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A B S T R A C T

Amid the COVID-19 pandemic, universities are implementing various prevention and mitigation measures.
Identifying and isolating infectious individuals by using screening testing is one such a measure that can
contribute to reducing spread. Here, we propose a hybrid stochastic model for infectious disease transmission
in a university campus with screening testing and its surrounding community. Based on a compartmental
modeling strategy, this hybrid stochastic model represents the evolution of the infectious disease and its
transmission using continuous-time stochastic dynamics, and it represents the screening testing as discrete
stochastic events. We also develop, in a Bayesian framework, the identification of parameters of this hybrid
stochastic model, including transmission rates. These parameters were identified from the screening test data
for the university population and observed incidence counts for the surrounding community. We implement
the exploration of the Bayesian posterior using a machine-learning simulation-based inference approach.
The proposed methodology was applied in a retrospective modeling study of a massive COVID-19 screening
conducted at the University of Liège in Fall 2020. The emphasis of the paper is on the development of the
hybrid stochastic model to assess the impact of screening testing as a measure to reduce spread. The hybrid
stochastic model allows various factors to be represented and examined, such as interplay with the surrounding
community, variability of the transmission dynamics, the rate of participation in the screening testing, the
test sensitivity, the test frequency, the diagnosis delay, and compliance with isolation. The application in the
retrospective modeling study suggests that a high rate of participation and a high test frequency are important
factors to reduce spread.
1. Introduction

Amid the COVID-19 pandemic universities are implementing vari-
ous prevention and mitigation measures. Screening tests for SARS-CoV-
2 are intended to identify occurrence at the individual level, even if
there is no reason to suspect infection, e.g., there is no known exposure:
they are intended to identify infected individuals, without symptoms
or prior to development of symptoms, who may be contagious, so that
measures can be taken to prevent further transmission [1]. Screening
of the university population can take different forms, such as one-
time entry testing or periodic screening, and there can be different
ways of selecting individuals who participate, such as mandatory par-
ticipation of certain cohorts or testing randomly selected groups of
individuals [2].
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Mathematical modeling and numerical simulation can help inves-
tigate the efficacy of screening. A number of mathematical modeling
and numerical simulation studies have already been carried out to
investigate the effects of periodic screening on the spread of SARS-CoV-
2 in university environments. Paltiel et al. [3] used a compartmental
model to investigate effects of several periodic screening strategies,
with different scenarios for the frequency and the sensitivity and speci-
ficity of the test, on the number of infections that could occur. Hill
et al. [4] used a more detailed compartmental model on a network
to capture details of household, study group, student association and
sport club, and other contacts. Gressmann and Peck [5] used a stochas-
tic agent-based model that captures patterns of academic, classroom,
professional, environmental, and residential contacts. Using a compart-
mental model, Larremore et al. [6] found that periodic screening should
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prioritize accessibility, frequency, and turnaround time, more than the
sensitivity of the test. Sturniolo et al. [7] proposed a methodology for
incorporating representations of contact tracing and isolation in com-
partmental models. Enright et al. [8] bring together research carried
out by multiple research groups on mathematical modeling of SARS-
CoV-2 transmission in UK higher education settings. Using multiple
mathematical modeling approaches, including statistical data analy-
sis, compartmental modeling, and network modeling, they investigate
within-institution spread, interplay with the wider community, and the
impact of control measures, including repeat screening testing.

Paltiel et al. [3] had adopted for both the transmission dynamics and
the periodic screening a continuous-time representation, according to
which changes in infectiousness status happen and cases are detected
continuously at rates that are constant in time. In previous work [9],
we had extended Paltiel et al.’s model by including a larger surrounding
community, which we had endowed with its own compartments to
study the transmission in the surrounding population and its interaction
with the transmission in the university population and the screening.
However, important aspects of periodic screening, such as the tempo-
rally discrete nature of consecutive tests and the interplay between the
duration of the infectious period and the period between consecutive
tests, can be difficult to capture with a continuous-time representation
of the periodic screening. In addition, Paltiel et al.’s model is essentially
deterministic, and it does not take into account variability in the
epidemic process (although Paltiel et al. ran several scenarios).

Here, we revisit the mathematical modeling and numerical simu-
lation of infectious disease transmission in a university campus with
periodic screening and in its surrounding community. We develop a
hybrid stochastic model, which is hybrid in that it combines continuous-
time and discrete-time parts. We model the evolution of the infectious
disease and its transmission using continuous-time stochastic dynamics,
and we model the effects of the screening as discrete stochastic events.
More specifically, we develop a continuous-time deterministic com-
partmental model of the infectious disease and its transmission, with
which, following [10,11], we associate a stochastic counterpart in the
form of a stochastic jump Markov model, which we finally approximate
with a stochastic diffusion model. Following [12,13], we subdivide the
compartments of infectious individuals into multiple subcompartments,
as a mathematical device to control the probability distribution of the
duration of the infectious period and its amount of dispersion. We
model the effects of the periodic screening as discrete stochastic events
that occur periodically in time and result in changes whose probability
distribution accounts for the test sensitivity and the participation rate.
Finally, we introduce waiting compartments that serve to account for
the diagnosis delay.

We also develop, in a Bayesian framework, the identification of
parameters of the hybrid stochastic model, including transmission rates.
These parameters were identified from the screening data for the uni-
versity population and observed incidence counts for the surrounding
community. We implement the exploration of the Bayesian posterior
with a machine-learning simulation-based inference approach [14].

It should be noted that SARS-CoV-2 screening has also been consid-
ered for contexts other than university campuses, such as screening of
very large populations, such as an entire country’s population [15]. Li-
bin et al. [16] have investigated the effectiveness of periodic screening
for such very large populations by using an agent-based model. The way
in which Libin et al. [16] incorporate periodic screening in an agent-
based model shares some aspects with how we incorporate screening
in a stochastic compartmental model, notably, Libin et al. [16] also
model the effects of the screening as discrete stochastic events whose
probabilistic description accounts for properties such as the test sensi-
tivity (false negative rate), the participation rate (testing compliance),
the diagnosis delay (reporting delay), and other properties.

The mathematical model described in this paper has been devel-
oped in the context of a massive COVID-19 screening that has been

conducted at the University of Liège in Belgium since Fall 2020. We
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apply the proposed hybrid stochastic model in a retrospective modeling
study of this massive COVID-19 screening conducted at the University
of Liège, specifically using screening data collected during the Fall 2020
wave.

This paper is organized as follows. First, in Section 2, we present
the context of the massive COVID-19 screening at the University of
Liège. Then, in Sections 3 and 4, we describe the novel hybrid stochastic
model and its Bayesian identification. Subsequently, in Section 5, we
describe the implementation of the Bayesian identification using the
simulation-based inference method. Finally, in Section 6, we provide
the application to the retrospective modeling study of the massive
COVID-19 screening at the University of Liège.

2. Context of massive COVID-19 screening at University of Liège

The University of Liège is a public and multidisciplinary university
of the French Community of Belgium. The university has about 24 383
students and 5961 faculty and staff members. The university’s activities
span four campuses, two of which are located in or nearby the city of
Liège, namely, the city center campus, home to the central administra-
tion, two faculties, and the management school, and the Sart-Tilman
campus, the largest campus, home to 7 faculties and the university
hospital, located in a wooded area on the outskirts of the city of Liège,
about 10 km from the city center. The Gembloux campus, home to the
Agro-Bio Tech faculty, and the Arlon campus, home to the department
of environmental science and management, are located about 70 and
130 km from Liège, respectively.

Students returned to the university for the Fall 2020 term on Mon-
day 14 September (the beginning of week 38) under a so-called yellow
sanitary code, which involved measures such as a face mask require-
ment (in classrooms), increased physical distancing (distance of 1 m or
occupation of 1 place out of 2 in classrooms), and increased ventilation.
For many lectures, students had the choice to either attend in person
or follow online though live streaming or podcasts. Confronted with
rising new infections, the University of Liège adopted on Monday 19
October the orange sanitary code, and then on Monday 26 October (the
beginning of week 44) the red sanitary code, which entailed all lectures
to transition to an online format only, although certain laboratory
sessions were allowed to continue on campus. Later in this paper,
we will apply the proposed hybrid stochastic model in a retrospective
modeling study relevant to the period from Monday 14 September (the
beginning of week 38) (the return of students) to Monday 26 October
(the beginning of week 44) (the transition to online lectures only).
Please see also Fig. 1(b) for a schematic overview of the moments
at which the aforementioned policy decisions were taken during this
period of time.

