
Eur. Phys. J. Spec. Top. (2022) 231:3461–3470
https://doi.org/10.1140/epjs/s11734-022-00537-2

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

A discrete-time epidemic model for the analysis
of transmission of COVID19 based upon data
of epidemiological parameters
D. Ghosh1,a, P. K. Santra2,b, G. S. Mahapatra1,c, Amr Elsonbaty3,4, and A. A. Elsadany3,5,d

1 Department of Mathematics, National Institute of Technology Puducherry, Karaikal 609609, India
2 Maulana Abul Kalam Azad University of Technology, Kolkata 700064, India
3 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University,

Al-Kharj 11942, Saudi Arabia
4 Department of Engineering Mathematics and Physics, Faculty of Engineering, Mansoura University, Mansoura 35516,

Egypt
5 Department of Basic Science, Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt

Received 21 November 2021 / Accepted 5 March 2022 / Published online 16 March 2022
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of
Springer Nature 2022

Abstract The forecasting of the nature and dynamics of emerging coronavirus (COVID-19) pandemic has
gained a great concern for health care organizations and governments. The efforts aim to to suppress the
rapid and global spread of its tentacles and also control the infection with the limited available resources.
The aim of this work is to employ real data set to propose and analyze a compartmental discrete time
COVID-19 pandemic model with non-linear incidence and hence predict and control its outbreak through
dynamical research. The Basic Reproduction Number (R0) is calculated analytically to study the disease-
free steady state (R0 < 1), and also the permanency case (R0 > 1) of the disease. Numerical results show
that the transmission rates α (> 0) and β (> 0) are quite effective in reducing the COVID-19 infections
in India or any country. The fitting and predictive capability of the proposed discrete-time system are
presented for relishing the effect of disease through stability analysis using real data sets.

1 Introduction

Today, the daily life of the human population starts
with the concern of fighting against the pandemic
COVID-19 outbreak cited by Choi et al. [9] and Gralin-
ski and Menachery [17]. It is reported that COVID-
19 virus can transmit from infected individual to sus-
ceptible one through a direct contact with respira-
tory droplets caused by coughing or sneezing. Although
coronavirus can survive on surfaces for several hours,
it is found that conventional disinfectants can elimi-
nate it. The ways and mechanisms by which COVID-19
affects people gains a lot of attentions, see for example
Huang et al. [21], Cheng and Shan [8], Gralinski and
Menachery [17], Chen et al. [7]. It has been observed
that older people and individuals having chronic medi-
cal conditions are more risk of developing severe symp-
toms when infected by the COVID-19. Although, there
are relatively fewer cases of COVID-19 among children,
individuals of any age can get infected by the virus.
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The main aim of the proposed discrete-time model
is to realize the effect of disease due to coronavirus
and find all the characteristics which are liable for this
outbreak of respiratory illness. The discrete time mod-
els provide more appropriate tools for describing pro-
cesses having different scales of time or which evolve
over non-overlapping intervals. In addition, employing
discrete models results in a significant reduction in com-
putational complexity of the associated continuous time
models. Thus, mathematical modeling and study of
nonlinear maps can be advantageously [2,4,13]. The
non-linear incidence rate are used in epidemic mod-
els to provide more accurate modeling of the disease
spread rate [15,24,26,28]. Wesley et al. [27] presented
a discrete-time rodent-hantavirus model structured by
infection and developmental stages. The differences
between the dynamics of the male and female rodents in
deterministic and stochastic versions of the model are
investigated using numerical simulations. Hernandez et
al. [19] studied the epidemic maps when arbitrary stage
distributions were considered and also the potential
applications to disease control were investigated. The
analytical and numerical results of this model clarified
the inconsistencies in forecasting which arise due to the
employment of specific parametric distributions. The

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-022-00537-2&domain=pdf
mailto:dipankar.msc@gmail.com
mailto:prasunsantra5@gmail.com
mailto:gs.mahapatra@nitpy.ac.in
mailto:aelsadany1@yahoo.com


