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Current global changes are reshaping ecological communities and modify-
ing environmental conditions. We need to recognize the combined impact
of these biotic and abiotic factors on species interactions, community
dynamics and ecosystem functioning. Specifically, the strength of preda-
tor–prey interactions often depends on the presence of other natural
enemies: it weakens with competition and interference or strengthens with
facilitation. Such effects of multiple predators on prey are likely to be
affected by changes in the abiotic environment, altering top-down control,
a key structuring force in natural and agricultural ecosystems. Here, we
investigated how warming alters the effects of multiple predators on prey
suppression using a dynamic model coupled with empirical laboratory
experiments with Drosophila–parasitoid communities. While multiple parasi-
toids enhanced top-down control under warming, parasitoid performance
generally declined when another parasitoid was present owing to competi-
tive interactions. This could reduce top-down control over multiple
generations. Our study highlights the importance of accounting for interac-
tive effects between abiotic and biotic factors to better predict community
dynamics in a rapidly changing world and thus better preserve ecosystem
functioning and services such as biological control.
1. Introduction
Ongoing global anthropogenic changes alter the abiotic context, changing the
outcome of species interactions [1,2]. Global warming can modify the strength
of trophic interactions owing to changes inmetabolic rates [3], shifts in spatial dis-
tributions and seasonal phenology [4], lethal effects on predators, or altered attack
rates [5–7]. However, warming also alters the strength of non-trophic interactions
among predators [8,9]. Altered non-trophic interactions among predators would
change the effects of multiple predators on top-down control [10,11], yet to what
extent is unclear. Effects ofwarming on non-trophic interactions among predators
are often overlooked but essential to accurately forecast ecological consequences
of warming for biological control and ecosystem integrity.

The effects of multiple predators on prey suppression are often not additive.
Additivity would occur if predators had independent effects on prey, in which
case increased predator density should enhance top-down control because of
higher predatory pressure on the prey. However, direct and indirect interactions
among predatorsmay cause effects to deviate from additivity [12–14]. The effects
of multiple predators on prey can be synergistic (i.e. the effects are greater than
what would be expected if they were additive) owing to niche complementarity
or facilitation (i.e. risk enhancement for the prey) [15]. By contrast, the effects of

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2022.0121&domain=pdf&date_stamp=2022-03-16
mailto:melanie.thierry34@gmail.com
https://doi.org/10.6084/m9.figshare.c.5877640
https://doi.org/10.6084/m9.figshare.c.5877640
http://orcid.org/
http://orcid.org/0000-0003-4169-2413
http://orcid.org/0000-0002-2815-0874
http://orcid.org/0000-0003-0711-6447


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20220121

2
multiple predators on prey can be antagonistic owing to intra-
guild predation, competition or interference when the degree
of overlap between predator’s foraging areas or phenologies
is too high (i.e. risk reduction) [16]. All such potential effects
are called multiple predator effects (MPEs [17]). Emergent
MPEs are particularly important in biological control where
introducing one or several predator species might result in
risk reduction for the prey because of competition among
predators instead of planned risk enhancement [18].

Warming can alter both trophic and non-trophic inter-
actions. Changes in the strength of these interactions could
modify emergent MPEs, either enhancing or decreasing top-
down control. Climate change also disrupts species composition
of communities [4,19], which would change the outcome of
pairwise interactions that are influenced by other species in
the community [20–22]. Changes in species composition of com-
munities are thus also likely to alter MPEs, affecting biological
control.However, interactive effects betweenwarming andcom-
munity composition on top-down control remain poorly
studied, and little is known about how warming alters the
effects of multiple predators on top-down control.