In Belgium, several restrictions were in place in early September,
including a mask requirement in shops and restrictions on social con-
tacts defined in terms of household bubbles. Seeing rising infections,
the government decided on 6 October that bars must close at 23:00, on
19 October a curfew from 0:00 to 6:00, a work-from-home mandate,
the closure of bars and restaurants, and tightened limitations on social
contacts, and on 24 October a curfew from 22:00 to 6:00 in the
Wallonia region, in which Liège is located. Amid alarming signals of
the hospital system and intensive care units reaching capacity, the
country went into a new lockdown from November 2 onwards. Please
see also Fig. 1(a) for a schematic overview of the moments at which
the aforementioned policy decisions were taken in the studied period
of time.

The University of Liège conducted a massive COVID-19 screening
test program, which relied on pooled testing of saliva samples. This
program stood out by its massive scope, with the capability to process
about 10 000 tests per day (in pools of 3 samples, thus corresponding
to about 3300 PCR evaluations). Starting on Monday 28 September,
all students, faculty, and staff were offered the possibility to take a

test, once a week, on a voluntary basis, anonymously, and with the
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Fig. 1. Context of massive COVID-19 screening at University of Liège: (a) weekly aggregated observed incidence counts for the city of Liège extracted from data made available
by Belgium’s public health institute Sciensano and (b) weekly aggregated screening counts (number of individuals tested positive) for the city center and Sart-Tilman campuses
included in the University of Liège’s massive COVID-19 screening test program. In the schematic representations of the time period under consideration, the bullets indicate the
moments at which the policy decisions described in Section 2 were taken.
Table 1
Context of massive COVID-19 screening at University of Liège: Data for the period under study from the students returning
to the university on Monday 14 September (the beginning of week 38) until the university adopted the red sanitary code and
switched to fully online lectures (the end of week 43). The dash symbols in the table under (b) indicate that there was no
screening in weeks 38 and 39.

(a) Observed incidence counts for the city of Liège.

Week M T W T F S S Weekly count

38 46 39 53 58 48 18 10 272
39 30 50 59 33 23 31 10 236
40 68 87 71 89 98 57 15 485
41 125 158 178 171 173 147 34 986
42 285 394 331 327 385 294 116 2132
43 394 486 467 525 586 356 84 2898

(b) Screening test data for the combination of the University of Liège’s city center and Sart-Tilman campuses.

Week Participation rate Positivity rate

38 – –
39 – –
40 22.76% 1.70%
41 27.41% 3.19%
42 37.06% 4.66%
43 29.21% 6.92%
r

cost covered by the institution. All students, faculty, and staff were
assigned two days in the week, on one of which they could retrieve
on campus a testing kit with instructions on how to collect a saliva
sample. They were asked to return their kit with their sample the next
day on campus and asked to consult a website to obtain their test result
about 12 to 36 h later. Individuals who tested positive for SARS-CoV-2
were recommended to contact a doctor to obtain medical advice and
isolate themselves for 10 days. From Monday 26 October onwards, the
program was suspended, and the test capacity was exploited to set up
a screening test program in retirement homes. Table 1(b) and Fig. 1(b)
provide summary statistics for the combination of the city center and
Sart-Tilman campuses. The participation rates indicate that about 30%
of the students and faculty and staff members participated, and the
positivity rates indicate infections rising significantly in the university
population.

Belgium built out significant capacity for nasopharyngeal swab
testing with PCR evaluation, to which the University of Liège was also
a significant contributor. Belgium’s Public Health Institute Sciensano
publishes daily observed incidence counts per municipality, among
other information. With the system reaching its limits in the second half
of October, the testing policy was changed, and, from 20 October on-
wards, testing was limited to symptomatic individuals only (individuals
having had a high-risk contact or having traveled to a high-risk zone
but not exhibiting symptoms could no longer take a test). Table 1(a)

and Fig. 1(a) provide summary statistics for the city of Liège. r
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3. Hybrid stochastic model

In the context of the massive COVID-19 screening conducted at the
University of Liège since Fall 2020, we have developed a mathemat-
ical model of the transmission dynamics of an infectious disease in
a university campus with periodic screening situated within a larger
surrounding community. Even though this development was motivated
by the specific context of the massive COVID-19 screening at the
University of Liège, the mathematical model is general and applicable
to other contexts. It allows various factors to be represented and exam-
ined, such as interplay with the surrounding community, variability of
the transmission dynamics, rate of participation in the screening test
program, test sensitivity, test frequency, and diagnosis delay.

3.1. Hybrid deterministic model

The model describes the transmission dynamics of an infectious
disease in a university campus with periodic screening situated within
a larger surrounding community. The combined population is split into
two subpopulations, namely, one subpopulation of 𝑛 individuals that
represents the university population with the screening test program,
and another subpopulation of �̃� individuals that represents the sur-
ounding community. Here, and in the following, the tilde is used to
efer to the surrounding community.
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The model adopts a compartmental modeling approach that fur-
her subdivides each subpopulation into disjoint compartments. Fig. 2
hows a graphical representation of the model. The population of the
urrounding community is subdivided into compartments that track
he number of susceptible (�̃�), exposed, that is, infected but not yet

infectious, (𝑒), infectious (𝑖1, . . . , 𝑖�̃�), and removed due to recovery (𝑟)
individuals. The subdivision into �̃� subcompartments serves to control
the shape of the probability distribution of the duration of the infectious
period and its dispersion, namely, it serves to mimic an infectious
period that is gamma distributed, as explained later in Section 3.3.
The university population is subdivided into compartments that track
the number of individuals categorized as susceptible (𝑠), exposed (𝑒),
pre-symptomatically infectious (𝑖p11, . . . , 𝑖p1𝑚p

, . . . , 𝑖p𝑐1, . . . , 𝑖p𝑐𝑚p ), symp-
tomatically infectious (𝑖s1, . . . , 𝑖s𝑚s

), asymptomatically infectious (𝑖a11, . . . ,
𝑖a1𝑚a

, . . . , 𝑖a𝑐1, . . . , 𝑖a𝑐𝑚a
), and removed (𝑟). The compartments of pre-

symptomatically and symptomatically infectious individuals concern
infectious individuals who develop symptoms during the course of their
disease. The pre-symptomatically infectious individuals are those who,
early in the course of the disease, have already become infectious but
have not developed symptoms yet, and the symptomatically infectious
individuals are those who, later during the course of the disease, have
developed symptoms and are still infectious. The compartments of
asymptomatically infectious individuals concern infectious individuals
who do not develop symptoms during the course of their disease. A
number of additional compartments are created to track individuals
with a positive screening test: the compartments 𝑤p

11, . . . , 𝑤p
1𝑚p

, . . . ,
𝑤p

𝑐1, . . . , 𝑤p
𝑐𝑚p and 𝑤a

11, . . . , 𝑤a
1𝑚a

, . . . , 𝑤a
𝑐1, . . . , 𝑤a

𝑐𝑚a
are ‘‘waiting’’

compartments that serve to account for diagnosis delay, and the com-
partments 𝑞p

11, . . . , 𝑞p
1𝑚p

, . . . , 𝑞p
𝑐1, . . . , 𝑞p

𝑐𝑚p and 𝑞a
11, . . . , 𝑞a

1𝑚a
, . . . , 𝑞a

𝑐1, . . . ,
𝑞a
𝑐𝑚a

are ‘‘quarantine’’ compartments that serve to track the number of
positively tested pre-symptomatically and asymptomatically infectious
individuals who have isolated themselves after receiving their positive
diagnosis and who remain infectious. The subdivisions into 𝑚p, 𝑚s,
and 𝑚a subcompartments serve to control the shapes of the probability
distributions of the durations of the pre-symptomatically, symptomat-
ically, and asymptomatically infectious periods and their dispersion.
The subdivisions into 𝑐 subcompartments serve to allow for a possible
subdivision of the university population into 𝑐 cohorts with a different
screening testing policy, such as a weekly screening test for the first
cohort on Mondays, a weekly screening test for the second cohort on
Tuesdays, and so forth, as explained later in this section.