3462 Eur. Phys. J. Spec. Top. (2022) 231:3461–3470

quarantine or isolation, among other control measures,
are utilized to control the reproduction number and
drive the final epidemic size to a predetermined value.
Biswas et al. [5] presented an SEIR Model and studied
control the infectious Diseases with constraints. Differ-
ent models for the COVID-19 pandemic have been pro-
posed and analyzed in literature. Huang and Qiao [20]
presented the characteristics of the epidemic dynamics
through data-driven time-dependent transmission rate
for the COVID-19.

The paper discusses the equilibrium points of the
proposed discrete-time model of COVID-19 and their
stability analysis. The basic reproduction number (R0)
for the proposed discrete-time COVID-19 model is
obtained using the next-generation matrix method. The
values of parameters in the model are estimated by
fitting realistic data sets. The numerical analysis with
a brief discussion and conclusion have been presented
incorporating spreading and transmission dynamics of
COVID-19.

2 Description of discrete-time COVID-19
model

In the past 50 years, many researchers have formu-
lated a plethora of mathematical models of the spread
of infectious diseases in human populations. After the
eruption of COVID-19 disease in 2019, the study of
coronavirus and its implications are an active field of
research work nowadays. India is highly affected by
COVID-19 pandemic and the number of active COVID-
19 infections is increased continuously right now. In
response to this severe status, the Indian government
has undertaken several strategies to suppress spread-
ing COVID-19 viruses such as lockdown and social
distancing. In this section, a new discrete-time SEIR
model for presenting COVID-19 situations in the Indian
environment is formulated by promoting an alternating
that induces various fundamental epidemiological prop-
erties of COVID-19. The proposed COVID-19 model
describes the dynamics of four population groups which
are categorized according to the state of each individ-
ual. More specifically, we consider susceptible (S(t)),
infected individuals without any treatment (I(t)) which
can spread the disease, infected individuals under iso-
lation ward for treatment which are not spreading the
disease (T (t)), and finally the population in a secure
zone or recovered ones (R(t)). Assuming that total pop-
ulation size is N(t), hence we have N(t) = S(t)+I(t)+
T (t) + R(t). To formulate a more realistic COVID-
19 pandemic model, several demographic effects are
included by assigning a specific value for natural death
rate in each of the four populations categories, namely,
d1 (> 0) and employing another factor called d2 (> 0) in
T (t) individuals to represent the death rate due to the
infection by COVID-19 virus. Moreover, it is assumed
that new born individuals are introduced into the sus-
ceptible population at a rate Λ(> 0) per unit time. A
transition diagram of the proposed COVID-19 model is
shown in Fig. 1.

Fig. 1 The transfer diagram of proposed discrete COVID-
19 model

Rate of change of (S(t)): Susceptible individu-
als density is increased by new births at the rate
Λ (> 0), decreased by natural death d1 (> 0), and it also
decreases via the interaction with infectious individu-
als. For these, the transmission coefficient is α, and the
parameter δ is essential to control the susceptible indi-
viduals. This population also decreases due to fear and
lockdown, which is acquired by the account of the pop-
ulation who are in the secure zone at a constant rate
γ1. Consequently, the rate equation for S(t) can be for-
mulated as: S′(t) = Λ − αSI

1+δT − γ1S − d1S.

Rate of change of the infected population with-
out treatment (I(t)): The individual who is exposed
as infected but not under treatment, and are not infec-
tious for other non-infected individuals. This popula-
tion increases by interaction with susceptible. The pop-
ulation decreases due to quarantine with the rate β
(population is in the secure zone at the same rate) and
due to the natural death rate (d1) and is expressed by
the equation I ′(t) = αSI

1+δT − βI − d1I.