Here, we used mathematical models in combination with a
series of three laboratory experiments on Drosophila simulans
and three of its co-occurring larval parasitoids to investigate
the effects of warming on MPEs on top-down control. Host–
parasitoid interactions are a particular type of predator–prey
interaction in which parasitoid larvae feed and develop
inside or on an arthropod host while adults are free-living
[23]. When host is parasitized, three outcomes are possible:
the parasitoid successfully develops and kills the host, the
host survives and successfully eliminates its parasitoid through
immune response (i.e. encapsulation andmelanization) [24], or
both parties die. The presence ofmultiple parasitoids can result
in extrinsic competition between adults for space and ovipos-
ition (i.e. interference) and intrinsic competition within a host
[25]. Intrinsic competition results from super- or multi-parasit-
ism events when two parasitoids (conspecific or heterospecific)
parasitize the same host individual. A single parasitoid can
also lay multiple eggs in a single host as part of a strategy to
overwhelm the host immune system. In solitary parasitoids,
such as the species used in the present study, only one individ-
ual completes development in each host, suppressing the
other(s) physically or physiologically. Parasitoids represent
an excellent system to study how warming directly changes
the effects of multiple predators on top-down control because
the outcome of the interactions is easily observed by rearing
the host, and intrinsic competitive interactions between parasi-
toids can be observed by dissecting the host larva. In this study,
we empirically measured trophic interaction strength across
temperatures and parasitoid assemblages. We recorded emer-
gent effects of multiple parasitoids on host suppression by
comparing empirical data with estimates in which multiple
parasitoids would not interact (i.e. would have an additive
effect) using a mathematical model for multiple co-occurring
parasitoids with a functional response approach [26,27]. With
this framework, we addressed three specific questions: (i) do
multiple parasitoids have additive, synergistic, or antagonistic
effects on host suppression? (ii) to what extent does tempera-
ture modify the outcomes of MPEs? and (iii) are changes in
host immune response or competitive interaction strength
causing emergentMPEs?Our results demonstrate the principal
role of temperature for non-trophic interactions among
parasitoids, with cascading effects on host suppression.
2. Material and methods
(a) Biological system
Cultures of D. simulans and their associated parasitoids collected
from two tropical rainforest locations in North Queensland Aus-
tralia: Paluma (18°59.0310 S, 146°14.0960 E) and Kirrama Range
(18°12.1340 S, 145°53.1020 E; both less than 100 m above
sea level; [28]) were used for the experiments. Tropical species
already live close to their upper thermal limits [29]. Drosophila
species are limited in their evolutionary potential for thermal
adaptation [30,31], making our tropical Drosophila–parasitoid
community a relevant system to study effects of future warming
conditions on communities. Drosophila simulans and parasitoid
cultures were established between 2017 and 2018, identified
using both morphology and DNA barcoding, and shipped to
the Czech Republic under permit no. PWS2016-AU-002018
from Australian Government, Department of the Environment.
All cultures were maintained at 23°C and 12 L : 12 D cycle at
the Biology Centre, Czech Academy of Sciences. The three
larval parasitoid species Asobara sp. (Braconidae: Alysiinae;
strain KHB, reference voucher no. USNMENT01557097, reference
sequence BOLD process ID: DROP043–21), Leptopilina sp.
(Figitidae: Eucolinae; strain 111F, reference voucher no. USN-
MENT01557117, reference sequence BOLD process ID:
DROP053-21) and Ganaspis sp. (Figitidae: Eucolinae; strain 84BC,
reference voucher no. USNMENT01557102 and USN-
MENT01557297, reference sequence BOLD process ID:
DROP164-21) were used (for more details on the parasitoid strains
see [32]).Drosophila simulans isofemale lines were kept on standard
Drosophila medium (corn flour, yeast, sugar, agar and methyl-4-
hydroxybenzoate) for approximately 45–70 non-overlapping gen-
erations before the experiments. To revive genetic variation, five
host lines were combined to establish two population cages of
mass-bred lines before the start of the experiments. Single-parasi-
toid isofemale lines were used and maintained for approximately
25 to 40 non-overlapping generations before the start of the exper-
iment by providing them every week with 2-day-old larvae of a
different Drosophila species—Drosophila melanogaster.
(b) Experiments
We used a functional response approach following McCoy’s fra-
mework to investigate the effects of warming on the strength of
trophic and non-trophic interactions [26]. We first obtained each
parasitoid functional response parameter at ambient and
warmed temperatures with single-parasitoid treatments (exper-
iment 1). Then, we used these functional response parameter
estimates to predict trophic interaction strength for each tempera-
ture and parasitoid combination with the null hypothesis that
parasitoids were not interacting and thus had additive effects
on host suppression. In experiment 2, we empirically measured
the effects of temperature and parasitoid combinations on
trophic interaction strength and compared the predicted and
observed values to identify emergent effects of multiple parasi-
toids on host suppression and their dependence on the
temperature regime. We performed the two first blocks of exper-
iment 1 and the entire experiment 2 in parallel, and controls and
single-parasitoid treatments were common to both experiments.
In experiment 3, we investigated the mechanisms of multiple
parasitoid effects by dissecting hosts rather than rearing them.
This allowed us to measure super- and multi-parasitism rates
and encapsulation depending on the temperature regime and
parasitoid combinations.

