Skip to main content
. 2021 Dec 7;59(2):700–709. doi: 10.1093/jme/tjab189

Table 2.

Model coefficients for the best-fit models for tick abundance in Illinois by region, species, and lifestage using generalized linear models

Species Life-stage Region Intercept Tmax DP VPmax VPmin Precip
Count Zeros Count Zeros Count Zeros Count Zeros Count Zeros Count Zeros
Dermacentor variabilis Adulta Central −0.01 208.31 0.09 −6.96 −0.87 −11.19
South 27.96 41.57 −1.49 −7.14 1.12 9.42 −4.23 −23.87
Nymphb Central −23.94 0.68
South −6.47 0.02
Amblyomma americanum Adulta Central −1.89 303.31 0.07 −10.47
South 2.96 441.83 −0.08 −12.87 0.01 −0.62
Nympha Central −19.65 2.02 1.59 2.04 −1.32 −3.26
South −6.89 75.29 0.65 −8.29 −0.51 7.42
Ixodes scapularis Adultc Central 60.72 16.92 0.41 −0.53 −0.90 −0.03
South 5.74 43.30 33.41 −5.78 −24.59 1.95 57.05 6.86
Nymphc Central 0.03 163.43 0.00 −1.77
South 1.36 −1.65 −0.01 0.01

Monthly climate variables were Tmax (average daily maximum temperature), DP (average daily dew point), VPmax (average daily maximum vapor pressure deficit), VPmin (average daily minimum vapor pressure deficit), and Precip (total precipitation).

a Zero-inflated negative binomial models.

b Logistic regression models.

c Zero-inflated Poisson models.