Rate of change of infected in an isolation ward
for treatment not spreading the disease (T(t)): A
proportion β of infected individuals without treatment
transferred to this category after the clinical symptoms
of COVID-19 are exposed. These individuals decrease
by the rate γ2 by getting acquired into the account of
the secure zone, the natural death rate, and a death
factor caused by COVID-19. The expression for this
population is T ′(t) = βI − γ2T − d1T − d2T.

Rate of change of population is in the secure
zone (R(t)): The population increases from suscepti-
ble due to fear and lockdown with rate γ1, and infected
individuals due to in isolation ward for treatment are
recovered from the disease at rate γ2. A natural death
rate d1 condenses these densities; therefore, the expres-
sion for this individual is R′(t) = γ1S + γ2T − d1R
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From the above deliberations, the groups S(t), I(t),
T (t) and R(t) denote the densities of the suscepti-
ble population (SP), the infected population which
spread the disease (IP), infected in an isolated ward for
treatment not spreading the disease (TP) and popula-
tion is in a secure zone (RP), respectively, at time t.
Therefore, N(t) = S(t) + I(t) + T (t) + R(t) refers to
the total size of the population at the time t. The pro-
posed discrete-time COVID-19 system will discuss for
the total human population (N(t)) along with the next
initial densities:

S(0) > 0, I(0) ≥ 0, T (0) ≥ 0 and R(0) > 0 (1)

Now, using the forward Euler method, we obtain St,
It, Tt, and Rt, which are the densities of the populations
in discrete-time t. The equations for the (n+1)th gener-
ation of the populations can be obtained by replacing t
by n, and the proposed discrete-time COVID-19 model
is given by:

Sn+1 = Sn + h[Λ − αSnIn

1 + δTn
− γ1Sn − d1Sn]

In+1 = In + h[
αSnIn

1 + δTn
− βIn − d1In]

Tn+1 = Tn + h[βIn − γ2Tn − d1Tn − d2Tn]
Rn+1 = Rn + h[γ1Sn + γ2Tn − d1Rn]. (2)

It is assumed that the total population size is con-
stant, the system of equations can be reduced by one.
In particular, the equation for R can be ignored by sub-
stituting with Rn = N − Sn − In − Tn in the system.
Therefore the proposed discrete-time COVID-19 sys-
tem can be expressed as follows:

Sn+1 = Sn + h[Λ − αSnIn

1 + δTn
− γ1Sn − d1Sn]

In+1 = In + h[
αSnIn

1 + δTn
− βIn − d1In]

Tn+1 = Tn + h[βIn − γ2Tn − d1Tn − d2Tn]. (3)

The model parameters are described below:

3 Equilibrium points and their stability
analysis

3.1 Existence of equilibrium points

Fixed points of the discrete-time COVID-19 system (3)
are obtained via solving the next equations:

Λ − αSI

1 + δT
− γ1S − d1S = 0

αSI

1 + δT
− βI − d1I = 0

βI − γ2T − d1T − d2T = 0.

We get the following two non-negative equilibrium
points:

(i) The disease-free equilibrium (DFE) point P1 =(
Λ

γ1+d1
, 0, 0

)
, (ii) The endemic equilibrium (EEP) P2 =

(S∗, I∗, T ∗), where S∗ = Λ−(β+d1)I
∗

(γ1+d1)
, T ∗ = (γ2+d1+d2)I

∗

β

and I∗ = β[αΛ−(β+d1)(γ1+d1)]
(β+d1)[αβ+δ(γ1+d1)(γ2+d1+d2)]

.

3.2 Computations of basic reproduction number

The basic reproduction n (R0) is one of the most crucial
quantity in the analysis of epidemiological models. It
enables making effective policies and strategies for con-
trol and prevention of diseases. Various approaches for
continuous-time models in Castillo-Chavez et al. [6], De
Camino-Beck et al. [12], Diekmann et al. [14], Jacquez
[22], Thieme [25] and Driessche and Watmough [15] and
discrete-time models in Cushing and Ackleh [10], De
Camino-Beck and Lewis [11] and Lewis et al. [23] have
been presented to obtain suitable analytical expression
for R0.