A total of 22 920 D. simulans eggs were collected; 13 120 for
experiment 1, 4800 for experiment 2 and 5000 for experiment 3
(from which 1000 larvae were dissected). In experiments 1 and
2, 12 990 eggs (73%) successfully developed into adults (8409
hosts and 4581 parasitoids). The remaining 23% either died
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Figure 1. Schematic representation of the experimental design. (a) Controls or (b) one single-parasitoid female with either 5, 10, 25, 50 or 100 D. simulans per
10 ml of media (n = 384 vials), (c) two parasitoids conspecific (n = 88 vials), or (d ) two parasitoids heterospecific (n = 68 vials) with 50 D. simulans per 10 ml of
media. (e) Rearing until adults emerge for experiments 1 and 2 (up to 41 days), or ( f ) dissection of 10 third instar larvae or pupae per vial 2, 3 or 4 days after
infection for experiment 3. (Online version in colour.)
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naturally or the host was suppressed without successful
development of the parasitoid.

(i) Experiment 1: single-parasitoid experiment
Eggs of D. simulans were placed in a single 90 mm high and
28 mm diameter glass vial with 10 ml of Drosophila media at
six different densities replicated eight times each (5, 10, 15, 25,
50 or 100 eggs per 10 ml of food media in a vial, total number
of eggs = 13 120, n = 384 vials; figure 1b). To collect D. simulans
eggs, an egg-washing protocol was adapted from [33]. The day
before the egg-washing protocol was conducted, two batches of
egg-laying medium (Petri dishes with agar gel topped with
yeast paste) were introduced in each population cage for flies
to lay eggs overnight. Eggs were transferred to the experimental
vials. We placed half of the vials at ambient temperature (22.7°C
± 0.4 s.d.—the current mean yearly temperature at the two study
sites [28]), and the other half under elevated temperature (27.4°C
± 0.5 s.d.—projected change in global mean surface temperature
for the late twenty-first century is 3.7°C for the IPCC RCP8.5
baseline scenario [34]). Like in other Drosophila species, the ther-
mal performance curve of D. simulans demonstrates a decrease in
performance from temperatures above 25°C [35].

After 48 h, we placed one single naïve mated three to 5-day-
old female parasitoid in each vial with D. simulans larvae. We
removed the parasitoids 24 h later. We repeated this for all
three parasitoid species, temperatures and host densities. We
simultaneously performed controls without parasitoids to
obtain the baseline for host survival without parasitism and
potential variation during egg collection (figure 1a). We checked
vials daily for adult emergences until the last emergence (up to
41 days for the species with the longest developmental time).
We waited five consecutive days without any emergence to
stop collecting and thus avoided confounding counts with a
second generation. All emerged insects were collected, identified,
sexed and stored in 95% ethanol. Each treatment was replicated
eight times across eight experimental blocks.
(ii) Experiment 2: multiple parasitoids experiment
To investigate the effect of warming on MPEs, we manipulated
parasitoid assemblages and temperature in a fully factorial
design (figure 1c,d). We followed the same protocol described
above for experiment 1, using 50 D. simulans eggs per vial with
two female parasitoids either from the same (figure 1c) or differ-
ent species (figure 1d). Each treatment was replicated eight times
across two blocks (n = 96). Controls and single-parasitoid treat-
ments were standardized to experiment 1 with the 50 eggs per
vial density. Fifty eggs per standard Drosophila vial corresponds
to low competition between hosts, a suitable host/parasitoid
ratio when using one or two parasitoids, and enough host per
vial for meaningful statistics.
(iii) Experiment 3: mechanisms of multiple predator effects
In a follow-up experiment, we conducted a subset of the treat-
ments described for experiments 1 and 2 with Asobara sp. and
Ganaspis sp. We put 50 D. simulans eggs per vial with 10 ml of
food media under ambient and warming temperatures and intro-
duced one parasitoid, two conspecific parasitoids or the two
heterospecific parasitoids, resulting in five different parasitoid
assemblages. Each treatment was replicated 10 times across
two blocks (n = 100). Instead of rearing the insects to adults, we
dissected 10 third instar larvae or pupae per vial (figure 1f ).
We individually transferred each host larva into a glass Petri
dish containing phosphate buffered saline and dissected it
under a stereomicroscope. We recorded the number of parasitoid
larvae and eggs of each species to assess super- and multi-para-
sitism events. When possible, we also identified the number and
species of encapsulated parasitoids. Pictures of the eggs, larvae
and encapsulated parasitoids for each species observed during
the experiment are presented in the electronic supplementary
material, S1 and figure S1. At the elevated temperature, six repli-
cates were dissected 2 days after infection (early dissection time)
and four 3 days after infection (late dissection time). At the