The model is then obtained by defining transitions of individuals
from one compartment to another. The model combines a continuous-
time representation of the dynamics of the infectious disease and its
transmission (arrows in the figure) with a discrete-time representation
of the screening testing (dashed lines in the figure). The equations for
the deterministic continuous-time dynamics are
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𝑑�̃�
𝑑𝑡

= −𝛽00 �̃�
𝑖1 +⋯ + 𝑖�̃�

�̃�
− 𝛽01 �̃�

( 𝑖p11 +⋯ + 𝑖p𝑐𝑚p +𝑤p
11 +⋯ +𝑤p

𝑐𝑚p

𝑛

+
𝑖a11 +⋯ + 𝑖a𝑐𝑚a

+𝑤a
11 +⋯ +𝑤a

𝑐𝑚a

𝑛

)

,

𝑑𝑒
𝑑𝑡

= 𝛽00 �̃�
𝑖1 +⋯ + 𝑖�̃�

�̃�
+ 𝛽01 �̃�

( 𝑖p11 +⋯ + 𝑖p𝑐𝑚p +𝑤p
11 +⋯ +𝑤p

𝑐𝑚p

𝑛

+
𝑖a11 +⋯ + 𝑖a𝑐𝑚a

+𝑤a
11 +⋯ +𝑤a

𝑐𝑚a

𝑛

)

−𝛾𝑒,

𝑑𝑖1
𝑑𝑡

= 𝛾𝑒 − �̃��̃� 𝑖1,

𝑑𝑖𝓁
𝑑𝑡

= �̃��̃� 𝑖𝓁−1 − �̃��̃� 𝑖𝓁 , 𝓁 = 2,… , �̃�,

𝑑𝑟
𝑑𝑡

= �̃��̃� 𝑖�̃�,

(1)
 w
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𝑑𝑠
𝑑𝑡

= −𝛽10 𝑠
𝑖1 +⋯ + 𝑖�̃�

�̃�
− 𝛽11 𝑠

( 𝑖p11 +⋯ + 𝑖p𝑐𝑚p +𝑤p
11 +⋯ +𝑤p

𝑐𝑚p

𝑛

+
𝑖a11 +⋯ + 𝑖a𝑐𝑚a

+𝑤a
11 +⋯ +𝑤a

𝑐𝑚a

𝑛

)

,

𝑑𝑒
𝑑𝑡

= 𝛽10 𝑠
𝑖1 +⋯ + 𝑖�̃�

�̃�
+ 𝛽11 𝑠

( 𝑖p11 +⋯ + 𝑖p𝑐𝑚p +𝑤p
11 +⋯ +𝑤p

𝑐𝑚p

𝑛

+
𝑖a11 +⋯ + 𝑖a𝑐𝑚a

+𝑤a
11 +⋯ +𝑤a

𝑐𝑚a

𝑛

)

−𝛾𝑒,

𝑑𝑖p𝑘1
𝑑𝑡

= 𝑓s𝑓𝑘𝛾𝑒 − 𝑚p𝜔p 𝑖
p
𝑘1, 𝑘 = 1,… , 𝑐,

𝑑𝑖p𝑘𝓁
𝑑𝑡

= 𝑚p𝜔p 𝑖
p
𝑘(𝓁−1) − 𝑚p𝜔p 𝑖

p
𝑘𝓁 , 𝑘 = 1,… , 𝑐, 𝓁 = 2,… , 𝑚p,

𝑑𝑤p
𝑘1

𝑑𝑡
= −𝑚p𝜔p 𝑤

p
𝑘1, 𝑘 = 1,… , 𝑐,

𝑑𝑤p
𝑘𝓁

𝑑𝑡
= 𝑚p𝜔p 𝑤

p
𝑘(𝓁−1) − 𝑚p𝜔p 𝑤

p
𝑘𝓁 , 𝑘 = 1,… , 𝑐, 𝓁 = 2,… , 𝑚p,

𝑑𝑞p
𝑘1

𝑑𝑡
= −𝑚p𝜔p 𝑞

p
𝑘1, 𝑘 = 1,… , 𝑐,

𝑑𝑞p
𝑘𝓁

𝑑𝑡
= 𝑚p𝜔p 𝑞

p
𝑘(𝓁−1) − 𝑚p𝜔p 𝑞

p
𝑘𝓁 , 𝑘 = 1,… , 𝑐, 𝓁 = 2,… , 𝑚p,

𝑑𝑖s1
𝑑𝑡

= 𝑚p𝜔p
(

𝑖p11 +⋯ + 𝑖p𝑐𝑚p +𝑤p
11 +⋯ +𝑤p

𝑐𝑚p + 𝑞p
11 +⋯ + 𝑞p

𝑐𝑚p

)

− 𝑚s𝜔s 𝑖
s
1,

𝑑𝑖s𝓁
𝑑𝑡

= 𝑚s𝜔s 𝑖
s
(𝓁−1) − 𝑚s𝜔s 𝑖

s
𝓁 , 𝓁 = 2,… , 𝑚s,

𝑑𝑖a𝑘1
𝑑𝑡

= (1 − 𝑓s)𝑓𝑘𝛾𝑒 − 𝑚a𝜔a 𝑖
a
𝑘1, 𝑘 = 1,… , 𝑐,

𝑑𝑖a𝑘𝓁
𝑑𝑡

= 𝑚a𝜔a 𝑖
a
𝑘(𝓁−1) − 𝑚a𝜔a 𝑖

a
𝑘𝓁 , 𝑘 = 1,… , 𝑐, 𝓁 = 2,… , 𝑚a,

𝑑𝑤a
𝑘1

𝑑𝑡
= −𝑚a𝜔a 𝑤

a
𝑘1, 𝑘 = 1,… , 𝑐,

𝑑𝑤a
𝑘𝓁

𝑑𝑡
= 𝑚a𝜔a 𝑤

a
𝑘(𝓁−1) − 𝑚a𝜔a 𝑤

a
𝑘𝓁 , 𝑘 = 1,… , 𝑐, 𝓁 = 2,… , 𝑚a,

𝑑𝑞a
𝑘1

𝑑𝑡
= −𝑚a𝜔a 𝑞

a
𝑘1, 𝑘 = 1,… , 𝑐,

𝑑𝑞a
𝑘𝓁

𝑑𝑡
= 𝑚a𝜔a 𝑞

a
𝑘(𝓁−1) − 𝑚a𝜔a 𝑞

a
𝑘𝓁 , 𝑘 = 1,… , 𝑐, 𝓁 = 2,… , 𝑚a,

𝑑𝑟
𝑑𝑡

= 𝑚s𝜔s 𝑖
s
𝑚s

+ 𝑚a𝜔a

(

𝑖a11 +⋯ + 𝑖a𝑐𝑚a
+𝑤a

11 +⋯

+𝑤a
𝑐𝑚a

+ 𝑞a
11 +⋯ + 𝑞a

𝑐𝑚a

)

.

(2)

In the surrounding community, the force of infection reads

𝛽00
𝑖1+⋯+𝑖�̃�

�̃� +𝛽01
( 𝑖p11+⋯+𝑖p𝑐𝑚p+𝑤

p
11+⋯+𝑤p

𝑐𝑚p
𝑛 +

𝑖a11+⋯+𝑖a𝑐𝑚a+𝑤
a
11+⋯+𝑤a

𝑐𝑚a
𝑛

)

. The
first term represents endogenous transmission and is given by the
product of the transmission rate 𝛽00 and the prevalence 𝑖1+⋯+𝑖�̃�

�̃� within
he surrounding community, whereby the transmission rate 𝛽00 cap-
ures the combined effect of the probability of infection as a result
f a contact and the rate of contacts of an individual in the sur-
ounding community with other individuals within the surrounding
ommunity. The second term represents exogenous transmission due
o contacts with the university population and is given by the product

f the transmission rate 𝛽01 and the prevalence
𝑖p11+⋯+𝑖p𝑐𝑚p+𝑤

p
11+⋯+𝑤p

𝑐𝑚p
𝑛

+
𝑖a11+⋯+𝑖a𝑐𝑚a+𝑤

a
11+⋯+𝑤a

𝑐𝑚a
𝑛 of non-isolated infectious individuals within the

niversity population, whereby the factor 𝛽01 captures the combined
ffect of the probability of infection as a result of a contact and
he rate of contacts of an individual in the surrounding community
ith individuals from the university population. Pre-symptomatically
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Fig. 2. Representation of the model as a directed graph.
infectious individuals are taken to contribute to transmission with the
same transmission rate as infectious individuals who do not develop
symptoms. Exposed individuals become infectious at rate 𝛾 (so that 1∕𝛾
can be interpreted as a characteristic duration of the latent period to
the onset of infectiousness), and infectious individuals become removed
at rate �̃� (so that 1∕�̃� can be interpreted as a characteristic duration of
the infectious period).