A well-know technique to estimate R0 is called next-
generation matrix method. Let X0 = (x1, x2, . . . , xm)T

and X1 = (xm+1, xm+2, . . . , xn)T , where x1, x2, . . . , xm

refer to the infected state variables in the model
whereas xm+1, xm+2, . . . , xn denote the uninfected ones.
Suppose that the epidemic model is written as

X (n + 1) = G (X (n)) , n = 0, 1, 2, . . . , (4)

where G : Rn
+ → R

n
+ is a C1 function. Assume also

there is unique DFE point of the model where the Jaco-
bian matrix J has the following form:

J =
(

F + H 0
A C

)
. (5)

The following theorem (Theorem 2.1 in Allen and
Driessche [4] and see also De Jong et ali [13]) explains
how to compute R0 and demonstrates stability condi-
tions of DFE point.

Theorem 1 Let the system of difference equations (4)
possesses single DFE point and the corresponding Jaco-
bian matrix (5) involves non-negative matrices F and
H. Furthermore, suppose that F + H is irreducible
whereas matrices C and H are achieving ρ (C) , ρ (H) <

1, therefore we get R0 = ρ
(
F (I − H)−1

)
. Finally, the

DFE point of the epidemic model is locally asymptoti-
cally stable if R0 < 1 and unstable if R0 > 1.

For the our model (3), the J matrix computed at
(E, I, S) = (0, 0, S0) where S0 = Λ

γ1+d1
is given by
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J =

[
hαS0 − h (β + d1) + 1 0 0

hβ −h (γ2 + d1 + d2) + 1 0
−hαS0 0 −h (γ1 + d1) + 1

]
.

The other sub-matrices are extracted as

F =
[

hαS0 0
0 0

]
and H

=
[−h (β + d1) + 1 0

hβ −h (γ2 + d1 + d2) + 1

]
.

Now ρ (H) = max
{ − h

(
β + d1

)
+ 1,−h

(
γ2 + d1 +

d2

)
+ 1

}
, and

(I − H)−1 =
[

h (β + d1) 0
−hβ h (γ2 + d1 + d2)

]−1

=

[
1

h(β+d1)
0

β
h(β+d1)(γ2+d1+d2)

1
h(γ2+d1+d2)

]
.

Therefore, the next-generation matrix for the pro-
posed discrete-time COVID-19 system (3) is obtained
as follows:

F (I − H)−1

=
[

hαS0 0
0 0

] [
1

h(β+d1)
0

β
h(β+d1)(γ2+d1+d2)

1
h(γ2+d1+d2)

]

=
[

αΛ
(γ1+d1)(β+d1)

0
0 0

]
.

As R0 = ρ
(
F (I − H)−1

)
, i.e it is the the spec-

tral radius of the matrix
(
F (I − H)−1

)
. Then, it can

be obtained for the proposed model ( 3)in the form
R0 = αΛ

(γ1+d1)(β+d1)
. Since all the parameters are pos-

itive, the model ( 3) has a unique EEP since R0 =
αΛ

(γ1+d1)(β+d1)
> 1. It can be shown that DFE point

P1 =
(

Λ
γ1+d1

, 0, 0
)

is locally asymptotically stable for
R0 < 1, and unstable for R0 > 1.

3.3 Local stability analysis

The local behavior of the discrete-time pandemic model
(3) is presented for each equilibrium point by evaluation
of Jacobian matrix at each fixed point of the model.
More specifically, the Jacobian Matrix J of the COVID-
19 model (3) is given by

J =

[
b11 b12 b13

b21 b22 b23

b31 b32 b33

]
,

where b11=1 − h
[

αIn
1+δTn

+ (γ1 + d1)
]
, b12= − hαSn

1+δTn
,

b13 = αhδSnIn
(1+δTn)2

, b21 = αhIn
1+δTn

, b22 = 1 + αhSn

1+δTn
−

h (β + d1), b23 = − αhδSnIn
(1+δTn)2

, b31 = 0, b32 = βh, b33 =
1 − h (γ2 + d1 + d2).

