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Abstract
Performing optimal Bayesian design for discriminating between competing models is computationally intensive as it involves
estimating posterior model probabilities for thousands of simulated data sets. This issue is compounded further when the
likelihood functions for the rival models are computationally expensive. A new approach using supervised classification
methods is developed to perform Bayesian optimal model discrimination design. This approach requires considerably fewer
simulations from the candidate models than previous approaches using approximate Bayesian computation. Further, it is easy
to assess the performance of the optimal design through the misclassification error rate. The approach is particularly useful
in the presence of models with intractable likelihoods but can also provide computational advantages when the likelihoods
are manageable.

Keywords Approximate Bayesian computation · Bayesian model selection · Classification and regression tree · Continuous-
time Markov process · Random forest · Simulation-based Bayesian experimental design

1 Introduction

In many applications, finding the most appropriate model
among a class of possible models is an important goal of
statistical inference. In the classical literature, these deci-
sions are commonly based on model selection criteria such
as the Akaike information criterion or related criteria (Kon-
ishi and Kitagawa 2008). The Bayesian approach, where
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the model indicator is regarded as an additional unknown
random variable, offers a coherent decision-theoretic frame-
work for inference and model discrimination (Key et al.
1999). Common options to carry out model selection in a
Bayesian context are Bayes factors (Kass and Raftery 1995),
the deviance information criterion (Spiegelhalter et al. 2002),
or the computation of the marginal likelihoods or evidence
(Friel and Pettitt 2008). Given the prior model probabilities,
the marginal likelihoods can be turned into posterior model
probabilities. Classical model selection criteria only provide
a ranking of the models, whereas posterior model probabili-
ties contain useful information about the relative likeliness of
the various models as well. In addition, the posterior model
probabilities permit model-averaged predictions.

Prior to conducting an experiment, it is pertinent to deter-
mine the optimal combination of the controllable factors so
as to maximise the (expected) information gain of the exper-
iment with respect to the desired statistical objective (e.g.
parameter inference, model discrimination, prediction). This
is achieved by applying the principles and methods of opti-
mal experimental design (see, e.g. Atkinson et al. 2007). In
optimal experimental design, one seeks to find the optimal
combination of the controllable factors in order to maximise
the (expected) information gain of the experiment (Atkin-
son et al. 2007). If the main goal of statistical inference is
to determine which statistical process is the most suitable
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representation of the phenomenon of interest, it is pertinent
to employ design criteria specifically developed for the pur-
pose of model discrimination. For example, in epidemiology
it is paramount to understand the transmission dynamics of
a disease in order to be able to implement effective coun-
termeasures (see, e.g. Dehideniya et al. 2018a). The most
commonly used classical design criterion is T-optimality
(Atkinson and Federov 1975a, b; Dette and Titoff 2009),
with extensions to Bayesian T-optimality (Ponce de Leon
and Atkinson 1992) to incorporate prior information. Except
for robust T-optimal designs (Vajjah and Duffull 2012), one
model has to be selected as the assumed true model. For clas-
sical T-optimality, one seeks to maximise the L2-norm of the
difference between the assumed true model’s predictor and
the other model’s predictor with respect to the design mea-
sure, where for each design the most unfavourable parameter
setting with respect to the predictor difference is chosen for
the second model. Therefore, T-optimal designs are gener-
ally computationally expensive. Harman and Müller (2020)
propose a symmetric criterion based on the linearised dis-
tance between the mean value surfaces of the models, which
can be computed quickly. Their designs depend on the set of
parameters over which the criterion is optimised, so they sug-
gest to consider different parameter set sizes and to choose
the size of the set based on ones “confidence” about the true
parameter value.

Fully Bayesian experimental design provides a consistent
framework to handle parameter and model uncertainty when
planning the experiment (Chaloner and Verdinelli 1995;
Ryan et al. 2016). For model discrimination, the most popu-
lar design criterion is the mutual information between the
model indicator and the data, which is measured by the
Kullback–Leibler divergence between the joint and marginal
distributions of those two random variables (see Box and
Hill 1967). This criterion requires the computation of the
evidence of each model for many potential observations, so
its use has been confined to a limited set of applications
such as simple models with conjugate priors (Ng and Chick
2004), cases where numerical quadrature is feasible (Cav-
agnaro et al. 2010), or sequential design settings (Drovandi
et al. 2014). Overstall et al. (2018) employ normal-based
approximations to find optimal designs for several crite-
ria including mutual information and misclassification error.
For the case of intractable likelihoods, Dehideniya et al.
(2018b) use approximate Bayesian computation (ABC) to
estimate these criteria. The ABC approach only requires
the ability to simulate from all the candidate models. How-
ever, their approach is simulation- and memory-intensive
and is thus limited to low-dimensional designs. Overstall
and McGree (2019) propose an approach based on auxiliary
models, whereas Dehideniya et al. (2018a) employ synthetic
likelihoods. An extension of Overstall et al. (2018) for mod-
els with intractable likelihoods is developed by Dehideniya

et al. (2019). Kleinegesse and Gutmann (2019) develop a
design approach based on likelihood-free inference by ratio
estimation (see Thomas et al. 2022), which is suitable for
the commonly used mutual information-based design crite-
ria, with an extension to sequential designs in Kleinegesse
et al. (2020).Another approach formutual information-based
criteria, which can also be applied to intractable likelihood
models, is presented by Foster et al. (2019), who use amor-
tised variational inference to find an approximation to the
posterior distribution that is part of the criterion.

Like Dehideniya et al. (2018b), we suggest a simulation-
based approach. However, we use the outputs of standard
supervised classification procedures from machine learning
(see Hastie et al. 2009) to estimate the design criteria. In par-
ticular, we employ classification trees (Breiman et al. 1984)
and random forests (Breiman 2001). We demonstrate that
this approach considerably reduces the required number of
simulations compared to ABC. In order to keep the com-
putational burden manageable, Dehideniya et al. (2018b)
pre-simulate a large sample from the prior predictive dis-
tribution at a grid of possible design points and reuse these
simulations for all the designs they consider during the opti-
misation process, refining the grid over time. However, as we
require fewer simulations for the classification approach, it is
not necessary to pre-simulate the data. As a consequence, the
classification approach ismuchmore flexible and suitable for
much higher-dimensional designs. Furthermore, the classi-
fication approach does not require direct approximations of
posterior quantities such as the posterior model probabilities,
which may only be reliably estimated with great computa-
tional effort, making it a viable alternative for many models
with tractable likelihoods. Another advantage of the classi-
fication approach is that one can readily use the output from
the classification procedures to assess the designs by estimat-
ingmisclassification error rates ormisclassificationmatrices.
Our method represents a novel approach using supervised
learning methods for optimal Bayesian design for model dis-
crimination.

Section 2 reviews Bayesian experimental design and the
associated expected utility and loss functions. Our classifica-
tion approach is presented in Sect. 3 along with a discussion
of classification and regression trees (CART) and random
forests. In Sect. 4, we provide three examples to demon-
strate the utility of the classification approach: discriminating
between the epidemiological Markov process models of
the same type as considered by Dehideniya et al. (2018b)
(Sect. 4.1), a two-model variation of the previous exam-
ple to be able to make comparisons with likelihood-based
designs and apply our method to higher-dimensional set-
tings (Sect. 4.2), and discriminating between three Markov
process models describing the dynamics of bacteria within
phagocytic cells (Sect. 4.3). The supplementary document
(Online Resource 1) contains further details on CART and
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random forests, a description of the variant of the coordinate
exchange algorithm that we employ for all our examples,
a comparative investigation of the computational perfor-
mances of the different methods for the three examples in
Sect. 4, detailed model descriptions and further results for
the three examples in Sect. 4, and two additional examples.
The first additional example is a logistic regression example
which has been considered for Bayesian experimental design
before (e.g. Overstall et al. 2018); the second is about dis-
criminating between three spatial extremesmodels for which
Lee et al. (2018) perform ABC model discrimination for a
given design.

