than those used previously, and 2) there should be no over-
lapping toxicities. In the third-line setting, there are three 
reasons to consider a TKI as one’s first choice: develop-
ment of resistance to trastuzumab-based therapy, to prevent 
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or treat brain metastases, or to offer patients a break from 
intravenous chemotherapy.

7.1 � Resistance to trastuzumab‑based therapy

As discussed previously, resistance to trastuzumab-based 
therapy is common in the late metastatic setting. In the 
absence of brain metastases, neratinib + capecitabine is an 
excellent choice in the third line, based on the results of the 
NALA trial and from other studies mentioned above which 
showed a benefit with neratinib in tumors with resistance 
to trastuzumab. Though high rates of grade 3 diarrhea have 
traditionally made neratinib difficult to tolerate, this can be 
significantly offset with the use of a dose-escalated regimen 
[79].

7.2 � Brain metastases

Between 30 and 55% of patients with HER2 + MBC will 
develop brain metastases at some point in the course of 
their disease [21]. The efficacy of systemic therapies is usu-
ally limited by inability to penetrate the blood–brain bar-
rier [80]. Historically, patients with brain metastases have 

often been excluded from clinical trials. However, TKIs 
are smaller molecules known to have good blood–brain 
barrier penetration, and all three have shown efficacy in 
patients with CNS disease [21, 23, 81]. Among the TKIs, 
a tucatinib-based regimen has emerged as the preferred 
therapy for patients with brain metastases based on the 
HER2CLIMB trial, which was one of the first randomized 
controlled trials to demonstrate a meaningful increase in 
OS (> 6 months) in patients with brain metastases. In this 
study, among the 174 patients with active brain metasta-
ses, the 1-year CNS-PFS was 35% in the tucatinib arm 
versus 0% in the control arm (HR 0.36, P < 0.001), with 
a confirmed intracranial ORR of 47.3%. A small number 
of patients (44 in the tucatinib arm) with active, untreated 
brain metastases elected to delay radiation therapy in favor 
of systemic therapy and still achieved a median CNS-PFS 
of 8.1 months, suggesting that tucatinib could delay the 
need for radiation. In patients who continued on trial after 
local management with radiation, tucatinib appeared to 
delay subsequent disease progression [23].

There is also evidence that ADCs have activity in brain 
metastases. This was first described with T-DM1 in case 
reports and smaller studies [11]. A post hoc analysis of 

Fig. 3   Pathways of resistance to anti-HER2 therapies, including p95. Important pathways involved in anti-HER2 resistance such as the PI3K/
AKT/mTOR pathway and the expression of HER2 p95 lacking the extracellular trastuzumab-binding domain
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the KAMILLA trial showed that in patients with measur-
able brain metastases treated with T-DM1, almost half had 
stable disease or better for at least 6 months (CBR 42.9%, 
95% CI 34.1–52.0) [82]. In a retrospective exploratory 
analysis of the EMILIA trial, PFS was similar between 
the T-DM1 and capecitabine-lapatinib arms (5.9 vs 
5.7 months, HR = 1.00) in the subgroup of patients with 
treated, asymptomatic CNS metastases at baseline. There 
was also a significant difference in OS favoring the T-DM1 
group (26.8 months vs 12.9 months, HR 0.38, P = 0.008) 
[80]. Trastuzumab deruxtecan has also demonstrated activ-
ity in brain metastases. In the DESTINY-Breast01 trial, 
the 24 patients with CNS disease had an ORR of 58.3% 
and a median PFS of 18.1 months, which was compara-
ble to the results of the total patient population [83]. The 
activity of T-DXd in brain metastases is currently being 
evaluated in the phase II TUXEDO-1 trial. Thus far, 5/6 
(83.3%) patients have had an intracranial response [84]. 
Presumably, the disrupted blood–brain barrier in patients 
with brain metastases enables ADCs to have activity there, 
where previously these molecules were too large to cross. 
The other possibility is the free deruxtecan cleaved off 
from the ADC in the circulation  can easily penetrate the 
blood brain barrier.