Then, the characteristic equation of J is expressed
as λ3 + C1λ

2 + C2λ + C3 = 0, where C1 = −[b11 +
b22+b33] = hα(In−Sn)

1+δTn
− h (β + γ1 + γ2 + 3d1 + d2) −3,

C2 = b11b22+ b11b33 + b22b33 −b23b32 −b21b12 =
3+ 2hα(Sn−In)

1+δTn
+ h2α

1+δTn
[In (β + γ2 + 2d1 + d2) − Sn (γ1

+γ2 + 2d1 + d2)] - 2h (β + γ1 + γ2 + 3d1 + d2) + h2

[(β + d1) (γ1 + d1) + (γ2 + d1 + d2) (β + γ1 + 2d1)],
C3 = b11b23b32 + b12b21b33 − b11b22b33 − b13b21b32 =
hα(Sn−In)

1+δTn
[h (γ2 + d1 + d2) − 1] + h2α

1+δTn
[Sn (γ1 + d1)

−In (β + d1)] [1 − h (γ2 + d1 + d2)] −h3α2SnIn
1+δTn

(γ2 + d1

+d2) + h2α2SnIn
(1+δTn)2

(γ2 + d1 + d2) − h2αβδSnIn
(1+δTn)2

[1 − h (γ1

+d1)] + h (β + γ1 + γ2 + 2d1 + d2) − h2 (γ1 + d1 + d2)
(β + γ1 + 2d1) −h2 (γ1 + d1) (β + d1) + h3 (γ1 + d1)
(β + d1) (γ1 + d1 + d2) − 1.

To study the linear stability analysis of non-negative
fixed point of the discrete-time system (3), we formulate
the next theorem

Theorem 2 Consider the polynomial equation λ3 +
C1λ

2 + C2λ + C3 = 0, where C1, C2 and C3 are real
numbers. Then, the necessary and sufficient conditions
that the roots of the equation lie within the open disk
|λ| < 1 are: 1+C1+C2+C3 > 0 , 1−C1+C2−C3 > 0,
|C3| < 1 and 1 − C2

3 > |C2 − C3C1| .

Theorem 3 The equilibrium point P1 =
(

Λ
γ1+d1

, 0, 0
)

of the COVID-19 model (3) is locally asymptotically sta-
ble at R0 < 1 while it is unstable at R0 > 1.

Proof The matrix J (P1) of the model (3) can be writ-
ten as

J (P1) =

⎡
⎢⎣

1 − h (γ1 + d1) − hαΛ
(γ1+d1)

0

0 1 + h
[

αΛ
(γ1+d1)

− (β + d1)
]

0
0 βh 1 − h (γ2 + d1 + d2)

⎤
⎥⎦
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Table 1 Explanation of parameters with their real-life value

Parameters Meaning Value Reference

Λ Recruitment rate of new individuals enter population 40000 Estimated
α The transmission rate from SP to IP 0.37 × 10−9 Estimated
β The transmission rate from IP to TP 0.05 Estimated
δ Parameter measures psychological/inhibitory effect 0.00042 Assumed
γ1 The transmission rate from SP to RP 0.0005 Assumed
γ2 The transmission rate from TP to RP 0.005 Estimated
d1 Natural death rate of population 0.00002 Estimated
d2 Death rate of population caused by COVID-19 0.00197 Estimated

The three eigenvalues of J (P1) are w1 = 1−h (γ1 + d1)
< 1, w2 = 1 + h

[
αΛ

(γ1+d1)
− (β + d1)

]
, w3 = 1 −

h (γ2 + d1 + d2) < 1. Therefore disease-free equilib-
rium P1 locally asymptotically stable if w2 = 1 +
h