2 Optimal Bayesian design for model
discrimination

We assume there are K candidate statistical models for a
process of interest, one of them being the true underly-
ing model. The models are indexed by the model indicator
random variable m ∈ {1, 2, . . . , K }. Each model m has a
likelihood function p(y|θm, m,d), with data y ∈ Y , and
parameter vector θm ∈ �m . In the experimental design con-
text, the likelihood depends on the design vector d ∈ D ,
which is a vector of controllable variables of the experi-
ment that might influence the informativeness of the data
y. In the Bayesian framework, a prior distribution p(θm |m)

is assigned to the parameters of each model m. Further-
more, we assign a prior probability p(m) to each model
such that

∑K
m=1 p(m) = 1. One can then derive the follow-

ing important quantities from these elements: p(y|m,d) =∫
θm

p(y|θm, m,d) p(θm |m) dθm is the marginal likelihood,
evidence, or prior predictive distribution for model m;
p(y|d) = ∑K

m=1 p(y|m,d) p(m) is the overall or model-
averagedmarginal likelihood orprior predictive distribution;
and p(m|y,d) = p(y|m,d) p(m)

/
p(y|d) is the posterior

model probability of model m.
Optimal experimental design requires the specification

of a design criterion that encodes the goal of the experi-
ment. In Bayesian design, a function l that quantifies the loss
of an experiment needs to be specified, see, e.g. Overstall
et al. (2018). Apart from the design d, this loss function usu-
ally also depends on the model indicator m and the data y
observed at the experiment. It may also depend on the param-
eters θm at each of the models. For experimental design, the
expected or integrated loss,

l(d) = Eθm ,y,m|d[ l(d, θm, y, m)], (1)

is of interest, where the expectation is taken with respect
to all the unknown variables. The optimal design is given
by d∗ = argmind∈D l(d), where D is the set of admissible
designs, which in general is a challenging optimisation prob-

lem. Alternatively, the design problem may be formulated in
terms of a utility function instead of a loss function. Then,
the goal is to maximise the expected utility function.

In Bayesian model discrimination, we are interested in
finding a design d that is likely to produce data y from which
we can infer the posterior distribution of the model indicator
m with minimal uncertainty. The most popular measure of
uncertainty of a distribution is its Shannon entropy (see, e.g.
Lindley 1956). For a given data set y, the conditional entropy
of the model indicator is given by

lM D(d, y) = −
K∑

m=1

p(m|y,d) log p(m|y,d).

The conditional entropy features the loss function

lM D(d, y, m) = − log p(m|y,d),

which is called the multinomial deviance loss (Hastie et al.
2009).

Since y is not known in advance, we take the average over
the marginal distribution of y, p(y|d). For discrete data y,
the expected multinomial deviance loss is

lM D(d) = −
∑

y∈Y
p(y|d)

K∑

m=1

p(m|y,d) log p(m|y,d). (2)

The negative of the expected multinomial deviance loss
is also known as the mutual information utility (see, e.g.
Drovandi et al. 2014).

Another common loss function for model discrimination
is the 0–1 loss (see, e.g. Overstall et al. 2018). Let m̂(y|d)

be a classifier function that assigns one of the class labels
1, . . . , K to the data y. The 0–1 loss function is defined as

l01(d, y, m) = I[m̂(y|d) �= m] = 1 − I[m̂(y|d) = m],

where I[·] is the indicator function, which takes the value 1 if
the argument is true and 0 otherwise. Therefore, the 0–1 loss
is 1 if the data are misclassified and 0 if they are classified
correctly. A generalisation of this loss function would be a
loss matrix that assigns different loss values to all the combi-
nations of true and selected models. Averaging the 0–1 loss
function over the prior predictive distribution of the data and
themodel indicators yields themisclassification error rate or
prior error rate (Pudlo et al. 2016), which for discrete data
y is given by

l01(d) =
∑

y∈Y
p(y|d)

K∑

m=1

p(m|y,d){1 − I[m̂(y|d) = m]}.

(3)
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The classifier m̂(y|d) = argmaxm∈{1,...,K } p(m|y,d)—also
known as the Bayes classifier—classifies the data according
to the posterior modal model. It can be shown that the Bayes
classifier minimises the expected 0–1 loss (3). Themisclassi-
fication error rate for the Bayes classifier is called the Bayes
error rate (see Hastie et al. 2009).

In the continuous case, the sums over y ∈ Y in the
expected loss functions (2) and (3) have to be replaced by
integrals. The integrals and sums involved in (2) and (3) can
be high-dimensional, analytically intractable and computa-
tionally intensive to approximate accurately. One approach
is to estimate the expected loss functions using Monte Carlo
integration. Let ym, j ∼ p(y|m,d) for j = 1, . . . , Jm and
m = 1, . . . , K . That is, Jm draws ym, j from the prior pre-
dictive distribution under model m are generated, for each of
the models in turn. Then, we can estimate the expected loss
(2) by

l̂M D(d) = −
K∑

m=1

p(m)
1

Jm

Jm∑

j=1

log p(m|ym, j ,d), (4)

and the expected loss (3) by

l̂01(d) = 1 −
K∑

m=1

p(m)
1

Jm

Jm∑

j=1

I[m̂(ym, j |d) = m], (5)

respectively, where m̂(ym, j |d) = argmaxm∈{1,...,K }
p(m|ym, j ,d).

The first issue with these approximations is that Jm may
need to be large to estimate the expected loss with low
variance. The second issue is that the posterior model prob-
ability, p(m|y,d), is generally not available analytically and
is difficult to approximate accurately. In fact, estimating
this quantity is a research problem in its own right in the
Bayesian community (Friel and Wyse 2012). For an effi-
cient recent approach using Gaussian quadrature, see Chai
et al. (2019). In the Bayesian optimal design setting, an
estimate of the expected loss requires J = ∑K

m=1 Jm evalu-
ations/approximations of p(m|y,d), one for each data set
y drawn from the prior predictive distribution. Then, the
expected loss must be optimised over a potentially large
design spaceD , and therefore often many thousands of pos-
terior model probabilities must be calculated to arrive at an
optimal design. This iswhyonly relatively simplemodels and
experimental settings have been considered in the Bayesian
design literature formodel discrimination in comparisonwith
the elaborate models that can be analysed in Bayesian infer-
ence (see, e.g. the application in Drovandi et al. 2014).

Further complications arise for estimating p(m|y,d)

when the likelihood function p(y|θm, m,d) for the models
of interest is computationally intractable. Dehideniya et al.
(2018b) present a rather general ABC approach to tackle

the problem of Bayesian design for model discrimination for
models with intractable likelihoods. However, their approach
is very simulation-intensive and therefore only suitable for
low-dimensional designs. The approach of Overstall and
McGree (2019) relies on finding suitable auxiliarymodels for
the intractablemodels of interest andusesGaussianprocesses
to model the relationship between the parameters of the true
model and the corresponding auxiliary model parameters.
The marginal likelihood is modelled by a copula, which aims
to capture the dependence induced by marginalising out the
parameters. Dehideniya et al. (2018a), on the other hand, use
a synthetic likelihood approach to approximate the true like-
lihood function. This approach works best if the likelihood
function depends on summary statistics whose distribution is
close to normal. A more computationally efficient approach
is presented in Dehideniya et al. (2019), where Laplace-
based approximations are used to estimate the design criteria
instead of performing Monte Carlo integration. In order to
find theposteriormode and curvature required for theLaplace
approximation, synthetic likelihoods are used.