In the university population, the force of infection is composed,
analogously, of one term that represents endogenous transmission from
contacts within the university population and another term that rep-
resents exogenous transmission due to contacts with the surrounding
community. Among the exposed individuals, a fraction 𝑓s develops
symptoms during the course of the disease. At a rate of 𝛾, these exposed
individuals become pre-symptomatically infectious. At a rate of 𝜔p
(so that 𝜔−1

p can be interpreted as a characteristic duration of the
pre-symptomatically infectious period from the onset of infectiousness
to the onset of symptoms), pre-symptomatically infectious individuals
become symptomatically infectious. Symptomatically infectious indi-
viduals are taken to isolate spontaneously at the onset of symptoms
and not contribute to transmission. We will comment on imperfect
compliance with isolation of symptomatically infectious individuals
later in Section 7. The complementary fraction (1 − 𝑓s) of the exposed
individuals does not develop symptoms during the course of the dis-
ease. At a rate of 𝛾, these exposed individuals become asymptomatically
infectious.

As already mentioned, the partitioning into 𝑐 cohorts is associated
with different screening testing policies. The fractions 𝑓1, . . . , 𝑓𝑐 , with
𝑓 +⋯+𝑓 = 1, are the fractions of the total university population that
1 𝑐

5

these cohorts are composed of. Symptomatically and asymptomatically
infectious individuals become removed at rates 𝜔s and 𝜔a, respectively.

Because contacts are reciprocal by nature, the transmission rates 𝛽01
and 𝛽10 should satisfy the reciprocity property

𝛽01 �̃� = 𝛽10 𝑛. (3)

These equations for the deterministic continuous-time dynamics
of the infectious disease and its transmission can be written more
concisely as follows. The compartment counts can be collected in a state
vector

𝒙(𝑡) =
(

�̃�(𝑡), 𝑒(𝑡), 𝑖1(𝑡),… , 𝑖�̃�(𝑡), 𝑟(𝑡), 𝑠(𝑡),… , 𝑟(𝑡)
)

. (4)

The equations can be then described in terms of a matrix whose
columns specify the changes in the compartment counts per transition,

[𝑆] =

⎡

⎢

⎢

⎢

⎣

�̃��𝑒 𝑒�𝑖1 …
�̃� −1 0 0 …
𝑒 1 −1 0 …
𝑖1 0 1 ⋮ …
⋮ ⋮ ⋮ ⋮ ⋱

⎤

⎥

⎥

⎥

⎦

, (5)

and a vector that specifies the propensities of these transitions:

𝒈(𝒙) =
⎡

⎢

⎢

⎢

⎣

�̃��𝑒 −𝛽00 �̃�
𝑖1+⋯+𝑖�̃�

�̃� − 𝛽01 �̃�
𝑖p11+⋯+𝑖p𝑐𝑚p+⋯+𝑤a

11+⋯+𝑤a
𝑐𝑚a

𝑛
𝑒�𝑖1 𝛾𝑒
⋮ ⋮

⎤

⎥

⎥

⎥

⎦

. (6)

With this state vector, matrix, and vector, the deterministic continuous-
time dynamics of the infectious disease and its transmission read
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concisely
𝑑𝒙
𝑑𝑡

(𝑡) = 𝒇
(

𝒙(𝑡)
)

= [𝑆]𝒈
(

𝒙(𝑡)
)

. (7)

Let us now turn our attention to the periodic screening. The model
onsiders that the screening results periodically in significant changes
hat happen over short periods of time, such as a large group of
ndividuals taking a test over a short period of time, or a large group
f individuals being informed of their diagnosis over a short period
f time. Taking this behavior to the limit, the model considers that
he screening results periodically in instantaneous changes in the state
ector from a current value, denoted by 𝒙(𝑡−), to an updated value,
enoted by 𝒙(𝑡+). In between these periodically recurring moments
t which the effects of the screening testing manifest themselves, the
volution of the compartment counts consists of phases in which the
tate vector evolves continuously in accordance with (7).

As already mentioned, the university population is subdivided into 𝑐
ohorts with a different screening testing policy. Let 𝑡𝑘1 = 𝑡𝑘0 + 𝜏,
𝑘2 = 𝑡𝑘0 + 2𝜏, . . . denote the times at which the individuals in the 𝑘th
ohort take a test, with 𝑡𝑘0 a reference time for the 𝑘th cohort and 𝜏 the

period between any two consecutive tests. For each cohort, indexed by
𝑘, at each testing time 𝑡𝑘𝑗 , indexed by 𝑗, a fraction 𝑓p of individuals
is taken to take a test, and, from among the pre-symptomatically and
asymptomatically infectious individuals, a fraction 𝑠e of the tests is
taken to return positive, with 𝑠e the sensitivity of the test. Accordingly,
at the testing times 𝑡𝑘𝑗 , with 𝑘 = 1,… , 𝑐 and 𝑗 = 1, 2, . . . , the
compartment counts are changed instantaneously as follows:
{

𝑖𝑝𝑘𝓁(𝑡
+
𝑘𝑗 ) = 𝑖𝑝𝑘𝓁(𝑡

−
𝑘𝑗 ) − 𝑓p𝑖

𝑝
𝑘𝓁(𝑡

−
𝑘𝑗 )𝑠e,

𝑤𝑝
𝑘𝓁(𝑡

+
𝑘𝑗 ) = 𝑓p𝑖

𝑝
𝑘𝓁(𝑡

−
𝑘𝑗 )𝑠e,

𝓁 = 1,… , 𝑚p, (8)

{

𝑖𝑎𝑘𝓁(𝑡
+
𝑘𝑗 ) = 𝑖𝑎𝑘𝓁(𝑡

−
𝑘𝑗 ) − 𝑓p𝑖

𝑎
𝑘𝓁(𝑡

−
𝑘𝑗 )𝑠e,

𝑤𝑎
𝑘𝓁(𝑡

+
𝑘𝑗 ) = 𝑓p𝑖

𝑎
𝑘𝓁(𝑡

−
𝑘𝑗 )𝑠e,

𝓁 = 1,… , 𝑚a. (9)

The pre-symptomatically and asymptomatically infectious individuals
testing positive are taken to still contribute to the transmission and
their infectiousness status to evolve towards recovery while they await
their positive diagnosis. In the model, this behavior is captured by
moving these individuals from the compartments 𝑖𝑝𝑘1, . . . , 𝑖𝑝𝑘𝑚p

and
𝑖𝑎𝑘1, . . . , 𝑖𝑎𝑘𝑚a

of pre-symptomatically and asymptomatically infectious
individuals to the associated ‘‘waiting’’ compartments 𝑤𝑝

𝑘1, . . . , 𝑤𝑝
𝑘𝑚p

and 𝑤𝑎
𝑘1, . . . , 𝑤𝑎

𝑘𝑚a
. After the diagnosis delay, denoted by 𝑑, these

individuals are taken to isolate themselves. Accordingly, at 𝑡𝑘𝑗 + 𝑑,
𝑘 = 1,… , 𝑐, 𝑗 = 1, 2, . . . , the compartment counts are changed
instantaneously as
{

𝑤𝑝
𝑘𝓁

(

(𝑡𝑘𝑗 + 𝑑)+
)

= 0,

𝑞𝑝𝑘𝓁
(

(𝑡𝑘𝑗 + 𝑑)+
)

= 𝑞𝑝𝑘𝓁
(

(𝑡𝑘𝑗 + 𝑑)−
)

+𝑤𝑝
𝑘𝓁

(

(𝑡𝑘𝑗 + 𝑑)−
)

,
𝓁 = 1,… , 𝑚p,

(10)
{

𝑤𝑎
𝑘𝓁
(

(𝑡𝑘𝑗 + 𝑑)+
)

= 0,

𝑞𝑎𝑘𝓁
(

(𝑡𝑘𝑗 + 𝑑)+
)

= 𝑞𝑎𝑘𝓁
(

(𝑡𝑘𝑗 + 𝑑)−
)

+𝑤𝑎
𝑘𝓁
(

(𝑡𝑘𝑗 + 𝑑)−
)

,
𝓁 = 1,… , 𝑚a.