[
αΛ

(γ1+d1)
− (β + d1)

]
< 1, i.e. R0 = αΛ

(γ1+d1)(β+d1)
< 1

and it is unstable for R0 > 1. ��
Theorem 4 The fixed point P2 = (S∗, I∗, T ∗) of the
proposed map is locally asymptotically stable if 1+C1 +
C2 + C3 > 0, 1 − C1 + C2 − C3 > 0, |C3| < 1, and
1 − C2

3 > |C2 − C3C1| .
Proof The J (P2) matrix for the COVID-19 map (3) is
expressed as

J (P2) =

[
b11 b12 b13

b21 b22 b23

b31 b32 b33

]

Now, the characteristic equation of J (P2) is λ3 +
C1λ

2 + C2λ + C3 = 0, where C1 = −[b11 + b22 + b33],
C2 = [b11b22 + b11b33 + b22b33 − b23b32 − b21b12], C3 =
[b11b23b32 + b12b21b33 − b11b22b33 − b13b21b32].
Therefore, by Jury condition, the fixed point P2 =
(S∗, I∗, T ∗) is known to be locally asymptotically sta-
ble if 1 + C1 + C2 + C3 > 0, 1 − C1 + C2 − C3 > 0,
|C3| < 1, and 1 − C2

3 > |C2 − C3C1| . ��

4 Control strategies of COVID-19 with
respect to R0

This section presents a sensitivity analysis of model
parameters to limit COVID-19 cases of India. More
specifically, we investigate the most influential param-
eters in the model on the value of R0 via employing
a quantity known as the normalized forward sensitiv-
ity indices for the key parameters. The effects of the
parameters α, β, γ1 and d1 are considered in the analy-
sis. The values of estimated parameters given in Table 1
are used long with the initial values S(0) = 8 × 108,
I(0) = 1400, T (0) = 256, t = 30 , h = 1 from 21st
March 2020 to 16th April 2020. The definition of the
normalized forward sensitivity index of f to a parame-
ter κ is mathematically expressed as: Xκ

f = ∂f
∂κ × κ

f .

Table 2 Initial population from real data

S(0) I(0) T (0)
8 × 108 1400 256

The sensitivity indices of R0 for the parameters
α, γ1, β and d1 are given by Xα

R0
= ∂R0

∂α × α
R0

=
α

R0

Λ
(r1+d1)(β+d1)

= R0
R0

= 1, Xγ1
R0

= ∂R0
∂γ1

× γ1
R0

=

− γ1
(r1+d1)

= −0.9615 < 1, Xβ
R0

= ∂R0
∂β × β

R0
=

− β
(β+d1)

= −0.9996 < 1, Xd1
R0

= ∂R0
∂d1

× d1
R0

=

− d1
β−γ1

[
β+d1
r1+d1

− r1+d1
β+d1

]
= −0.0389 < 1.

The obtained sensitivity indices indicate that the R0

is positively sensitive to variations in α, (positively cor-
related) since Xα

R0
= 1. This implies that when α is

increased by 1%, keeping other parameters constants,
R0 will be increased by 1%. For the second parameter,
Xβ

R0
= −0.9996 which depicts that if β is increased by

1%, then the value of R0 decreases by 0.9996%, (neg-
ative correlation), provided that the values of other
parameters is fixed. For the third parameter γ1, it is
found that increasing it by 1%, the value of R0 decreases
by 0.9615%, etc. Consequently, when budget limita-
tions is considered in developing countries like India,
the planned efforts to suppress and control the spread
of COVID-19 is much efficient when focus on tuning
suitable values for α, β, γ1 rather than increasing the
numbers of individuals accessing treatment.

5 Numerical analysis

In this section numerical simulation experiments and
comparisons with real data in India are carried out. The
following data have been collected from the reports of
Ministry of Health and Family Welfare, Government of
India in 2020.