The ultimate goal of this paper is to expand the set of
models and design settings for which it is possible to obtain
optimal Bayesian designs for the purpose of model discrim-
ination without having to rely on the availability of suitable
parametric likelihood approximations.

3 The classification approach

3.1 Methodology

In this paper, we take a classification perspective on the
Bayesianmodel discrimination problem to greatly reduce the
computational burden highlighted in the previous section. As
a by-product, we also obtain several other advantages over
the standard Bayesian approach. The only requirement to
apply our methodology is that it is computationally efficient
to simulate from each of the K models. Therefore, the class
of models that can be considered in optimal design for model
selection increases dramatically. In addition, the generality
of the proposed approach allows for implementations that
are less application-specific. Furthermore, we find that the
performance of the optimal design can be assessed easily
via the misclassification error rate, as opposed to performing
more posterior calculations at the optimal and sub-optimal
designs.

For each design d proposed in the design optimisation
algorithm, our approach involves simulating J samples from
the joint distribution of data and model indicators,

p(y, m|d) =
∫

θm

p(y|θm, m,d) p(θm |m) p(m) dθm,
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to generate the training sample T = {(m j , y j ) : j =
1, . . . , J }.

We can use this training sample to train a supervised clas-
sification algorithm, where we consider the model indicator
m as a categorical response or ‘target’ variable and the simu-
lated data y as the features. As a result, we obtain a classifier
function m̂C (y|d,T ) that we can use in Equation (5) instead
of the Bayes classifier to estimate the misclassification error
rate.

Alternatively, we can write the sample T as

T =
{
(m, ym, j ) : j = 1, . . . , Jm; m = 1, . . . , K

}
,

where Jm is the number of samples from model m in T .
Given m, the data are sampled from ym, j ∼ p(y|m,d). The
numbers Jm may be fixed in advance, usually selected to
be proportional to the prior model probabilities. However,
if the prior model probabilities are highly imbalanced, there
may only be a few observations from the models with small
prior model probabilities in T . For training the classifier, it
may then be advantageous to have a more balanced training
sample. If the sample proportions do not reflect the prior
model probabilities, it is necessary to adjust the classifier
accordingly, for example by weighting the observations.

Due to overfitting, it is not advisable to use the same sam-
ple T for training the classifier as well as for evaluating
the expected 0–1 loss in (5). To deal with this problem,
one possibility to estimate the expected loss in practice
is to use L-fold cross-validation (see, e.g. Hastie et al.
2009), where the full sample T is randomly split into L
folds of approximately equal size: T = {T 1, . . . ,T L}.
Let T −i = {T 1, . . . ,T i−1,T i+1, . . . ,T L} denote the
full sample without the i th fold, and let T i

m be defined as
T i

m = {y∗ : (m∗, y∗) ∈ T i ∧ m∗ = m}. The procedure is
repeated L times. At each step i (i = 1, . . . , L), the classifier
is trained onT −i and validated on the subsampleT i . Thus,
at step i the expected 0–1 loss is computed as

l̂cv01,i (d) = 1 −
K∑

m=1

p(m)
1

J i
m

∑

y∈T i
m

I[m̂C (y|d,T −i ) = m],

(6)

where J i
m = card(T i

m).
The final estimate of the expected 0–1 loss is then obtained

by averaging over the L expected loss estimates:

l̂cv01(d) = 1

L

L∑

i=1

l̂cv01,i (d). (7)

In our examples, we always perform stratified sampling of
the fold indicators. That is, first we divide the total sampleT

into m subsamples according to the model indicators. Then,
we randomly split the subsample for eachmodel into L equal-
sized folds. Finally, we combine all the subsample folds with
the same fold indicator i across all model subsets into fold
T i . In this way, we guarantee that the model proportions are
the same in all folds.

An alternative to cross-validation would be to generate
an independent test or validation sample and evaluate the
expected loss function on that sample. Depending on how
cheap it is to simulate the data and how expensive it is to
run the classifier, this approach might be preferable to cross-
validation. In our examples, we only report the results for
cross-validation since both approaches are qualitatively very
similar.

Larger values of J allow for a more accurate estimate of
the misclassification error rate and therefore lead to a less
noisy objective function to optimise over, although the time
to estimate the error rate increases. However, for intractable
likelihoodmodels the sample size J needed for the classifica-
tion approach to obtain a reasonably precise approximation
of the expected loss function is several orders of magnitude
less than the sample size required forABC(Pudlo et al. 2016).
Moreover, for many other models the classification approach
may be more time-efficient than estimating p(m|y,d) in a
conventional way.

Many classification methods also provide estimates of the
posterior model probabilities, p̂C (m|y,d,T ), which can be
used to estimate the expected multinomial deviance loss (2)
in a similar way as the misclassification error rate is esti-
mated by Equations (6) and (7). However, the estimates for
the posteriormodel probabilities provided bymany computa-
tionally efficientmethods such as classification trees or linear
discriminant analysis are rather crude, noisy, and biased (see,
e.g. Breiman et al. 1984; Hastie et al. 2009).

Even if the posterior model probabilities are estimated
poorly, the classificationmethod can performquitewell at the
task of assigning the correct class labels to the observations.
All that matters is that the posterior modal model is identi-
fied correctly. If a classifier assigns the posteriormodalmodel
argmaxm p(m|y,d) to each data set y ∈ Y , it is called an
order-correct classifier (Breiman 1996). For an order-correct
classifier, the misclassification error rate corresponds to the
Bayes error rate and is therefore minimal. The misclassifica-
tion error rate of a classifier that is order-correct everywhere
except for a small subset of the sample space Y will still be
very close to the Bayes error rate. Therefore, the misclassifi-
cation error rate is relatively robust to inaccurate estimates of
the posterior model probabilities. For this reason, we focus
mainly on finding designs which are optimal with respect
to the misclassification error rate. However, the misclassifi-
cation error rate is not estimated very well if the posterior
modal model is hard to identify among several highly prob-
able models in a non-negligible subset of the sample space
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Y , which may happen, for example, if the data are generally
not very informative.

3.2 CARTs and random forests

There are a plethora of supervised classification algorithms
that are suitable candidates for the task of estimating the
expected loss. As the optimal design procedure estimates the
expected loss many times, we require a fast classification
method. As a generic and fast nonparametric classifica-
tion approach, we adopt classification and regression trees
(CART, see Breiman et al. 1984) to estimate the expected
loss at each design visited during the design procedure.

One disadvantage of trees is their high variance. Slight
changes in the data might lead to widely different trees.
To reduce the variance, Breiman (2001) proposes random
forests, which consist of an ensemble of trees. For classifi-
cation, the class prediction of a random forest is obtained by
majority vote among the individual trees of the forest. More
information about the structure, properties, and estimation of
CARTs and random forests can be found in Online Resource
1 (Sect. 1).