(11)

Individuals in the ‘‘quarantine’’ compartments 𝑞𝑝𝑘1, . . . , 𝑞𝑝𝑘𝑚p
and 𝑞𝑎𝑘1,

. . . , 𝑞𝑎𝑘𝑚a
are taken to have isolated themselves and no longer transmit.

In summary, in the hybrid deterministic model, the trajectory of the
compartment counts is partitioned into several time intervals. These
time intervals are separated by the times at which the effects of the
screening periodically manifest themselves and the state vector changes
its value discontinuously in accordance with (9)–(11). Within these
time intervals, the state vector evolves continuously in accordance
with (7).

3.2. Stochastic Markov jump process model

Following [10,11], deterministic compartmental models are asso-
ciated with stochastic compartmental models formulated in the frame-

work of Markov jump processes. Markov jump processes are s

6

continuous-time stochastic processes that take their values in a finite
or countably infinite set, see, for instance, [17–20], for reference texts.
Because the set of values is finite or countably infinite, the trajectories
must remain constant for a while in each new state, thus leading
to jumps. For a homogeneous Markov jump process, that is, for a
Markov jump process for which the probability laws governing the
transitions are invariant under translation in time, the holding times,
namely, the times between the consecutive jumps, are exponentially
distributed. The correspondence between the deterministic compart-
mental model and its associated stochastic compartmental model is
that the random fractions of individuals occupying the compartments
in the stochastic compartmental model converge to the corresponding
deterministic fractions in the deterministic compartmental model in the
large-population limit.

These concepts are described for general compartmental models and
applied to the classical SIR and other models in [10,11]. Here, we apply
these concepts to our model. Thus, we associate the equations described
above for the deterministic continuous-time dynamics of the infectious
disease and its transmission with a Markov jump process

{𝑿(𝑡), 𝑡 ≥ 0} with values in [0, 1, 2,… , �̃�]�̃� × [0, 1, 2,… , 𝑛]𝜅 , (12)

with

𝑿(𝑡) =
(

𝑆(𝑡), 𝐸(𝑡), 𝐼1(𝑡),… , 𝐼�̃�(𝑡), 𝑅(𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�̃� = 3 + �̃�
compartments

, 𝑆(𝑡),… , 𝑅(𝑡)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝜅 = 3 + 3𝑐(𝑚p + 𝑚a ) + 𝑚s
compartments

)

, (13)

in which uppercase regular letters denote scalar-valued random vari-
ables and uppercase boldface letters denote vector-valued random vari-
ables, a system of notation that we will seek to use throughout the
remainder of the paper.

This Markov jump process is described by a probability distribution
for the initial value and by a family of probability distributions govern-
ing the transitions defined in terms of the propensities in the equations
above:

P
(

𝑿(𝑡 + 𝛥𝑡) = 𝒙 + 𝒔∶𝑖
|

|

|

𝑿(𝑡) = 𝒙
)

= 𝑓𝑖(𝒙)𝛥𝑡 + 𝑜(𝛥𝑡), 𝑖 = 1,… , 𝜁 , (14)

in which P denotes the probability and 𝒔∶1, . . . , 𝒔∶𝜁 are the 𝜁 columns
of the matrix [𝑆] defined in (5), namely,

P
(

(

𝑆(𝑡 + 𝛥𝑡), 𝐸(𝑡 + 𝛥𝑡),…
)

=
(

�̃� − 1, 𝑒 + 1,…
)

|

|

|

(

𝑆(𝑡), 𝐸(𝑡),…
)

=
(

�̃�, 𝑒,…
)

)

=
(

−𝛽00 �̃�
𝑖1 +⋯ + 𝑖�̃�

�̃�
− 𝛽01 �̃�

𝑖p11 +⋯ + 𝑖p𝑐𝑚p +…+𝑤a
11 +⋯ +𝑤a

𝑐𝑚a

𝑛

)

𝛥𝑡

+ 𝑜(𝛥𝑡), (15)
…

If the parameters involved in the propensities are independent of
ime, the Markov jump process is homogeneous, and an equivalent
escription is that it stays in state 𝒙 during a holding time that is expo-
entially distributed with rate parameter ∑𝜁

𝑖=1 𝑓𝑖(𝒙) and then jumps to
new state selected from the 𝒙+𝒔∶𝑖 with probabilities 𝑓𝑖(𝒙)∕

∑𝜁
𝑗=1 𝑓𝑗 (𝒙).

.3. Role of the subdivisions into �̃�, 𝑚p, 𝑚s, and 𝑚a subcompartments

If the subdivisions into multiple subcompartments are not used,
hat is, if �̃�, 𝑚p and 𝑚s, and 𝑚a are set equal to 1, then, in the
tochastic model, the duration of the infectious period of infected
ndividuals in the surrounding community, the durations of the pre-
ymptomatically and symptomatically infectious periods of infected
ndividuals in the university population who develop symptoms, and
he duration of the asymptomatically infectious period of infected
ndividuals in the university population who do not develop symptoms
re exponentially distributed with mean values 1∕�̃�, 1∕𝜔p and 1∕𝜔s,
nd 1∕𝜔a, respectively. By contrast, with the subdivision into multiple

ubcompartments, these durations are obtained instead as the sum of
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Fig. 3. Role of the subdivisions into �̃�, 𝑚p, 𝑚s, and 𝑚a subcompartments: Comparison
f an exponential distribution with a mean value of 7days (no subdivision) (dashed line)
ith a gamma distribution with a mean value of 7days and a coefficient of variation
f 25% (16 subcompartments) (solid line) for the duration of an infectious period.

̃ , 𝑚p and 𝑚s, and 𝑚a exponentially distributed random variables with
ean values 1∕(�̃��̃�), 1∕(𝑚p𝜔p) and 1∕(𝑚s𝜔s), and 1∕(𝑚a𝜔a), respec-

ively. Thus, with the well-known result that the sum of independent
nd identically distributed exponential random variables is gamma
istributed, the durations of these periods are gamma distributed with
ean values 1∕�̃�, 1∕𝜔p and 1∕𝜔s, and 1∕𝜔a and with coefficients of

ariation 1∕
√

�̃�, 1∕√𝑚p and 1∕
√

𝑚s, and 1∕
√

𝑚a, respectively. Hence,
hrough the subdivision into multiple subcompartments, the shape
f the probability distributions of these durations of these infectious
eriods and their dispersion can be controlled [12,13].

Fig. 3 illustrates the effect of the subdivision on the distribution of
he duration of an infectious period. We can observe that the exponen-
ial distribution (no subdivision) has a higher dispersion and assigns
ighest probabilities to very small values. By contrast, the gamma
istribution (in the figure for a subdivision into 16 subcompartments)
s more concentrated about its mean value and assigns negligible
robabilities to very small values.

Thus, the role of the subdivisions into �̃�, 𝑚p, 𝑚s, and 𝑚a subcompart-
ents is to serve as a mathematical device to strive to incorporate in the
odel an adequate representation of the dynamics of the infectiousness

f the disease and its variability, as can be expected to be required to
ccurately assess the impact of control measures. Using adequate prob-
bility distributions for the durations of the infectious periods can be
xpected to be important to adequately capture the efficacy of periodic
creening. Indeed, it can be expected to be important to adequately
apture the interplay between the dynamics of the infectiousness of
he disease and its variability, on the one hand, and the dynamics of
he periodic screening, on the other hand. Notably, if the occurrence of
ery short durations of the pre-symptomatic or asymptomatic infectious
eriods is unrealistic, the subdivision into multiple subcompartments
an be important to avoid that the model overestimates the number of
ndividuals who develop symptoms or recover before they take a test
nd hence underestimates the efficacy of the screening.