Figures 4, 6, 7 and 8 are obtained according to the
parameter given in Table 1 and Table 2. The values
of the parameters are set based on the following real
data of India. After lockdown in India, the spread of
the COVID is recorded as follows (source: ICMR and
WHO):
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Table 3 COVID-19 cases in India from 21st March to 16th April

Date 21/3 22/3 23/3 24/3 25/3 26/3 27/3 28/3 29/3 30/3 31/3 1/4 2/4 3/4
Active cases 256 326 431 469 551 629 741 810 902 1122 1263 1641 1863 2283
Date 4/4 5/4 6/4 7/4 8/4 9/4 10/4 11/4 12/4 13/4 14/4 15/4 16/4
Active cases 2757 3244 3835 4271 4642 5181 5867 6401 7165 7942 9252 10250 10823

Table 4 Change R0 in different level of α

α 1.7 × 10−10 3.7 × 10−10 5.7 × 10−10 6.6 × 10−10

R0 0.2614 0.5690 0.8766 1.0149

In the proposed model (2), it is known that the
most effective parameter in controlling R0 is α. Our
goal now is to illustrate computationally how effective
α to spread the disease COVID-19 form humans to
the human population. For our support, we have given
Table 3 as follows:

Table 3 represents the value of R0 at different lev-
els of α. We see that R0 increases if the value of α is
increasing. That is why α is most sensitive with respect
to our model. So for a better understanding of the sit-
uation, we attain the plot of R0 versus α.

The R0 is more effective when the value of α < 6.6×
10−10, i.e., the DFE point of system (3) is stable but
when the value of α ≥ 6.6 × 10−10 then R0 > 1, i.e.,
the DFE point of the model is unstable, and then the
situation is more dangerous to our human life. So our
aim, in every situation, is to reduce the value of α.
That is why we maintain the policy of lockdown, usage
of hand sanitizer, social distancing, mask, etc.

From Fig. 2A, we see that if α increases, the value of
R0 increases. So it is clear, that if we control the such
disease transmission, i.e., α, using some precaution such
as lockdown, usage of hand sanitizer, social distancing,
mask etc. then the disease rate automatically minimise

otherwise it should be out of control. That is why α
is most sensitive with respect to our model. Figure 2B
tells that if β increases, the value of R0 decreases. These
things are matching in our life, which means if the test-
ing rate (β) of COVID-19 patient increases, the spread
of this virus decreases, i.e., R0 < 1. For that reason,
the Indian Government has taken the initiative in every
state to increase the rate of testing as much as possible.

From Fig. 3A, it is demonstrated that when α and β
eventually decreases, the value of R0 decreases too. In
Fig. 3B, the contour plots for R0 as a function parame-
ters α and β are visualized to further explore the effects
of the control parameters on R0 values and the dynam-
ics of the proposed model.

The real data regarding COVID-19 pandemic in India
are plotted. From Fig. 4, it is noticed that infected
patients increase day by day due to the value of dis-
ease transmission (α) also increases.

The 27 days of actual epidemic data in India are pre-
sented in Fig. 4 as illustration for the critical period
of initialization of COVID-19 epidemic spread. After
this period, the influences of emergent governmental
response and different measures taken out on active
cases of coronavirus infections in India are depicted
in Fig. 5. The real data presented in Fig. 6 show the
evolution of number of COVID-19 infections through-
out the first wave of epidemic spread in India (about
367 days). It is observed that, the number of active
cases greatly reduced after sufficient long time that is
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Fig. 4 Time history of real data of COVID-19 in India and model value of T for different value of α

complying with numerical simulation results in Figs. 7
and 8. However, the emergence of mutated versions of
coronavirus with highly infection rates causes the sub-
sequent waves of COVID-19 epidemic. This point will
be investigated in a separate future work. Figure 6 indi-
cates that if the infection rate increases, the number of
infections increases too. The spread of COVID-19 can
condense, if the control measures, i.e., social distanc-
ing, disease transmission, etc. increases while if they
are maintained efficiently, the subsequent outbreaks of
COVID-19 can be controlled.