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20220121

4
ambient temperature, four replicates were dissected 3 days after
infection (early dissection time) and six 4 days after infection (late
dissection time). We selected different times for dissection at each
temperature to standardize parasitoid developmental stage while
still being able to identify all the parasitoids that have parasitized
the host. At the early dissection time, Asobara sp. were already at
the larval stage, whereas Ganaspis sp. were still eggs. Ganaspis
larvae were also observed at the late dissection time, sometimes
simultaneously with a larva of Asobara sp. within the same host.

(c) Data analysis and modelling
(i) Experiment 1: single-parasitoid experiment
We combined numerical simulations of host density dynamics,
accounting for host depletion [36]:

dH
dt

¼ � F(H)P,

with Bayesian parameter estimation using the rstan package (e.g.
[37]). p = 1 is the parasitoid density, and F(H ) denotes the host
density-dependent functional response. In the model fitting, we
used Markov chain Monte Carlo to sample from the functional
response’s model parameters’ posterior probability distribution
p(θ|Hsup) given the observations Hsup, based on the likelihood
function p(Hsup|θ) and prior distributions p(θ), with θ the free
parameters. Hsup is the number of D. simulans suppressed (the
difference between adult hosts emerging from the controls with-
out parasitoids and from the experiment). In each iteration, we
computed numerical solutions of the equation with the built-in
Runge–Kutta ordinary differential equation solver to predict den-
sities Ĥ1 after 1 day for each given initial host density, H0. The
initial host densities were taken from the average number of
hosts that emerged from the controls for each density and temp-
erature to account for potential deviations between the aimed
and actual densities (electronic supplementary material, table
S1). The likelihood was evaluated assuming a binomial distri-
bution for observed numbers of suppressed hosts Hsup with
n =H0 trials and p ¼ ðH0 � Ĥ1Þ=H0 success probability. We
used vague priors for all model parameters.

We fitted three different functional response models (Type II,
Type III and generalized Type III) and retained the Type II func-
tional response [38] after model comparison (see the electronic
supplementary material, S2). The equation for the instantaneous
attack rate of a parasitoid is as follows:

F(H) ¼ aH
1þ ahH

,

where a is the attack rate and h is the handling time. Type II func-
tional responses are thought to characterize the attack rate of
many types of predators and parasitoids [39]. Parameter esti-
mates and the functional responses for each species at each
temperature are presented in the electronic supplementary
material, S2, table S2 and figure S2).

(ii) Experiment 2: multiple parasitoids experiment
Host–parasitoid interaction strength was described with the com-
bination of degree of infestation (DI; i.e. host suppression) and
successful parasitism rate (SP; i.e. parasitoid performance). The
observed degree of infestation (DIobs) and successful parasitism
rate (SP) were measured as

DIobs ¼ 1� H
HC

; SP ¼ P
Hc �H

,

where H is the number of adult hosts emerging from the exper-
iment vial, HC is the mean number of adult hosts emerging from
the controls without parasitoids and P is the number of parasi-
toid adults emerging from the experimental vial [40,41]. DIobs
was set to zero if the number of hosts emerging from the
treatment was greater than the controls. If no parasitoid emerged
or the number of hosts suppressed was estimated to be zero, SP
was set to zero. If the number of parasitoids that emerged was
greater than the estimated number of hosts suppressed, SP was
assigned to one. For treatments with parasitoid conspecifics,
we assumed that each of the two parasitoid individuals was
attacking the hosts equally; therefore, the number of parasitoid
adults emerging was divided by two to calculate individual
successful parasitism rate.