8 � Issues with current treatment options

8.1 � ADCs

The hope for ADCs was that they would be the “magic bul-
let” that could deliver higher-dose cytotoxic chemotherapy 
directly to target cells without the effects on non-target 
tissue. However, this has not been borne out in clinical 
practice, where a substantial number of side effects have 
been observed. Most side effects of ADCs are related to 
payload effects in off-target tissues, reflecting either cleav-
able peptide linkers prematurely releasing the drug into 
the bloodstream or a prominent bystander effect [11]. For 
instance, the incidence and severity of the systemic tox-
icities of trastuzumab deruxtecan, including ILD, neutro-
penia, alopecia, etc., are similar to other topoisomerase 
inhibitors like topotecan and irinotecan. Trastuzumab der-
uxtecan uses a cleavable tetrapeptide linker, which is more 
likely to release the payload before the ADC reaches the 
target tumor cells. This may explain its activities in tumors 
that are low in HER2 expression and in tumors with brain 
metastasis. On the other hand, for ADCs with noncleav-
able linkers such as T-DM1, the off-target systemic side 
effects are likely from the lysed tumor cells releasing the 
free payload. Indeed, we recently reported that the systemic 
toxicities of T-DM1 highly correlate with anti-tumor effi-
cacy and patient survival [85].

8.2 � Margetuximab

As for margetuximab, the results from the SOPHIA trial 
represent a further step towards personalization, as there was 
a small PFS and OS benefit for patients with the low-affinity 
CD16A allele, but none for those without. However, the drug 
was approved for use without testing for the CD16A poly-
morphism (which is difficult to test); thus, patients who may 
not benefit from the drug may still receive it.

9 � Future directions

Current research in anti-HER2 therapy is focusing on 
developing novel TKIs, ADCs, bispecific antibodies, CAR-
T, immunotherapy, and inhibiting protein production or 
increasing degradation.

9.1 � Novel TKIs

Numerous treatments are currently on the horizon for 
HER2 + MBC. Pyrotinib is an irreversible pan-HER recep-
tor TKI that targets EGFR, HER2, and HER4. In the 
PHOEBE trial, patients with HER2 + MBC who had pre-
viously been treated with trastuzumab and taxanes were 
randomized to capecitabine plus either pyrotinib or lapat-
inib. PFS was nearly doubled in the pyrotinib group (12.5 
versus 6.8 months), though at a cost of increased toxicity 
[86]. Pyrotinib is not currently approved in the USA but 
is approved in China for use with capecitabine in patients 
with HER2 + MBC who have progressed on anthracyclines 
or taxanes [87].

9.2 � ADCs

Several new ADCs are currently under investigation. 
(Vic-)trastuzumab duocarmazine (SYD985) is a new ADC 
that has shown promising results in early clinical trials 
and was granted fast-track recognition by the FDA. The 
payload of SYD985 is an alkylating agent that is attached 
to trastuzumab by a stable linker [88]. In preliminary stud-
ies, the ORR was 33%, with a median PFS of 9.4 months. 
Eighty percent of these patients had previously progressed 
on T-DM1. SYD985 has also shown activity in HER2-
low and triple-negative breast cancer. Fatigue, conjuncti-
vitis, dry eyes, and increased lacrimation were the most 
common adverse effects [89]. The results of the phase III 
TULIP study (NCT02277717) will likely be announced 
within the next year.

Trophoblast cell-surface antigen-2 (Trop-2) is a tumor-
associated calcium signal transducer that stimulates cancer 
growth [90] and is expressed in all types of breast can-
cer, including HER2 + disease [91], as well as a variety of 
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other solid tumors. High levels are associated with a worse 
prognosis [92]. Sacituzumab govitecan is an anti-Trop2-
SN-38 ADC that is approved for triple negative breast can-
cer [93] and has also shown promising results in HR + /
HER2- MBC [94]. Future studies will need to determine 
its role in HER2 + MBC, though likely it will have activity 
there as well.

9.3 � Bispecific antibodies

ZW25 is a bispecific antibody that simultaneously binds 
extracellular domain (ECD) 4, the trastuzumab domain, 
and ECD2, the pertuzumab domain, of HER2. In a phase I 
study, patients with heavily pre-treated HER2 + MBC had 
a response rate of 33% and was remarkably well tolerated, 
with no treatment discontinuations due to adverse effects 
[95]. A phase II clinical trial is currently underway evalu-
ating ZW25 in combination with palbociclib and fulves-
trant, with the goal of finding another chemotherapy-free 
option for patients with advanced HR + /HER2 + breast 
cancer (NCT04224272).