.4. Stochastic diffusion model

Following [10,11], Markov jump processes can be approximated
ith stochastic diffusion processes. The approximation is in that a
easure of a distance between the random fractions of individuals

ccupying the compartments in the Markov jump process and the
andom fractions of individuals occupying the compartments in the
pproximating stochastic diffusion process decrease with an increase
n the size of the population. Thus, for the approximation to be good,
he population size must be sufficiently large. It is much more computa-
ionally efficient to numerically simulate trajectories from a stochastic
iffusion process than from a Markov jump process [11].
⎩

7

As in the previous section, these concepts are described for general
ompartmental models and applied to the classical SIR and other
odels in [10,11], and, here, we apply these concepts to our model.
hus, we approximate the Markov jump process defined above with a
tochastic diffusion process

𝑿(𝑡), 𝑡 ≥ 0} with values in R�̃� × R𝜅 , (16)

hat solves a stochastic differential equation written as

𝑿(𝑡) = 𝒃
(

𝑿(𝑡)
)

𝑑𝑡 +
[

𝐴
(

𝑿(𝑡)
)]

𝑑𝑾 (𝑡). (17)

lease note that we do not distinguish in our system of notation be-
ween the Markov jump process {𝑿(𝑡), 𝑡 ≥ 0} in (12) and the stochastic
iffusion process {𝑿(𝑡), 𝑡 ≥ 0} in (16). We will use the stochastic
iffusion process throughout the remainder of this paper, so that the
se of uppercase letters for the state vector and the compartment
ounts will always refer to the stochastic diffusion model throughout
he remainder of this paper. In (17), {𝑾 (𝑡), 𝑡 ≥ 0} is a normalized

iener process indexed by [0,+∞[ with values in R𝜁 , the drift vector
(𝒙) is given by

(𝒙) =
𝜁
∑

𝑖=1
𝑓𝑖(𝒙)𝒔∶𝑖 = [𝑆]𝒇 (𝒙), (18)

nd [𝐴(𝒙)] is a square root of the diffusion matrix [𝛴(𝒙)] given by

𝛴(𝒙)] =
𝜁
∑

𝑖=1
𝑓𝑖(𝒙)𝒔∶𝑖 ⊗ 𝒔∶𝑖 =

[

𝑆
][

Diag
(

𝑓1(𝒙),… , 𝑓𝜁 (𝒙)
)][

𝑆
]T; (19)

ere, we choose the square root

𝐴(𝒙)] =
[

𝑆
][

Diag
(
√

𝑓1(𝒙),… ,
√

𝑓𝜁 (𝒙)
)]

, (20)

such that indeed [𝛴(𝒙)] = [𝐴(𝒙)][𝐴(𝒙)]T. Please note that [𝐴(𝒙)] is
rectangular, and the dimension of 𝑾 (𝑡) is different from the dimension
of 𝑿(𝑡).

The Euler–Maruyama method is a well-known method to numer-
ically simulate trajectories of the solution to a stochastic differential
equation. For a discretization of time with a constant time step 𝛥𝑡,

𝜎0 = 0 < 𝜎1 = 𝛥𝑡 < 𝜎2 = 2𝛥𝑡 < ⋯ , (21)

t leads to a time-stepping method of the form:

𝜎𝑖+1 = 𝑿𝜎𝑖 + 𝒃(𝑿𝜎𝑖 )𝛥𝑡 + [𝐴(𝑿𝜎𝑖 )]𝛥𝑾 𝜎𝑖 , 𝑖 = 0, 1,… , (22)

ith an initial value that must be specified. In (22), the components of
he random vectors 𝛥𝑾 𝜎0 , 𝛥𝑾 𝜎1 , . . . are independent and identically
istributed Gaussian random variables with zero mean and variance
𝑡.

.5. Stochastic discrete events

In the stochastic model, at 𝑡𝑘𝑗 , 𝑘 = 1,… , 𝑐, 𝑗 = 1, 2, . . . , the
umbers of pre-symptomatically and asymptotically infectious individ-
als identified by the screening are sampled from binomial probability
istributions:

p
𝑘𝑗 ∼ Binomial

(⌊

𝑓p

𝑚p
∑

𝓁=1
𝐼p
𝑘𝓁(𝑡

−
𝑘𝑗 )

⌋

, 𝑠e

)

, (23)

a
𝑘𝑗 ∼ Binomial

(⌊

𝑓p

𝑚a
∑

𝓁=1
𝐼a
𝑘𝓁(𝑡

−
𝑘𝑗 )

⌋

, 𝑠e

)

, (24)

here ⌊⋅⌋ denotes the operation of rounding to the nearest integer
elow the argument, and the compartment counts are changed instan-
aneously as

𝐼p
𝑘𝓁(𝑡

+
𝑘𝑗 ) = 𝐼p

𝑘𝓁(𝑡
−
𝑘𝑗 ) − 𝑌 p

𝑘𝑗𝐼
p
𝑘𝓁(𝑡

−
𝑘𝑗 )

/

𝑚p
∑

𝓁′=1
𝐼p
𝑘𝓁′ (𝑡

−
𝑘𝑗 ),

𝑊 p
𝑘𝓁(𝑡

+
𝑘𝑗 ) = 𝑌 p

𝑘𝑗𝐼
p
𝑘𝓁(𝑡

−
𝑘𝑗 )

/

𝑚p
∑

𝐼p
𝑘𝓁′ (𝑡

−
𝑘𝑗 ),

𝓁 = 1,… , 𝑚p, (25)
𝓁′=1
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⎪

⎩

𝐼a
𝑘𝓁(𝑡

+
𝑘𝑗 ) = 𝐼a

𝑘𝓁(𝑡
−
𝑘𝑗 ) − 𝑌 a

𝑘𝑗𝐼
a
𝑘𝓁(𝑡

−
𝑘𝑗 )

/

𝑚a
∑

𝓁′=1
𝐼a
𝑘𝓁′ (𝑡

−
𝑘𝑗 ),

𝑊 a
𝑘𝓁(𝑡

+
𝑘𝑗 ) = 𝑌 a

𝑘𝑗𝐼
a
𝑘𝓁(𝑡

−
𝑘𝑗 )

/

𝑚a
∑

𝓁′=1
𝐼a
𝑘𝓁′ (𝑡

−
𝑘𝑗 ),

𝓁 = 1,… , 𝑚a. (26)

Then, at 𝑡𝑘𝑗 + 𝑑, 𝑘 = 1,… , 𝑐, 𝑗 = 1, 2, . . . , the compartment counts are
changed instantaneously as follows:
{

𝑊 p
𝑘𝓁

(

(𝑡𝑘𝑗 + 𝑑)+
)

= 0,

𝑄p
𝑘𝓁

(

(𝑡𝑘𝑗 + 𝑑)+
)

= 𝑄p
𝑘𝓁

(

(𝑡𝑘𝑗 + 𝑑)−
)

+𝑊 p
𝑘𝓁

(

(𝑡𝑘𝑗 + 𝑑)−
)

,
𝓁 = 1,… , 𝑚p,

(27)
{

𝑊 a
𝑘𝓁
(

(𝑡𝑘𝑗 + 𝑑)+
)

= 0,

𝑄a
𝑘𝓁
(

(𝑡𝑘𝑗 + 𝑑)+
)

= 𝑄a
𝑘𝓁
(

(𝑡𝑘𝑗 + 𝑑)−
)

+𝑊 a
𝑘𝓁
(

(𝑡𝑘𝑗 + 𝑑)−
)

,
𝓁 = 1,… , 𝑚a.