We analysed these data with generalized linear models
(GLMs) and verified model assumptions with the DHARMa
package [42]. To correct for overdispersion of the residuals and
zero inflation, data were modelled using zero-inflation models
with a beta-binomial error distribution and a logit function
using the glmmTMB function from the TMB package [43]. Two
categories of predictor variables were used in separate models
with temperature treatment (two levels: ambient and warming):
(i) parasitoid treatment (three levels; single parasitoid, two para-
sitoids conspecific, and two parasitoids heterospecific), and (ii)
parasitoid species assemblage (nine levels). The two-way inter-
actions between temperature and either parasitoid treatment or
parasitoid assemblage were tested and kept in our models if
judged to be significant based on backward model selection
using likelihood-ratio tests. The significance of the effects was
tested using Wald type III analysis of deviance with likelihood-
ratio tests. Factor levels were compared using Tukey’s HSD
post hoc comparisons of all means and the emmeans package
[44]. Results for developmental rate are presented in the
electronic supplementary material, S3 and figure S3.

(d) Estimation of multiple parasitoid effects
To predict the degree of infestation if parasitoids have independent
effects on host suppression, we used the method developed by
McCoy et al. [26], which considers host depletion. This method
uses the functional responses obtained from experiment 1 in a
population-dynamic model to predict how host density changes
in time as a function of initial density and parasitoid combination
for each temperature. We thus calculated the estimated degree of
infestation (DI0) by integrating the aggregate attack rates over the
duration of the experiment as host density declines. We first
solved the equation

dH
dt

¼ �
Xn

i¼1

aiHtPi

1þ aihiHt
,

similar to the equation described for experiment 1 but adapted to n
parasitoids. Then,we calculated the estimated degree of infestation
as

DI0 ¼ 1 �HT

H0
,

where H0 is the initial host density and HT is the estimated host
population at the end of the experiment (time T = 1 day). This
method allows a reasonable estimate ofDI0 for the null hypothesis
that predators do not interact [27]. The lower and upper confidence
intervals (CI) around the predicted values were estimated with a
global sensitivity analysis based on the functional response par-
ameters estimates to generate 100 random parameter sets using a
Latin hypercube sampling algorithm [45]. The expected degree
of infestation was calculated for each parameter set using the sens-
Range function in the R package FME. The 2.5% and the 97.5%
quantiles of the values obtained from these simulations were
used as 95% CIs around the predictions.

Predictions from the population-dynamic model were then
compared with the observed values (DIobs). Estimated DI
values greater than observed DI translate to risk reduction,
while lower estimates reflect risk enhancement for the host
with multiple parasitoids. We calculated the difference between
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Table 1. Odds ratios of a successful parasitism event between parasitoid
treatments (single parasitoid, two parasitoids conspecific and two
parasitoids heterospecific) for each parasitoid species. (Results are averaged
over both temperatures because there was no significant interaction
between temperature and parasitoid treatments. Values less than or greater
than one denote a decrease or an increase in the odds of successful
parasitism, respectively. Significant differences are highlighted in italics.)

parasitoid
species contrast

odds
ratio p-value

Ganaspis sp. two conspecifics/

single

0.043 <0.0001

two heterospecifics/

single

0.166 0.0007

heterospecifics/

conspecifics

3.876 <0.0001

Asobara sp. two conspecifics/

single

0.448 0.036

two heterospecifics/

single

0.711 0.484

heterospecifics/

conspecifics

1.589 0.251

Leptopilina sp. two conspecifics/

single

0.182 0.494

two heterospecifics/

single

0.871 0.994

heterospecifics/

conspecifics

4.764 0.295
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DIobs and mean DI0 for each treatment and investigated the
effects of temperature (ambient versus warmed), parasitoid
diversity (one or two species), and their interaction if significant,
using an analysis of variance with the aov function. We statisti-
cally compared the observed and estimated DI for each
temperature regime using GLMs with a beta-binomial error dis-
tribution and a logit function with DI0 as an offset (i.e. predictor
variable) following Sentis et al. [10]. A positive or negative sig-
nificant intercept indicates that DI0 values underestimate or
overestimate DIobs, respectively.