Random forests have been used successfully in many
applications and compare favourable to/with many other
more computationally intensive classification methods such
as boosting or neural networks; see Hastie et al. (2009). Their
nonparametric nature allows for capturing complex depen-
dencies between the model indicator and the features, and so
they are more flexible than many parametric methods such as
logistic regression. Another advantage of trees and random
forests is that the scaling of the features does not matter, so
there is no need to standardise or transform the features. For
our purpose, it is also important that random forests do not
require any tuning for each new data set and design because
the standard settingswork reasonablywell inmost situations.
A further advantage of random forests is that the misclassi-
fication error rate can be estimated using out-of-bag class
predictions (Breiman 2001), so there is no need to perform
cross-validation or to generate a test set.

Pudlo et al. (2016) note that random forests can easily
cope with many noisy, weakly informative and correlated
input features. Nevertheless, if the dimension of the raw
data is very high, summary statistics may need to be used
to improve the classification performance. However, random
forestsmake it possible to include a relatively large amount of
informative summary statistics. Thismay alleviate the loss of
information regardingmodel discriminationwhen using non-
sufficient summary statistics reported byRobert et al. (2011).
The standard kernel-based ABC approaches for intractable
likelihood problems suffer from the curse of dimensionality
much more strongly and require low-dimensional summary
statistics to work efficiently (see, e.g. Blum 2010).

It is possible to obtain estimates for the posterior model
probabilities p(m|y,d) from trees and random forests. How-
ever, these estimates are not smooth and very rough, in
particular for trees. It might happen that the estimated poste-
rior model probabilities for some observations are 0, which
causes problems when estimating the expected multinomial
deviance loss. Section 1 of Online Resource 1 discusses this
issue in more detail and explains how we deal with it.

3.3 Assessing the performance of a design

Once we have found optimal or close-to-optimal designs
using a variety of our design search methods for some design
dimensions, we are also able to assess the performance of
those designs with the classification method. For example, it
maybeof interest to assess the ability to discriminate between
models as the sample size or design dimension is increased,
or to investigate which design search methods lead to more
efficient designs. We want this assessment to be as accu-
rate as possible. Given that only a relatively small number
of designs need to be assessed, we suggest that more effort
can be placed in the classification procedure. For example,
we can simulate both a large training and a large test set
and fit an elaborate classifier such as a random forest with a
large number of trees. Then, the classification performance
in terms of the misclassification error rate can be estimated
by applying the fitted model to the test data set.

4 Examples

In this section, we consider several examples to highlight the
utility of our proposedmethod. To perform the design optimi-
sation,weuse amodificationof the coordinate exchange (CE)
algorithm (Meyer and Nachtsheim 1995), which involves
cycling through each of the design variables iteratively, tri-
alling a set of candidate replacements and updating the value
of the design variable if the objective/loss function is reduced.
This is continued until no updates to the design are made in
a given cycle. To guard against possible local optima, we
run the algorithm in parallel 20 times with random starts.
We acknowledge the stochastic nature of our objective func-
tion by considering the (up to) six last designs visited in
each of the 20 runs as candidates for the overall optimal
design. For each of the candidates, we compute the loss func-
tion ten times to reduce the noise. The best design found
through this algorithm is the one with the lowest average
loss among the candidate designs across all runs. As an addi-
tional post-processing step, we combine all the candidate
designs and estimated loss function values from all the runs.
Then, we employ Gaussian process regression (Rasmussen
and Williams 2006) on them to obtain a smooth estimate for
the expected loss surface, which we seek to minimise with
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respect to the design. Finally, we compare the expected loss
at this new design to the expected loss found previously by
the coordinate exchange algorithm. This is done by estimat-
ing the expected loss 100 times at each of the two designs
and selecting the design with the lower average expected loss
as the optimal design. A detailed description of the optimi-
sation algorithm that we employ is provided in Sect. 2 of
Online Resource 1. We do not expend any effort on finding
the best optimisation algorithm for each of the examples as
this is not the focus of the paper. We find that the CE algo-
rithm performs adequately to illustrate the findings of the
paper.

The first example in Sect. 4.1 compares the results of
our supervised classification approach to ABC for differ-
ent loss functions for an infectious disease application.
It demonstrates that ABC and the computationally much
more tractable classification approaches lead to designs with
similar efficiency. The second example in Sect. 4.2 is a mod-
ification of the first example. It only considers the first two
models of the first example, which have reasonably tractable
likelihoods. This makes it possible to obtain likelihood-
based loss estimates and find likelihood-based designs at
least for lower dimensions, which we can use for com-
parisons with our classification approach. In addition, we
demonstrate how we are also able to apply our approach suc-
cessfully to higher-dimensional design settings. The third
example is a practically important application in the field
of experimental biology. The goal is to obtain good designs
for discriminating between different hypotheses about unob-
served heterogeneity with respect to the reproduction of
bacteria within phagocytic cells.We apply our classification-
based design method to two further examples in Sects. 7 and
8 of Online Resource 1. The first is a fairly high-dimensional
logistic regression examplewithfixed and randomeffects, for
which previous attempts on findingBayesian optimal designs
were only possible by making some additional approxi-
mations (Overstall et al. 2018). The second example is an
application to intractable max-stable spatial extremes mod-
els, for which designs were previously only found on a very
limited number of candidate design points using the ABC
approach (Hainy et al. 2016).

Listings of computational runtime performance statistics
for the different methods and design settings for all the
examples in this section can be found in Sect. 3 of Online
Resource 1.

4.1 Stochastic models in epidemiology

4.1.1 Problem formulation

An example involving four competing continuous-time
Markov process models for the spread of an infectious dis-
ease is considered in Dehideniya et al. (2018b). Let S(t),

E(t), and I (t) denote the number of susceptible, exposed,
and infected individuals at time t in a closed population of
size N = 50 such that S(t) + E(t) + I (t) = N for all t . The
possible transitions in an infinitesimal time δt for each of the
four models are shown in Table 1. Models 1–4 are referred to
as the death, SI, SEI, and SEI2 models, respectively. Models
1 and 2 do not have an exposed population. The algorithm
of Gillespie (1977) can be used to efficiently generate sam-
ples from all the models. The prior distributions for all the
parameters of each model are provided in Table 5 of Online
Resource 1. All models are assumed equally likely a priori.

We consider the design problem of determining the opti-
mal times (in days) d = (d1, d2, . . . , dn), where d1 < d2 <

· · · < dn ≤ 10, to observe the stochastic process in order to
best discriminate between the four models under the avail-
able prior information. Only the infected population can be
observed. Unfortunately, the likelihood functions for all but
the simplest model are computationally cumbersome as they
require computing thematrix exponential (see, e.g. Drovandi
and Pettitt 2008). Whilst computing a single posterior distri-
bution is feasible, as in a typical data analysis, computing
the posterior distribution or posterior model probabilities
for thousands of prior predictive simulations, as in a stan-
dard optimal Bayesian design approach, is computationally
intractable.