(28)

3.6. Hybrid stochastic model

In the hybrid stochastic model, the stochastic process of the com-
partment counts is partitioned into several intervals. These intervals
are the time intervals separated by the times at which the effects of the
screening periodically manifest themselves and the state vector changes
its value discontinuously in accordance with (24)–(28). Within these
time intervals, the state vector evolves continuously in accordance
with (17).

4. Bayesian inference

We will now address the inference of parameters of the hybrid
stochastic model from data (and prior information, if any) in a Bayesian
framework.

4.1. Data

For the surrounding community, we consider that the data consist
of observed incidence counts

�̃�obs
[𝑡0 ,𝑡1[

, �̃�obs
[𝑡1 ,𝑡2[

, … (29)

reported by a public health institute for periods of time

[𝑡𝑙−1, 𝑡𝑙[, 𝑙 = 1, 2,… (30)

The counts in (29) reflect a fraction of the number of (new) infections
over the periods of time in (30). They represent only a fraction because
of limitations of public health testing (limited detection rate; observa-
tion variability; . . . ). We consider the periods of time in (29) as daily
intervals, and they will be in the case history in Section 6, but the
representation here is sufficiently general to represent other types of
time intervals.

For the university population, we consider that the data gathered
from the screening consist of counts,

𝑦obs
𝑘𝑗 , 𝑘 = 1,… , 𝑐, 𝑗 = 1, 2,… , (31)

of the numbers of individuals who test positive from the cohorts 1, . . . ,
𝑐, indexed by 𝑘, at the times 𝑡𝑘1, 𝑡𝑘2, indexed by 𝑗.

4.2. Coarsened temporal aggregation

Data gathered from observed incidence counts and periodic screen-
ing can exhibit patterns on finer time scales due to features of, and
variations in, testing practices [21]. For example, lower incidence
counts may be observed on weekends, followed by higher values on
Mondays. In addition, the infection and transmission dynamics can
itself exhibit patterns, such as work contacts dominating on weekdays

and family contacts dominating on weekends.

8

We circumvent this issue by fitting the hybrid stochastic model to
the data in such a way that the fit between the model predictions and
the data is evaluated on coarser time scales that smoothen out such
patterns. Thus, for the surrounding community, we define aggregate
counts

�̃�obs
1

, �̃�obs
2

, … , �̃�obs
𝑠

(32)

that sum the raw counts,

�̃�obs
𝑖

=
∑

[𝑡𝑙−1 ,𝑡𝑙 [⊂𝑖

�̃�obs
𝑡𝑙

, (33)

over longer periods of time

𝑖 = [𝜏𝑖−1, 𝜏𝑖[, 𝑖 = 1,… , 𝑠. (34)

Likewise, for the university population, we thus define aggregate counts

𝑦obs
1

, 𝑦obs
2

, … , 𝑦obs
𝑠

(35)

that sum the raw counts,

𝑦obs
𝑖

=
𝑐
∑

𝑘=1

∑

𝑡𝑘𝑗∈𝑖

𝑦obs
𝑘𝑗 , (36)

over the periods of time defined in (34). We set the periods of time
in (34) to weekly intervals in the case history in Section 6. For later
reference, we collect the aggregate counts into vectors

�̃�obs = (�̃�obs
1

, �̃�obs
2

, … , �̃�obs
𝑠

) and 𝒚obs = (𝑦obs
1

, 𝑦obs
2

, … , 𝑦obs
𝑠

). (37)

4.3. Observation model

Because the data for the surrounding community are not directly
related to a quantity in the hybrid stochastic model, we need an
observation model to relate the observed variables to the evolution
of the compartment counts. We consider that the incidences over the
periods of time defined in (34) are linked to the evolution of the
compartment counts as follows:

�̃�𝑖 = ∫

𝜏𝑖

𝜏𝑖−1
𝑓𝑒→𝑖

(

𝒙(𝑡)
)

𝑑𝑡 = ∫

𝜏𝑖

𝜏𝑖−1
𝛾𝑒(𝑡)𝑑𝑡, 𝑖 = 1,… , 𝑠. (38)

lternatively, the incidences could be taken as a similar time integral
f the transition rate from the susceptible to the exposed compartment.
nly a fraction of the incidences are observed, and we consider this

raction to vary about a case detection rate of 𝜌, a parameter of the
bservation model. We model this variation in the observation process
sing a Poisson probability distribution. For a Poisson probability
istribution, the variance is equal to the mean, so that variations are
epresented to be relatively more significant for smaller counts. Alterna-
ively, other probability distributions could be used, such as a negative
inomial probability distribution which introduces an overdispersion
arameter that allows the variance to be larger than the mean [22].
hus, assuming statistical independence of the variability in the obser-
ation process between observation intervals, the observed incidence
ounts are modeled to be distributed as

̃
|𝒙 ∼ 𝜋

(

�̃�||
|

𝒙
)

=
𝑠

∏

𝑖=1
𝜋P

(

�̃�𝑖; 𝜌∫

𝜏𝑖

𝜏𝑖−1
𝛾𝑒(𝑡)𝑑𝑡

)

, (39)

n which 𝜋P(⋅; 𝜆) denotes the Poisson probability mass function with
ean 𝜆. For the university population we have

=
⎛

⎜

⎜

𝑐
∑ ∑

(𝑌 p
𝑘𝑗 + 𝑌 a

𝑘𝑗 ),… ,
𝑐
∑ ∑

(𝑌 p
𝑘𝑗 + 𝑌 a

𝑘𝑗 )
⎞

⎟

⎟

. (40)

⎝

𝑘=1 𝑡𝑘𝑗∈1 𝑘=1 𝑡𝑘𝑗∈𝑠 ⎠
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4.4. Bayesian posterior

A Bayesian identification begins with specifying for the unknown
parameters a prior probability distribution that represents the state
of knowledge about them before collecting the data. Then, the prior
is updated by accounting for the data using a likelihood function in
accordance with Bayes’s formula. The result is a posterior probability
distribution that represents the post-data state of knowledge of the
plausibility of parameter values, as it arises from all the available
information. Let us collect in a vector 𝜽 the parameters that must
be identified. For a given set of parameter values and given initial
conditions, we can use the hybrid stochastic model to generate sample
paths of the compartment and screening counts. In turn, given a sample
path of the compartment counts, we can use the observation model to
generate samples of the observed incidence counts for the surround-
ing community. Thus, given a value 𝜽 of the parameters, the hybrid
stochastic model, completed with the initial condition, and together
with the observation model, determines a probability mass function
for the aggregated counts, which we denote by 𝜋(𝒀 ,𝒀 )(⋅, ⋅|𝜽). With this
probability mass function, the Bayesian posterior is obtained as

𝜌
(

𝜽||
|

�̃�obs, 𝒚obs)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
posterior

∝ 𝜋(𝒀 ,𝒀 )(�̃�
obs, 𝒚obs

|𝜽)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

likelihood

𝜌(𝜽)
⏟⏟⏟

prior

. (41)

5. Implementation of the Bayesian inference

In problems of Bayesian inference, the exploration of the posterior
is implemented most often by using a Markov chain Monte Carlo
method. However, Markov chain Monte Carlo methods require explicit
evaluations of the likelihood function. In the problem under study,
an expression for the likelihood function is not immediately available
because the system is only partially observed. Here, as an alternative
approach, we adopt for the exploration of the posterior a machine-
learning simulation-based inference method that does not require ex-
plicit likelihood evaluations. This method has been recently introduced
in [23], with related work, for instance, in [14,24–27]. Thus, we
formulate the model inference as a Bayesian inference involving a
likelihood function, but, in the subsequent numerical implementation
of this Bayesian inference, we use a machine-learning simulation-based
inference method that does not require explicit evaluations of this
likelihood function. We describe in Appendix A in the Supplementary
material how we implemented the exploration of the Bayesian posterior
with a machine-learning simulation-based inference approach. Please
note that the results described in the next section can be understood
without reading these implementation details in Appendix A in the
Supplementary material.

6. Application to massive COVID-19 screening at University of
Liège

6.1. Formulation of the identification problem

We set up the model and the identification problem as follows:

• We used a population size of �̃� = 197 355 for the surrounding
community (reflecting a recent population count for the city of
Liège) and a population size of 𝑛 = 28 371 for the university
population (reflecting the number of students, faculty members,
and staff members for the combination of the university’s city
center and Sart-Tilman campuses).