(i) Experiment 3: multiple predator effects mechanisms
The frequency of super- and multi-parasitism events was calcu-
lated out of the larvae parasitized per vial (total of 1000 larvae
dissected across 100 vials, out of which 868 were parasitized:
the presence of either one or both parasitoid species and/or
trace of melanization). The frequency of encapsulated parasitoids
was calculated out of the total number of parasitoids per larva.
Effects of temperature and parasitoid assemblages on these fre-
quencies were analysed with generalized linear mixed models
with the method described for experiment 2 and the time of dis-
section (early or late) as a random effect. All analyses were
performed using R v. 4.0.2 [46].
3. Results
(a) Effects of multiple parasitoids on host suppression

under warming
The degree of infestation observed in the experiment varied
from the model estimations (figure 2). Temperature signifi-
cantly affected these differences (F1,93 = 13.9, p < 0.0001), but
parasitoid diversity did not (F1,93 = 0.09, p = 0.766) (electronic
supplementary material, tables S3 and S4), implying that
parasitoid density rather than their diversity is important
for host suppression. The comparison of the estimated and
observed DI revealed that, in most cases, there was no signifi-
cant difference between predicted and observed DI at
ambient temperature, implying neutral effects with multiple
parasitoids (when looking at the intercept of the GLM with
DI0 as an offset; value ± s.e.: 0.12 ± 0.32, z value = 0.381,
d.f. = 40, p = 0.703), whereas under warming, the predicted
DI0 significantly underestimated the observed DIobs, imply-
ing risk enhancement for the host (value ± s.e.: 0.44 ± 0.18, z
value = 2.431, d.f. = 40, p = 0.015; figure 2).

(b) Effects of warming and parasitoid assemblages on
the observed degree of infestation

Contrary to the effects of multiple parasitoids on host suppres-
sion, the observed degree of infestation DIobs was not
significantly affected by temperature (x21 ¼ 1:05, p = 0.306), or
parasitoid treatment (single, two conspecific or two heterospe-
cific parasitoid assemblages: x22 ¼ 4:26, p = 0.119; electronic
supplementary material, table S5) owing to species-specific
effects. DI only varied with parasitoid species assemblages
(x21 ¼ 251:92, p < 0.0001, electronic supplementary material,
table S6). DI was the highest in assemblages with Ganaspis
sp., either alone, with a conspecific, or another parasitoid
species (electronic supplementary material, figure S4).

(c) Effect of warming and parasitoid assemblages on
parasitoid performance

Despite having no effect on DI, parasitoid treatment (single,
two conspecific or two heterospecific parasitoid assemblages)
significantly affected successful parasitism rate, and the effect
varied among parasitoid species (two-way interaction:
x24 ¼ 16:88, p = 0.002; table 1; electronic supplementary
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material, table S7). SP of Ganaspis sp. decreased by 95.7% (95%
CI: 93.6–97.8%) with the presence of a parasitoid conspecific
( post hoc odds ratio (OR) = 0.043, p < 0.0001 for contrast 2Pc/
1P; electronic supplementary material, table S8), and by
83.4% (CI: 75.4–91.3%)with the presence of a parasitoid hetero-
specific compared to when alone (OR = 0.166, p < 0.001 for
contrast 2Ph/1P; electronic supplementary material, table
S8). However, it increased by 287.6% (CI: 178.8–396.4%)
when the parasitoid competitorwas from another species com-
pared to a conspecific (OR = 3.876, p < 0.0001, for contrast 2Pc/
2Ph; electronic supplementarymaterial, table S8). SP ofAsobara
sp. decreased by 55.2% (CI: 41.5–69.7%)when a parasitoid con-
specific was present compared to when alone (OR= 0.448, p =
0.036), but was not significantly affected by the presence of a
parasitoid heterospecific (OR = 0.712, p = 0.484). There were
no significant effects of parasitoid treatments for SP of Leptopi-
lina sp. Effects of parasitoid assemblages on SP also varied
between parasitoid species and are presented in the electro-
nic supplementary material, S6 (electronic supplementary
material, tables S9 and S10, and figure S5).