4.1.2 Approximate Bayesian computation

Dehideniya et al. (2018b) develop a likelihood-free approach
based on approximate Bayesian computation (ABC) to solve
this model discrimination design problem. Given a particu-
lar level of discretisation of the design space (time in this
case), the ABC approach involves generating a large number
of prior predictive simulations at all discrete time points and
storing them in the so-called reference table. Then, for a par-
ticular ‘outer’ draw from the prior predictive distribution, y,
at some proposed design, d, the ABC rejection algorithm of
Grelaud et al. (2009) is used to estimate the posterior model
probabilities and in further consequence the loss functions.
This means that the posterior model probability p(m|y,d)

is estimated by computing the proportion of model m sim-
ulations in the retained sample, where the retained sample
is composed of those simulations from the reference table
which are ‘closest’ to the process realisation y with respect
to some distance such as Euclidean or Manhattan distance.
The size of the retained sample is only a very small fraction
of the size of the reference table. The estimated posterior
model probability is used to compute the estimated loss for
process realisation y. Finally, the estimated expected loss is
obtained by averaging the loss estimates for all the ‘outer’
draws. The reader is referred to Dehideniya et al. (2018b) for
more details. Price et al. (2016) improve the efficiency for
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Table 1 Four competing models
considered in the infectious
disease example of Section 4.1

Model Event type Update Rate

1 Infected S(t) − 1, I (t) + 1 b(1)
1 S(t)

2 Infected S(t) − 1, I (t) + 1 [b(2)
1 + b(2)

2 I (t)] S(t)

3 Exposed S(t) − 1, E(t) + 1 b(3)
1 S(t)

Infected E(t) − 1, I (t) + 1 γ (3) E(t)

4 Exposed S(t) − 1, E(t) + 1 [b(4)
1 + b(4)

2 I (t)] S(t)

Infected E(t) − 1, I (t) + 1 γ (4) E(t)

these models by making use of the discrete nature of the data
to efficiently estimate the expected loss.

4.1.3 Simulation settings

For each of the classification methods from machine learn-
ing, we use a sample of 5K simulations from each model
to train the classifier and to estimate the expected loss at
each new design. For the classification trees, we use ten-
fold cross-validation to estimate the expected loss functions.
When using random forests, we employ out-of-bag class pre-
dictions. As a criterion, we use expected 0–1 loss as well as
expected multinomial deviance loss. When computing the
expected multinomial deviance loss, we set the posterior
model probability of the correctmodel to 0.001whenever it is
estimated to be 0, see Sect. 1 of Online Resource 1 for more
information. We could follow the ABC method and draw
the simulations from a large bank of prior predictive process
realisations simulated at the whole design grid to reduce the
computing time. However, since the machine learning classi-
fication method requires significantly fewer simulations, we
find that it is still fast to draw a fresh process realisation for
each proposed design. For the ABC approach, the reference
table contains 100K stored prior predictive simulations for
each model. To compute the expected loss, we average the
estimated loss over 500 ‘outer’ draws from p(y|m,d) for
each model and retain a sample of size 2K from the refer-
ence table for each draw. For all the methods, the optimal
design search was conducted over a grid of time points from
0.25 to 10 with a spacing of 0.25.

4.1.4 One-dimensional estimated expected loss curves

Figure 1 shows the approximate expected loss functions for 1
design observation under several estimation approaches and
loss functions over a grid of design points with spacing 0.1.
It is evident that all the functions are qualitatively similar and
produce the same optimal design around 0.5 − 0.7 days. In
particular, one can see that the expected loss curves for both
the 0–1 loss and the multinomial deviance loss seem to be
minimised at around the same observation time. However,

0 2 4 6 8 10
observation time

0.7

0.75

0.8

0.85

0.9

0.95

1

sc
al

ed
 e

xp
ec

te
d 

lo
ss

01L tree
01L RF
01L ABC
MDL tree
MDL RF
MDL ABC

Fig. 1 Plots of the approximated expected loss functions produced by
the tree classification approachwith cross-validation (solid), the random
forest classification approach using out-of-bag class predictions (dot-
ted), and the ABC approach (dashed) under the 0–1 loss (thick lines)
and multinomial deviance loss (thin lines) for the infectious disease
example. The expected losses have been scaled by dividing through the
maximum loss for an easier comparison

the times needed to construct the curves are vastly differ-
ent between the different approaches. On our workstation, it
took less than half a minute for the cross-validated tree clas-
sification approach (single core), between 4 and 5 minutes
for the random forest classification approach (single core),
and between 9.5 and 10 minutes using 8 parallel cores for
the ABC approach to generate the respective graphs. Creat-
ing the reference table with 400K simulations required only
between 3.5 and 4 seconds in this example, since sampling
via the Gillespie algorithm is very efficient. In our example,
what is causing the computational inefficiency of ABC is
having to sort the large reference table for each outer draw
to obtain the retained ABC sample. Despite the much higher
computational effort needed for the ABC approach, its esti-
mates of the expected loss functions are still considerably
noisier than the estimates of the classification approaches,
which is mostly due to the relatively small outer sample size
of 2000.
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Table 2 Optimal designs obtained by tree classification (cross-
validated), random forest classification (using out-of-bag class predic-
tions), and ABC approaches under the 0–1 loss (01L) or multinomial
deviance loss (MDL) (n = 1, 2, and 3) for the infectious disease exam-
ple. The equidistant designs are also shown

Method/Loss n = 1 n = 2 n = 3

Tree 01L 0.598 0.787 4.437 0.818 4.568 9.493

RF 01L 0.611 0.823 4.433 0.750 4.000 10.000

ABC 01L 0.597 0.877 4.357 0.750 2.250 5.750

Tree MDL 0.621 0.750 4.750 0.750 4.750 10.000

RF MDL 0.633 0.750 4.750 0.750 4.500 9.000

ABC MDL 0.556 0.750 3.500 0.500 1.750 4.750

Equidistant 5.000 3.333 6.667 2.500 5.000 7.500

4.1.5 Optimal designs

The optimal designs obtained by the machine learning and
ABC approaches are shown in Table 2 for n = 1 to n = 3
time points and Table 6 of Online Resource 1 for n = 4 and
n = 5 time points. The machine learning methods lead to
designs with a general preference for later sampling times.
The designs obtained by trees and random forests are very
similar. The ABC approach produces designs with notably
lower sampling times. However, the results obtained by the
ABC approach should be taken with caution, since the high
noise of the expected loss estimates makes it harder to opti-
mise over the design space, especially for higher dimensions.
Moreover, the approximation of the posterior gets worse the
higher the dimension. It is also interesting to note that there
are hardly any differences between the two loss functions for
any given method. This reaffirms our decision to consider
only the 0–1 loss in the other examples.

4.1.6 Classification performance evaluations of optimal
designs

As our next step, we compare the optimal designs found
under the different approaches using a random forest classi-
fier. For each of the optimal designs, we train a random forest
with 100 trees based on 10K simulations from each model.
The misclassification error rates and the misclassification
matrices are estimated from a fresh set of 10K simulations
from each model. This is repeated 100 times to be able to
quantify the random error in estimating the misclassification
error rates. The results for all the optimal designs as well as
for the equispaced designs are shown in Table 3. For more
than two observations, the designs that clearly perform best
are those found under the machine learning classification
approaches. However, also the ABC optimal designs gener-
ally perform well except for n = 5 design times. We can also
observe that the loss function used for optimisation has lit-

tle effect on the performance of the optimal design, only for
the designs found using ABC there is a notable difference
for n = 4. The equispaced designs perform substantially
worse than all the optimal designs up until n = 4 obser-
vations. Table 3 also shows that there is almost no gain in
the classification performance by increasing the number of
observations beyond 2. Any additional observation will only
add a negligible amount of information regarding model dis-
crimination. At some point, adding additional uninformative
observations adversely affects the classification power of the
random forest.