9.4 � Bispecific T‑cell engagers (BiTE)

PRS-343 is bispecific T-cell engager (BiTE) that promotes 
binding of CD137 + (a key costimulatory immunorecep-
tor) T-cells to HER2 + tumor cells, thereby enhancing 
local immune activation and decreasing peripheral toxic-
ity. PRS-343 has currently entered a phase I clinical trial, 
where it has shown promising results, with a disease con-
trol rate of 58% and no grade 3 or 4 adverse effects [96].

9.5 � Biparatopic ADCs

ZW49 is a biparatopic ADC, an innovative therapy that 
combines the technology of bispecific antibodies with 
ADCs. ZW25 acts as the targeting agent, allowing for 
enhanced delivery of the payload to cancer cells. The pay-
load of ZW49 is a novel agent called N-acyl sulfonamide 
auristatin. Preclinical results were promising, and a phase 
I clinical trial is now ongoing [97].

9.6 � CAR‑T against HER2

Though chimeric antigen receptor (CAR)-T has had promis-
ing results in hematologic malignancies, it has not been as 
effective in treating solid tumors. However, recent studies 
are promising for the use of CAR-T in HER2 + MBC, par-
ticularly when anti-HER2 CAR-T cells are combined with 
PD-1 antibodies [98]. Clinical trials are currently underway 

evaluating CAR-T in HER2 + breast cancer with brain or lep-
tomeningeal metastases (NCT03696030). Of note, there is a 
case report of a woman with metastatic HER2 + colon cancer 
who underwent CAR-T and developed respiratory distress 
within 15 min of her infusion and ultimately died 5 days 
later. Laboratory analysis was consistent with cytokine 
storm. Authors speculated that the anti-HER2 T cells local-
ized to the lungs immediately after infusion and were trig-
gered to release inflammatory cytokines by the low levels of 
HER2 present on normal lung cells [99]. However, the low 
levels of HER2 expressed on normal lung tissue do not likely 
explain the lung toxicity seen with T-DXd, as lung toxicity 
is uncommon with other HER2-directed therapies, including 
trastuzumab, pertuzumab, T-DM1, and the anti-HER2 TKIs. 
Topoisoerase I inhibitors such as irinotecan cause interstitial 
lung disease. Free payload of deruxtecan from the ADC may 
similarly result in the lung toxicity.

9.7 � Agents that inhibit HER2 protein production 
or induce its destruction

Aptamers are synthetic single-stranded oligonucleotides 
that can be crafted to bind to specific target proteins on the 
cell surface, which then induces endocytosis. This can be 
exploited to deliver therapeutic cargoes such as small inter-
fering RNA (siRNA) [100], which can silence sequence-spe-
cific genes. The specificity of these aptamer-siRNA chimera 
(AsiC) enables them to be immunogenic while minimizing 
off-target tissue side effects, a concept similar to ADCs. Mak-
ing the aptamers bivalent via an antibody-like structure facili-
tates the engagement of cell-surface proteins and significantly 
increases the amount of siRNA delivered [101]. Several anti-
HER2/3 aptamers are in development. We have developed a 
bivalent HER2 aptamer-EGFR siRNA chimera that showed 
promise in mouse models by interfering with the function of 
HER2 and EGFR receptors and inducing apoptosis in HER2-
expressing cancer cells [102]. We have also developed a three-
in-one AsiC, targeting EGFR, HER2, and HER3 in one mol-
ecule and significantly inhibited tumor growth in xenograft 
models [103]. These aptamers have yet to be explored in clini-
cal trials due to lack of a viable delivery system into the target 
cells. However, with the nanotechnology now widely used to 
deliver COVID-19 spike protein mRNA into vaccines, it is 
now feasible to use the similar strategy to deliver aptamers 
against HER2 into HER2 + breast cancer.