Figure 7 shows that after sufficiently long time, the
COVID-19 epidemic will vanish. Prevention (i.e., lock-
down, social distancing, wash hand regularly, mask)

strategies are required to minimize the effect of COVID-
19 cases, but it did not diminish the virus. Prevention
may be a solution to lessen the outbreak of COVID-19,
but the alternate requirement of vaccines and medi-
cal treatment is required to avoid the harmfulness of
COVID-19 virus worldwide.

Figure 8 shows that the proposed discrete-time pan-
demic model curve for T is a best-fitted curve for real
data of COVID-19 cases in India. For the given data
set, it is found that R0 = 1.025 > 1, therefore, there
may be a need of strategic action by India on the con-
trol policy of COVID-19, which will be able to fight the
dangerous situation and prevent the community from
COVID-19 in the near future.
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Fig. 5 Evolution of active cases of COVID-19 infections during the first wave of coronavirus disease in India
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6 Conclusions and observations

This study aims at providing a framework and a guide
for addressing the issues of the prevention, early detec-
tion, and control of COVID-19 pandemic. Based on
the available information by the WHO about COVID-
19, including its symptoms, complications, transmission
procedure, and how to prevent the transmission, we
have proposed and analyzed a compartmental discrete-
time COVID-19 epidemic model. The more realistic
non-linear incidence rate is employed due to its sig-
nificance [24,26,28]. The basic reproduction number is
calculated for the present COVID-19 model both ana-
lytically and numerically using the actual database of
COVID-19 spread in India. It is demonstrated that for
R0 < 1, the proposed model has globally asymptotically
stable disease free fixed point.

Regarding the analysis of parameter α, it is shown
that this parameter is a critical parameter in the
discrete-time system (2) along with β and they play
critical role in reducing COVID-19 active cases in India,
which may extend the study for any other country.
From Fig. 2, it is depicted that when the value of
infection transmission rate α from SP to IP is less
than 6.5 × 10−10, the basic reproduction number is
less than one and therefore the disease free equilib-
rium point is asymptotically stable. Similarly, when the
value of infection transmission rate β from IP to SP is
greater than 0.029, the disease free equilibrium point is
asymptotically stable and the spread of the disease will
die out eventually. The control of these parameters can
be achieved via using some precaution such as lock-
down, usage of hand sanitizer, social distancing, mask
etc. Figure 4 illustrates that real data of COVID-19
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spread in India leads to give an approximate value
of 37 × 10−11 to parameter α while the value of β is
estimated to be 0.05. This means that a governmental
efforts should be directed towards decreasing the value
of β by appropriate measures

Moreover, from Fig. 6, we see that if the value of dis-
ease transmission rate (α) is increased, the number of
infections increases due to the effect of COVID-19 from
long term prediction. It is demonstrated that if α and
β are not controlled, then the situation may take the
worst form in the future. So far, to reduce the effect of
the coronavirus pandemic, the Indian government has
taken some meaningful strategies like as reducing the
contacts between infected individuals, increasing the
effective health care products, maintain the social dis-
tancing and washing hands regularly for at least 20 s,
etc.

More interestingly, the results also reveal that
COVID-19 can exhibit oscillatory behavior in future.

However, the social distancing measures, efficiency in
quarantine, and isolation can control it. Finally, to sup-
press or minimize the harmful effect of dangerous coro-
navirus, the most and effective responsibility should
be taken by the public of India, and strong coopera-
tion should be rendered to the local administration and
Governments. The future work may consider the influ-
ences of recent coronavirus mutations such as Delta and
Omicron on the dynamics of COVID-19 pandemic. The
different cases where the present vaccines can either
resist against these virus variants of concern or fail
to protect humans against them can be also investi-
gated
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