Effects of temperature on SP also depended on the species
(two-way interaction: x22 ¼ 7:31, p = 0.026; electronic sup-
plementary material, table S7). Only Ganaspis sp. was
significantly affected by temperature, and its SP decreased by
58.8% (CI: 69.8–47.8%) with warming (OR = 0.412, x21 ¼ 10:17,
p = 0.001). However, all species developed faster under warm-
ing (electronic supplementary material, figure S3).
(d) Mechanisms of multiple predator effects
The frequency of either super- or multi-parasitism events,
reflecting strength of intrinsic competition among parasi-
toids, was significantly affected by parasitoid assemblages
(x24 ¼ 572:40, p < 0.0001), temperature (x21 ¼ 4:49, p = 0.034)
and the interaction between parasitoid assemblages and
temperature x24 ¼ 36:04, p < 0.0001; figure 3, electronic sup-
plementary material, table S11). Super-parasitism rate
increased by 239% (CI: 230–308%) when Ganaspis sp. was
with a conspecific (OR = 3.69, p < 0.0001), and by 581% (CI:
411–751%) when Asobara sp. was with a conspecific (OR =
6.81, p < 0.0001) compared to when they were alone, but with-
out significant differences between temperature treatments.
In the parasitoids heterospecific treatments, warming signifi-
cantly increased the frequency of super- and multi-parasitism
events by 173% (CI: 130–216%; OR = 2.73, p < 0.0001), indicat-
ing an increase in intrinsic competition among parasitoids
with warming.

The frequency of encapsulated parasitoids differed
between parasitoid species, but not between treatments
(results presented in the electronic supplementary material,
S8, table S12 and figure S6), indicating that host immune
response did not change depending on the treatments.
4. Discussion
The key result from our study is the synergistic effects of mul-
tiple predators for top-down control at elevated temperature
across predator assemblages. However, parasitoid perform-
ance often decreased when multiple parasitoids were
present owing to intrinsic competition among parasitoids,
potentially limiting the long-term benefits for ecosystem
functioning.

(a) Warming increases the effects of multiple predators
on the risk of predation

Our results showed that warming led to a higher top-down
control than expected with multiple predators. Indeed, our
mathematical model underestimated trophic interaction
strength measured in multiple predators treatments at elev-
ated temperatures. Our results are in concordance with
previous studies on diverse systems on the importance of
considering non-trophic interactions to predict the effect of
multiple predators on top-down control under global
changes. Drieu et al. [47] found that predator diversity
enhanced the biological control of insect pests in vineyards
under warming owing to functional complementarity
among predator species, while effects were substitutive at
ambient temperature. Cuthbert et al. [11] also found an
impact of temperature on intraspecific MPEs on an invasive
Gammaridae species (Amphipoda). Yet, the direction of the
effects contrasted ours as they observed risk enhancement
at low temperature and risk reduction with warming. Sentis
et al. [10] found a general trend of predation risk reduction
for the prey with multiple predators in an aquatic food web
but without any effect of temperature on those emergent
MPEs. Our study goes further by showing the important
impact of warming on the impacts of multiple predators on
prey suppression across multiple assemblages of conspecifics
and heterospecifics. In addition to increasing prey suppres-
sion with multiple predators under warming in terrestrial
ecosystems, a diverse predator community also increases
the chances of complementarity in the face of environmental
variation and disturbance [48]. Indeed, the presence of mul-
tiple predator species could mitigate the adverse effects of
warming on top-down control owing to resource partitioning
and/or functional redundancy [47,49,50]. Therefore, preser-
ving predator biodiversity should be generally beneficial for
top-down control under climate change.



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20220121

7
(b) Mechanisms behind emergent multiple predator
effects on the prey

Because of the synergistic effects of multiple parasitoids on
host suppression under warming found in our study, we
could have hypothesized that warming weakens interference
between parasitoids, similarly to predator–prey systems [51].
However, our host–parasitoid system allowed us to investi-
gate further the potential mechanisms behind our results,
especially the strength of intrinsic competitive interactions
between parasitoids (i.e. frequency of super- and multi-
parasitism events). We found generally higher intrinsic
competition in multiple parasitoid treatments than single-
parasitoid treatments and higher intrinsic competition
under warming when the two species were present compared
to ambient temperature. When superparasitized or multipar-
asitized, the host was less likely to survive, possibly because
its immune response was less likely to overcome multiple
parasitoids. Therefore, the higher top-down control observed
under warming with multiple parasitoids was because of a
higher parasitism pressure and not because of weaker
interactions between parasitoids.