Most disease-causing proteins are “undruggable” due to 
the lack of available binding pockets or suitable chemical mat-
ter. However, targeted protein degradation (TPD) is a novel 
therapeutic alternative that eradicates target proteins by utiliz-
ing endogenous protein degradation machineries. PROTACs 
(proteolysis-targeting chimeras) and molecular glues are two 
forms of TPD. PROTACs in particular are exciting because 
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they appear to be suitable for oral administration and are 
less liable to resistance mutations [104]. This field is rapidly 
expanding and has shown promise in the field of breast can-
cer. A trastuzumab-PROTAC conjugate (Ab-PROTAC 3) was 
shown to induce catalytic protein degradation only in HER2 
positive breast cancer cell lines, while sparing HER2-negative 
cells [105]. Finally, the emerging technology of molecular 
glue degrader makes it possible to target HER family proteins 
for degradation as well, including HER2 [106].

9.8 � Anti‑HER2 immunotherapy

As with many malignancies, the role of immunotherapy is 
also being examined in HER2 + MBC. The KATE2 trial 
explored the use of atezolizumab with T-DM1 for treatment 
of HER2 + MBC that had progressed on trastuzumab and a 
taxane. Overall, the study was negative, but there may have 
been a benefit in patients who were PD-L1 positive [107]. 
This is similar to the results of other trials of immunotherapy 
in both HER2 + and triple negative MBC, in which the ben-
efits of immunotherapy are generally restricted to PD-L1 
positive patients [108–110]. Further study will be required 
to determine the role of immunotherapy in HER2 + MBC.

Immunotherapy via an anti-HER2 vaccine is an attractive 
concept because HER2 + breast cancer is one of the most 
immunogenic breast cancer subtypes. A vaccine would 
allow for continued active immune surveillance against the 
tumor, is cost-effective, and requires fewer administrations 
[111]. One of the most studied is the E75 vaccine (NP-S), 
which has been evaluated in a phase III clinical trial. E75 
is an immunogenic peptide derived from the HER2 protein. 
The PRESENT trial enrolled patients with early-stage node-
positive breast cancer with low-HER2 expression to either 
NP-S with GM-CSF or placebo monthly for 6 months. The 
study was stopped due to futility after 16 months. However, 
the possibility of pseudoprogression with the vaccine was 
raised by this study, as is seen with checkpoint inhibitor 
immunotherapy. Pseudoprogression occurs when immune 

infiltration of a cancer makes the tumor appear larger on 
imaging than it actually is. Recurrence of disease in this 
trial was determined by imaging only, and nearly three times 
more patients in the vaccine group had radiographic recur-
rence. Since the groups were well-balanced, it was unlikely 
that the vaccine itself caused the recurrence. Whether this 
phenomena is truly associated with the vaccine will be the 
work of future study [112] (Table 2).

10 � Conclusion

Metastatic HER2 + BC is a burgeoning field of develop-
ment, with three new drugs approved in 2020 alone. In the 
late-line setting, it can be difficult to decide on the optimal 
drug sequencing for individual patients. After patients have 
progressed on docetaxel + trastuzumab + pertuzumab and 
T-DM1, we suggest choosing a TKI-based regimen based 
on the activity of TKIs in p95 and other forms of trastuzumab 
resistance as well as in brain metastases. Biomarkers are 
needed to help predict which therapies patients may benefit 
from the most, and ctDNA is promising. Numerous therapies 
are in development, which will be essential in improving sur-
vival in the future for patients with this aggressive disease.
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Table 2   Novel anti-HER2 therapy in development. New anti-HER2 therapies that have entered clinical trials

TKI tyrosine kinase inhibitor, ADC antibody–drug conjugate, CAR-T chimeric antigen receptor T-cell

Class of drug Name Phase of clinical 
trial

Clinical trial.gov number Sponsor

TKI Pyrotinib 3 NCT03080805 Jiangsu Hengrui Medicine
ADC SYD985 3 NCT03262935 Byondis B.V
CAR-T HER2 CAR T cells 1 NCT03696030 City of Hope Medical Center
Bispecific antibodies ZW25 2 NCT04224272 Zymeworks
Bispecific T-cell engagers PRS-343 1 NCT03330561 Pieris Pharmaceuticals
Biparatopic ADC ZW49 1 NCT03821233 Zymeworks
PD-L1 inhibitor Atezolizumab 2 NCT02924883 Hoffmann-La Roche
HER2 vaccine Nelipepimut-S or E75 3 NCT01479244 Galena Biopharma
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