Finally, we compare the optimal designs obtained by the
different methods based on approximate posterior model
probabilities estimatedusingABC, as described inSect. 4.1.2.
To that end, for each design to evaluate we simulate 50 pro-
cess realisations from the prior predictive distribution of each
of the four models at that design and estimate the posterior
model probability of the true model using ABC rejection.
To get precise estimates of the posterior model probabili-
ties for each of the 200 process realisations, we generate 10
million simulations from the prior predictive distribution to
build the reference table. To estimate the posterior proba-
bilities for each generated process realisation, we retain the
40K simulations from the reference table closest to that pro-
cess realisation with respect to the Manhattan distance of the
standardised observations. Box plots showing the distribu-
tions of the estimated model probabilities over the 200 prior
predictive process realisations for all the optimal designs as
well as for the equispaced designs for 1–5 observations are
plotted in Fig. 2. It can be seen that the results for all the
different optimal designs are very similar, even though the
approaches using the 0–1 loss criterion do not directly tar-
get the improvement in the posterior model probabilities.
The equispaced designs perform appreciably worse up until
n = 4 observations. It is also evident that, given the prior
information in this example, not much gain can be achieved
by collecting more than two observations, which is similar to
the random forest classification results obtained in Table 3.
Assessing the optimal designs using random forests is much
faster than performing this ABC simulation study.

A more detailed investigation of the classification perfor-
mance at the optimal designs can be found in Sect. 4.3 of
Online Resource 1.

4.2 Two-model epidemiological models with true
likelihood validation

4.2.1 Aims andmodel set-up

For the example in this section, we use the same infectious
disease model set-up as in Sect. 4.1. However, only the death
and SI models (models 1 and 2) from Table 1 are considered.
The reason is that for these two models the computation
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Table 3 Average
misclassification error rates for
optimal designs obtained by tree
classification (cross-validated),
random forest classification
(using out-of-bag class
predictions), and ABC
approaches under the 0–1 loss
(01L) or multinomial deviance
loss (MDL) as well as for the
equidistant designs for the
infectious disease example. The
average misclassification error
rates were calculated by
repeating the random forest
classification procedure 100
times (see text) and taking the
average. The standard deviations
are given in parentheses

Design n = 1 n = 2 n = 3 n = 4 n = 5

Tree 01L 0.5554 0.5158 0.5133 0.5116 0.5129

(0.0023) (0.0024) (0.0026) (0.0022) (0.0025)

RF 01L 0.5548 0.5160 0.5132 0.5113 0.5138

(0.0027) (0.0025) (0.0025) (0.0025) (0.0025)

ABC 01L 0.5547 0.5161 0.5196 0.5046 0.5339

(0.0023) (0.0025) (0.0030) (0.0024) (0.0027)

Tree MDL 0.5547 0.5178 0.5152 0.5183 0.5159

(0.0023) (0.0030) (0.0028) (0.0028) (0.0025)

RF MDL 0.5550 0.5179 0.5118 0.5104 0.5128

(0.0022) (0.0026) (0.0026) (0.0026) (0.0026)

ABC MDL 0.5553 0.5221 0.5216 0.5226 0.5416

(0.0020) (0.0028) (0.0028) (0.0029) (0.0025)

Equidistant 0.6592 0.6200 0.5760 0.5537 0.5519

(0.0029) (0.0025) (0.0027) (0.0029) (0.0032)
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Fig. 2 For each of the optimal designs obtained by the different
approaches for 1–5 observations in the infectious disease example, dis-
play the distribution of estimated ABC posterior model probabilities
of the correct model over 200 process realisations (50 from each of
the four models) simulated from the prior predictive distribution at the
respective optimal design. For each number of design points, from left

to right there are two magenta box plots for the cross-validated tree
classification designs, two blue box plots for the random forest classi-
fication designs, two red box plots for the ABC classification designs,
and one cyan box plot for the equispaced design. Box plots for the 0–1
loss and for the equispaced designs do not have a notch, whereas box
plots for the multinomial deviance loss are notched

of the likelihood function is efficient enough to be able
to compute likelihood-based posterior model probabilities
for a sufficiently large amount of prior predictive samples.
Therefore, we can compare the results for our likelihood-
free approach using supervised classification methods to the
results obtained by using the true likelihood functions to esti-
mate the design criterion. Furthermore, we can assess the
resulting optimal designs by computing the expected pos-
terior model probabilities and misclassification error rates
based on the true likelihood functions.

Another aim of this example is to demonstrate that
the classification approach can easily cope with higher-

dimensional designs, where other methods would fail to
produce reasonable results in an acceptable amount of
time. For the epidemiological example with four models in
Sect. 4.1, one can see that there is hardly any gain in increas-
ing the number of design points beyond three, so it makes
no sense to consider any higher-dimensional designs. How-
ever, in Sect. 4.1 we assume that we can only observe one
realisation of the infectious disease process. In this section,
in order to explore the performance of our methods for high-
dimensional designs, we assume that several independent
realisations of the stochastic process can be observed. For
example, these independent realisations may pertain to inde-
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pendent populations of individuals.We alloweach realisation
to be observed at potentially different time points.

For simplicity, we assume that the same number of obser-
vations, nd , is collected for each realisation. If there are q
realisations, then the total number of observations and there-
fore the design dimension is n = q · nd .

The prior distributions for the parameters are b1 ∼
LN (μ = −0.48, σ = 0.3) for the death model and
b1 ∼ LN (μ = −1.1, σ = 0.4), b2 ∼ LN (μ =
−4.5, σ = √

0.4) for the SI model.
In this example, we will only consider designs based on

using the misclassification error rate as the design criterion.
In order to compute the misclassification error rates based on
the likelihoods, it is necessary to compute the marginal like-
lihoods for both models. When searching for the optimum
design, we employ a relatively fast Laplace-type approxima-
tion to the marginal likelihood. For validating the resulting
designs using the likelihood-based approach, we use a more
expensive Gauss–Hermite quadrature scheme to obtain the
marginal likelihoods. Details on both integral approximation
methods can be found in Sect. 5.2 of Online Resource 1.

4.2.2 Example settings and results

When searching for the optimal designs, we employ trees
with cross-validation as well as random forests using out-
of-bag class predictions for our supervised classification
approach. For both classification approaches, we use sim-
ulated samples of size 10K (5K per model).

For the likelihood-based approach, the expected 0–1 loss
(= misclassification error rate) is estimated by averaging the
computed 0–1 loss over a sample of size 400 (200 per model)
from the prior predictive distribution. The size of this prior
predictive sample is considerably smaller than for the two
supervised classification approaches due to computational
limitations. Therefore, the volatility of our likelihood-based
misclassification error rate estimates is much higher than
for the supervised classification methods, so we expect our
optimisation procedure to be less stable. The expected loss
surface for the one-dimensional design is depicted in Fig. 3
of Online Resource 1.

However, setting the prior predictive sample size for the
likelihood-based approach to 10K aswell would havemade it
infeasible to find an optimal design in a reasonable amount of
time. Running the classification methods is still much more
time-efficient than evaluating the likelihood function many
times, especially for the SI model in high dimensions, see
also Sect. 3 of Online Resource 1. Therefore, we only used
the likelihood-based approach to find designs up to a total
design dimension of n = 8. Furthermore, for the design
search we used a relatively coarse grid with a spacing of 0.5
days between the limits 0.5 and 10 days. We used the same
design grid for all approaches.

We consider various combinations of the number of reali-
sations, q, and the number of observations per realisation, nd .
All the design methods described in this section are applied
to all integer combinations of 1 ≤ nd ≤ 4 and 1 ≤ q ≤ 4
for which the total number of observations n = q · nd

does not exceed 8. We also investigate higher-dimensional
designs, where we only employ the supervised classification
approaches but not the likelihood-based approach.As higher-
dimensional settings we consider all integer combinations of
q and nd which amount to a total number of observations of
either n = 12, 24, 36, or 48, and where 1 ≤ nd ≤ 4.