We conducted the experiments in simplified laboratory
conditions and forced parasitoids to share the same habitat
(a vial) and overlapped in time (24 h), which does not
allow for resource partitioning [52]. This might have
enhanced the rate of super- and multi-parasitism events
and thus top-down control. In nature, warming could also
change predator habitat use [8,9] and phenology [53,54],
leading to changes in MPEs. However, the impact of tempera-
ture on MPEs was consistent across parasitoid assemblages,
suggesting a general pattern for synergistic effects with
multiple natural enemies under warming in our system.

(c) Parasitoid performance was mostly affected by
parasitoid assemblage

Despite multiple parasitoids enhancing host suppression
under warming, the successful parasitism rate was often
lower at both temperatures when another parasitoid individ-
ual was present, probably owing to the strong intrinsic
competitive interactions observed through dissections. A
decrease in parasitoid performance would potentially limit
the synergistic effects of multiple parasitoids for host sup-
pression in the long term. Similarly, another study on
Drosophila–parasitoid interactions observed a significant
impact of thermal regime on parasitoid success, but still with-
out changes in the observed degree of infestation [55]. The
long-term effects of warming on parasitoid populations are
thus uncertain, and hosts from the next generation might
benefit from lower parasitoid abundances owing to a lower
rate of successful parasitism.

(d) Similar effects of intra- versus interspecific multiple
parasitoids on top-down control

Similar to other studies, we did not find significant differ-
ences between treatments with multiple conspecifics or
heterospecific predators for prey suppression [56–58]. There-
fore, it is essential to look at the effects of both predator
diversity and density on prey suppression, rather than only
using a substitutive approach (i.e. keeping predator density
constant [52]), which might confound the results. When
niche differentiation is allowed, for example, with habitat het-
erogeneity or a more prolonged timeframe that includes
potential differences in phenology, an increase in predator
diversity should intensify prey suppression because of func-
tional diversity rather than because of diversity per se [58–
60]. Here, two predators of the same species rather than a
single predator intensified prey suppression at warmer temp-
eratures despite the small scale of the experiment. Allowing
for differentiation in habitat domain between predator
species might have yielded higher prey suppression in
treatments with heterospecifics and a lower rate of multi-
parasitism. Given the likely ubiquity of resource partitioning
in nature [61], preserving predator biodiversity would be the
best strategy to maintain top-down control.

(e) No effects of treatments on the observed degree
of infestation

Warming had a significant effect on the differences between
observed and estimated degree of infestation. However,
temperature treatment had no significant effect on the
observed degree of infestation. Moreover, prey suppression
was generally higher when predator assemblages included
the best-performing species, Ganaspis sp., no matter the pred-
ator treatment or temperature. A meta-analysis on the effects
of predator diversity on prey suppression found a similar
trend across the 46 studies taken into account [62], but also
found a general positive effect of multiple predators on top-
down control. Contrastingly, a meta-analysis of 108 biological
control projects found no relationship between the number of
agents released and biological control success for insect pests
[63]. However, increasing predator diversity should be gener-
ally beneficial for top-down control by increasing the chances
to have a more effective natural enemy species in the commu-
nity, as was the case in our study (i.e. sampling effect model
[64]). Moreover, the presence of multiple species in the com-
munity could buffer any mismatch between predator and
prey species induced by warming [65]. Ganaspis sp. was the
best-performing species in suppressing D. simulans across
treatments. Still, its performance decreased with warming,
suggesting that parasitism rate, and therefore host suppres-
sion, could also be reduced in the longer term owing to a
decrease in parasitoid population.
5. Conclusion
Overall, pairwise interaction strength generally failed to accu-
rately estimate the trophic interaction strength observed,
indicating that non-trophic interactions must be considered to
predict the effects of multiple predators on prey suppression
and in food web studies in general [66]. While previous studies
showalteredMPEswithwarming owing to changes in resource
partitioning [8,11], our study is the first, to our knowledge, to
show signs of direct effects of warming on predator interactions
across predator assemblages, resulting in a higher top-down
control with multiple predators at elevated temperature.
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