The optimal designs found with the different methods are
validated in two ways. Firstly, for each observation from a
sample of size 2K (1K per model) from the prior predictive
distribution, the posterior model probabilities are computed
using the generalisedGauss–Hermite quadrature approxima-
tion to the marginal likelihood with Q = 30 quadrature
points for the death model and up to Q = 302 quadrature
points (minus some pruned points) for the SI model. The
resulting distributions of posterior model probabilities are
displayed in Section 5.3 of Online Resource 1.

We can also use the estimates for the posteriormodel prob-
abilities to compute estimates of the misclassification error
rates for each of the methods and dimension settings. These
estimates are provided in the plots on the right-hand side of
Figure 3, where each row contains the results for one design
method, the x-axis of each plot shows the total number of
observations, n, and each line within each plot displays the
results for a particular setting of nd . Alternatively, one can
use a supervised classification method to estimate the mis-
classification error rates for the optimal designs. In our case,
we use a random forest with training and test sets of size 20K
(10K per model). The random forest classification procedure
is repeated 100 times, and the average misclassification error
rate over the 100 repetitions is taken. The random forest-
based validation results are shown in the plots on the left-hand
side of Fig. 3 analogous to the likelihood-based validation
results.

From Figure 3, it is evident that the misclassification
error rates computed by the random forests are very close
to the likelihood-based misclassification error rate compu-
tations. In most cases, the random forest-based estimates
of the misclassification error rate are a little higher than
the likelihood-based estimates. This is no surprise since the
likelihood-based estimates are directly targeting the Bayes
error rate. However, the trajectories of the misclassification
error rates as a function of n are very similar for both vali-
dation methods. This suggests that for this example random
forests are suitable to validate and compare the efficiency of
the resulting designs. In addition, it is reasonable to expect
that the designs which are optimal for the random forest clas-
sification approach are close to the true optimal designs.
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One can also see fromFig. 3 that for a fixed total number of
observations there is not much difference in the performance
of the different design configurations, at least for the small
values of nd that we considered. It seems that having nd = 2
observations per realisation is the most optimal choice, but
only by a small margin.

4.3 Macrophagemodel

4.3.1 Aim of experiment

A common challenge in experimental biology is identify-
ing the unobserved heterogeneity in a system. Consider for
example the experimental system in Restif et al. (2012). In
this system, the authorswished to identify the role of antibod-
ies in modulating the interaction of intracellular bacteria—in
particular, Salmonella enterica serovar Typhimurium (S.
Typhimurium)—with human phagocytes, inside which they
can replicate. The experiments assessed the effect of a num-
ber of different human immunoglobulin subclasses on the
intracellular dynamics of infection by combining observed
numbers of bacteria per phagocyte with a mathematical
model representing a range of different plausible scenarios.
These models were fit to experimental data corresponding to
each human immunoglobulin subclass in order to determine
the underlying nature of the interactions between the antibod-
ies and bacteria. In these experiments, the data demonstrated
bimodal distributions in the number of intracellular bacteria
per phagocytic cell. The aim was to identify the source of
the unobserved heterogeneity in the system that caused the
observed patterns. Specifically, is there underlying hetero-
geneity in the bacteria’s ability to divide inside phagocytes,
or is it the phagocyte population which is heterogeneous in
its ability to control bacterial division? In this context, the
classification approach allows us to find the experimental
design which best enables us to discriminate between these
competing hypotheses—(1) unobserved heterogeneity in the
bacteria, (2) in the cells, or (3) no heterogeneity.

4.3.2 Experimental procedure

We give a brief account of the experimental procedure:

– After bacterial opsonisation (i.e. the process by which
bacteria are coated by antibodies), the bacteria are
exposed to the phagocytic cells for a total of texp hours,
which can take the values texp ∈ {0.10, 0.20, . . . , 1.50}
hours. During this time, phagocytosis occurs, i.e. the bac-
teria are internalised by the phagocytic cells.

– Next, the cells are treated with gentamicin, an antibi-
otic that kills extracellular bacteria, so that phagocytosis
stops.

– At each of the n observation times tobs = (t1, . . . , tn)

hours post-exposure, two random samples of S cells each
are taken from the overall population of cells: one sample
to count the proportion of infected cells (under a low-
magnification microscope), and one sample of infected
cells to determine the distribution of bacterial counts per
infected cell (at higher magnification).

That is, a design is composed of d = (texp; tobs). The full
experimental procedure is detailed in Restif et al. (2012).

For the purpose of our example,we consider a realistic sce-
nario where we have the resources to count a fixed number of
cells, Ncells = 200. These cells are then equally split between
all the observation times and the two independent observa-
tional goals at each observation time, so S = 	Ncells/(2 n)
.

4.3.3 Model

We consider three mathematical models, based on Restif
et al. (2012), to represent the three competing hypothe-
ses about heterogeneity. These models are continuous-time
Markovian processes that simulate the dynamics of intracel-
lular bacteria within macrophages. Model (1) tracks the joint
probability distribution of the number of replicating and non-
replicating bacteriawithin a singlemacrophage, assuming all
macrophages in a given experiment are from the same type. In
model (2), eachmacrophage has afixed probabilityq of being
refractory, inwhich case it only contains non-replicating bac-
teria, and a probability 1 − q of being permissive, in which
case it only contains replicating bacteria. In model (3), all
macrophages are permissive and all bacteria are replicating.

Simulations from the models are based on simulations
of bacterial counts for the individual macrophages. As for
our infectious disease examples, we can use the efficient
Gillespie algorithm (Gillespie 1977). The outcomes for the
individual macrophages are then aggregated to obtain the
same type of data as observed in the real experiment.

It is possible but cumbersome to compute the likeli-
hood functions for all the models. Computing the likelihood
involves solving a system of linear differential equations,
which can be achieved by using matrix exponentials. How-
ever, these operations are quite expensive so that computing
the posterior model probabilities becomes very costly. Com-
puting the expected losses and searching for an optimal
design can be considered intractable in these circumstances.
In contrast, simulations from themodels can be obtained very
quickly.

Section 6.1 of Online Resource 1 contains a more detailed
description of the Markov process models, the simulation
procedure, the likelihood function, and the prior distribu-
tions.
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Fig. 3 Misclassification error
rates computed using random
forest classification with training
and test samples of size 20K,
averaged over 100 repetitions of
the classification procedure (left
column) and misclassification
error rates computed using the
Gauss–Hermite quadrature
approximation to the marginal
likelihood over 2K prior
predictive simulations (right
column) evaluated at various
optimal designs for different
methods (in the rows) for the
infectious disease example with
two models. The total number of
observations (n = q · nd ) is
plotted on the x-axis of each
graph. Each line connects the
observed values of the
misclassification error rate as
the number of realisations q
increases for a particular value
of nd

4.3.4 Results

We use the machine learning classification approach using
classification trees with cross-validation or random forests
to determine the optimal designs for discriminating between
the three competing models (one model corresponding to

each hypothesis) with respect to the misclassification error
rate. It is assumed a priori that the models are equally likely.
We use 5K simulations from the prior predictive distribution
of each model during the design process. The design grid for
tobs goes from 0.25 to 10 with a spacing of 0.25. The optimal
designs are given in Section 6.2 of Online Resource 1. The
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Table 4 Average misclassification error rates for the optimal designs
obtained under the classification approaches using trees or random
forests and for the equispaced designs for the macrophage model. The
average misclassification error rates were calculated by repeating the
random forest classification procedure 100 times and taking the average.
The standard deviations are given in parentheses

Design n = 1 n = 2 n = 3 n = 4 n = 5

Tree 0.1928 0.1323 0.1433 0.1469 0.1483

(0.0024) (0.0021) (0.0022) (0.0019) (0.0022)

RF 0.1925 0.1325 0.1408 0.1410 0.1465

(0.0022) (0.0021) (0.0022) (0.0021) (0.0021)

Equi 0.2442 0.1974 0.1928 0.1912 0.1935

(0.0027) (0.0023) (0.0023) (0.0025) (0.0024)

tree and the random forest classification approaches lead to
very similar designs.

Similar to the other examples, we assess each design by
producing 10K new simulations under each model at that
design and using these to train a random forest with 100
trees. A further 10K new simulations per model are then used
to estimate the misclassification error rate. This is repeated
100 times for each design. The estimated misclassification
error rates for the designs found under the tree and random
forest classification approaches are shown in Table 4. For
comparison, we also include the estimated error rates for the
equispaced designs.

We are also interested in the posterior model probabili-
ties at the different optimal designs. At each optimal design,
we simulate 20 process realisations under the prior predic-
tive distribution of each model. For each process realisation,
we approximate the posterior model probability of the model
that generated the data using importance sampling (see, e.g.
Liu 2001) with 50K simulations from the importance dis-
tribution. In our case, the prior distribution serves as the
importance distribution. Figure 4 shows box plots for the
distributions of the posterior model probabilities of the cor-
rect model over the prior predictive simulations for different
optimal designs. The computations required to generate one
of these box plots ranged from 5.9 hours to 17.2 hours using
up to 24 parallel threads. In contrast, it took less than two
minutes to obtain one estimate of the misclassification error
rate using a random forest with training and test samples of
size 30K each.

Table 4 indicates that n = 2 observation times yield
the optimal classification power when using trees and ran-
dom forests, even though the posterior model probabilities
of the correct model keep increasing until at least n = 4
(see Fig. 4). For more than two observations, the higher
data dimension impedes the classification accuracy of those
classification methods and more than offsets the gains from
having marginally more information in the data due to the

more optimal allocation of resources to the different obser-
vation times.However, there are no substantial improvements
in the posterior probabilities after n = 2.Bothmachine learn-
ing classification approaches lead to very efficient designs for
all design sizes.

Overall, the ability to correctly classify output from the
three models and thus to decide between the three compet-
ing hypotheses is very good at all the optimal designs. This
suggests that we are able to identify with high certainty if
heterogeneity is present, and if so, whether the bacteria or
the human cells are the source of this heterogeneity.

5 Discussion

We introduce a new simulation-based Bayesian experimen-
tal design approach for model discrimination where the
expected loss is estimated via a supervised classification
procedure. This approach requires significantly fewer sim-
ulations than other simulation-based approaches based on
ABC. Furthermore, efficient, flexible, and fast classification
methods such as classification trees or random forests can
cope with medium to high data dimensions without impos-
ing strict structural assumptions. Therefore, the classification
approach significantly increases the scope of design prob-
lems which can be tackled compared to previous approaches.
For example, optimal designs for the hierarchical logis-
tic regression example could previously only be obtained
by assuming normal-based approximations (Overstall et al.
2018). The high dimensions of the summary statistics for
the macrophage and the spatial extremes example render the
ABC approach unsuitable or even infeasible (see the limi-
tations encountered by Hainy et al. (2016) in a parameter
estimation design problem for spatial extremes). For all the
examples in this paper, the classification approach is signif-
icantly more time-efficient than any of the other approaches
we have considered. The most crucial requirement for the
applicability of the classification approach is that efficient
samplers are available for all the models.

The methodology we present is rather general. We find
that classification trees and random forests work very well
in conjunction with the 0–1 loss. They are less suitable for
loss functions that directly depend on the posterior model
probability such as the multinomial deviance loss. How-
ever, one may use any other classification method that is
quick and leads to accurate predictions for the application at
hand. For example, logistic regression provides natural and
smooth estimates for the posterior model probabilities, but
it is also less flexible due to the linear form of the predic-
tor. Generalised additive models may improve the accuracy
of logistic regression at the expense of a higher computing
time. Other fast classification methods include linear dis-
criminant analysis and its extensions likemixture andflexible
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Fig. 4 For each of the optimal designs obtained by the different
approaches for 1–5 observations in the macrophage example, display
the distribution of estimated posterior model probabilities of the correct
model over 80 process realisations (20 from each of the three models)
simulated from the prior predictive distribution at the respective optimal

design. For each number of design points, the magenta box plot on the
left-hand side is for the tree classification design, the notched blue box
plot in the middle is for the random forest classification design (rf), and
the red box plot on the right-hand side is for the equispaced design

discriminant analysis. If a higher computing time for the clas-
sifier is acceptable and a high predictive power is desired,
more elaborate methods such as neural networks may be
applied. In general, for most applications it will be preferable
to use a classification method where the optimal choice of
the tuning parameters is insensitive to the selected design or
where standard settings are available that work reasonably
well in most circumstances. Otherwise, the optimal tuning
parameters have to be determined for each new design, for
example via cross-validation. Apart from choosing different
classification methods, one may also consider different loss
functions. The choice of the loss function determines the
functional form of the penalty for not correctly estimating
the true class. Alternatives to the 0–1 loss and multinomial
deviance loss include the exponential, logit, and hinge loss
functions. For an overviewof all the aforementionedmethods
and loss functions, see Hastie et al. (2009).

Onedisadvantageof any simulation-baseddesign approach
is that the objective function to optimise over is stochastic.
Even though the classification approach reduces the stochas-
tic noise compared toABC, the optimisation algorithm needs
to take the noise into account. Our focus in this paper is not on
optimisation, so we use a simple coordinate exchange algo-
rithm on a discretised design space. However, our design
algorithm may get stuck at suboptimal solutions if the noise
is too large. We try to alleviate that problem by using parallel
runs with randomly selected initial designs and by recon-
sidering the last few designs visited in each run, where the
noise is reduced at these designs by evaluating the objective
function several times. Furthermore, we employ a Gaussian
process regression post-processing step where we use the
data collected during the coordinate exchange procedure to
train a Gaussian process in order to obtain a smooth esti-

mate of the loss surface. This estimate of the loss surface
is then minimised to find another candidate for the optimal
design. Our algorithm leads to plausible optimal designs in
our examples. For all our examples, the efficiencies of the
optimal designs follow a reasonable trajectory as the design
sizes are increased. Furthermore, the differences between the
design approaches are consistent across the design sizes. For
high-dimensional designs with a continuous design space
and noisy objective functions, the approximate coordinate
exchange algorithm (Overstall and Woods 2017) is a theo-
retically sound and efficient alternative. Price et al. (2018)
present an ‘induced natural selection heuristic’ algorithm
that can cope with moderate to high dimensions and noisy
objective functions. Other possible optimisation algorithms
suited for noisy objective functions in small to moderate
dimensions include ‘simultaneous perturbation, stochastic
approximation’ (Spall 1998) and the rather robust Nelder–
Mead algorithm (Nelder and Mead 1965).

For future work, we will consider extending our approach
to Bayesian parameter estimation designs. Another possibil-
ity is to attempt to utilize our classification approach within
a sequential design setting in the spirit of Kleinegesse et al.
(2020).
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tary material available at https://doi.org/10.1007/s11222-022-10078-
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