• We simulated the period of 6 weeks from the students returning
to the university on Monday 14 September (the beginning of
week 38) until the university adopting the red sanitary code and
transitioning to fully online lectures (the end of week 43) (please

see also Fig. 1).
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• We used for the parameters 𝛾, �̃�, 𝜔p, 𝜔s, 𝜔a, and 𝑓s, characterizing
the dynamics of the disease and states of infectiousness, the
values in Table 2. We subdivided the compartments of infectious
individuals into �̃� = 16, 𝑚p = 8, 𝑚s = 8 and 𝑚a = 16
subcompartments.

• We used for the case detection rate 𝜌 for the surrounding commu-
nity and the parameters 𝜏, 𝑠e and 𝑑 characterizing the screening
test program for the university population the values in Table 2.
Whereas these parameters were constant (independent of time) in
our simulations, we let 𝑓p, the fraction of individuals participating
in the screening test program, depend on time in our simulations.
As per the screening test data in Table 1, we used constant values
of 0, 0, 22.76%, 27.41%, 37.06%, and 29.21% for weeks 38, 39,
40, 41, 42, and 43, respectively. In the model, we used 𝑐 = 5
cohorts of equal size, hence, 𝑓1 = ⋯ = 𝑓𝑐 = 1∕5, with the first
cohort taking a weekly test on Monday, and so forth, until the
fifth cohort taking a weekly test on Friday.

• We initialized the hybrid stochastic model with the compartment
counts
(

�̃�(0), 𝑒(0), 𝑖1(0),… , 𝑖�̃�(0), 𝑟(0)
)

=
(

�̃� − 𝑓i �̃� − 𝑓i
�̃�
𝛾
�̃�, 𝑓i

�̃�
𝛾
�̃�, 1

�̃�
𝑓i �̃�, … , 1

�̃�
𝑓i �̃�, 0

)

(42)

for the surrounding community and
(

𝑠(0), 𝑒(0),… , 𝑖a11(0),… , 𝑖a1𝑚a
(0),

… , 𝑖a𝑐1(0),… , 𝑖a𝑐𝑚a
(0)… , 𝑟(0)

)

=
(

𝑛 − 𝑓i 𝑛 − 𝑓i
𝜔a
𝛾

𝑛, 𝑓i
𝜔a
𝛾

𝑛, … , 1
𝑐

1
𝑚a

𝑓i 𝑛, … , 1
𝑐

1
𝑚a

𝑓i 𝑛,

… , 1
𝑐

1
𝑚a

𝑓i 𝑛, … , 1
𝑐

1
𝑚a

𝑓i 𝑛, … , 0
)

(43)

for the university population, thus assuming negligible immunity
at the initial time. The parameters 𝑓i and 𝑓i characterize the
fractions of individuals infectious in the surrounding community
and asymptomatically infectious in the university population at
the initial time.

• We applied the Bayesian identification method described in Sec-
tions 4 and 5 to infer the parameters 𝜽 = (𝑓i, 𝑓i, 𝛽00, 𝛽11, 𝛽10),
that is, the fractions of individuals infectious in the surrounding
community and asymptomatically infectious in the university
population at the initial time and the transmission rates within
and between the surrounding community and the university pop-
ulation. We took 𝛽00, 𝛽11, and 𝛽10 to be constant (independent of
time) in our simulations.

• As data, we used as observed incidence counts �̃�obs
𝑖

for the sur-
rounding community the weekly aggregated observed incidence
counts of 236, 485, 986, and 2132 for the city of Liège for
weeks 39, 40, 41, and 42, respectively, and we used as weekly
aggregated counts 𝑦obs

𝑖
of asymptomatic infectious individuals

identified by the screening test program for the university pop-
ulation weekly aggregated counts of 0, 0, 110, 248, 490, 573
for the city center and Sart-Tilman campuses for weeks 38, 39,
40, 41, 42, 43, respectively (as per Table 1). We did not use
the weekly aggregated observed incidence count for week 38 for
the city of Liège because students had only just returned and it
may thus not yet fully reflect the interaction of the university
population and the surrounding community, and we did not use
the weekly aggregated observed incidence count for week 43 due
to the testing policy change.

• We used uniform prior probability distributions, with lower
bounds of 0 and upper bounds sufficiently large so that they do
not significantly influence the posterior probability distribution.
This choice corresponds to a use of non-informative prior proba-
bility distributions, reflecting that no information other than the
data is taken into account. Specifically, we used uniform priors
restricted to [0, 0.032] for 𝑓i, [0, 0.064] for 𝑓i, [0, 0.4]day−1 for 𝛽00,

−1 −1
[0, 0.6]day for 𝛽11, and [0, 0.8] day for 𝛽10.
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Table 2
Formulation of identification problem: List of model parameters.

Symbol Description Value Source

Surrounding
community

�̃� Population size 197 355

𝛾−1 Characteristic duration of latency period 2 days 2 days in [28]
�̃�−1 Characteristic duration of infectious period 7 days 4.5, 5–7, 9.3 days in [28]
𝜌 Case detection rate 30% Estimate

University
population

𝑛 Population size 28 371

𝛾−1 Characteristic duration of latency period 2 days 2 days in [28]
𝜔−1

p Characteristic duration of pre-symptomatically infectious period 3.5 days 3.2 days in [28]
for infected individuals who develop symptoms

𝜔−1
s Characteristic duration of symptomatically infectious period 3.5 days 3.5 days in [28]

for infected individuals who develop symptoms
𝜔−1

a Characteristic duration of asymptomatically infectious period 7 days 5, 6 days in [28]
for infected individuals who do not develop symptoms

𝑓s Fraction that develops symptoms 30% Assumption
and isolates spontaneously

𝑓p Fraction of individuals See Table 1 From screening data
participating in the screening test program

𝜏 Duration between consecutive tests 7 days
𝑠e Test sensitivity 85% Estimate
𝑑 Diagnosis delay 1.5 days Estimate
t
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• In the numerical time integration of the stochastic dynamics, we
used a time step of 𝛥𝑡 = 0.25day.

.2. Bayesian posterior

We will begin the discussion of the results with discussing the
dentification of parameters 𝑓i, 𝑓i, 𝛽00, 𝛽11, 𝛽10 from the data. Then,
n the next sections, we will use the identified model to provide some
nsight into the hybrid stochastic modeling and interpretations for the
ase history.

To sample from the Bayesian posterior, we applied the machine-
earning simulation-based inference method described in Appendix A
n the Supplementary material. With reference to the implementation
etails provided in Appendix A in the Supplementary material, we
btained the results to follow with 𝜇 = 1 000 000 training samples,
he sbi toolbox’s default architecture for the normalizing flow using
iecewise polynomial transformations, and the sbi toolbox’s default
rchitecture for the deep neural network; once the training complete,
e used the normalizing flow representation to draw 𝜈 = 100 000

amples from the Bayesian posterior.
From among the parameter samples drawn from the posterior, the

ost plausible parameter sample is the maximum-a-posteriori estimate.
e found

MAP =
(

𝑓MAP
i = 0.00052, 𝑓MAP

i = 0.0057,

𝛽MAP
00 = 0.226day−1, 𝛽MAP

11 = 0.243day−1, 𝛽MAP
10 = 0.10day−1

)

. (44)

he parameter samples drawn from the posterior provide not only this
ptimal parameter value, but also insight into the extent to which, even
hough less likely, other parameter values are still plausible and still fit
he data well. Thus, the Bayesian identification provides insight into the
xtent to which the parameters are constrained by the data, that is, the
xtent to which uncertainty still remains in the parameter values after
aving accounted for the data. To convey such insight, Fig. 4 shows
he one- and two-dimensional density plots of the parameter samples
rawn from the posterior.

It can be observed that the parameter values carry significant un-
ertainty. For the transmission rates 𝛽00, 𝛽11, and 𝛽10, the posterior is
ot concentrated specifically about the maximum-a-posteriori estimate,
ut spread out in a narrow region of the parameter space, including
he maximum-a-posteriori estimate, with a clear dependence structure.
his observation reflects a compensation effect: based on the available
ata, it is not possible to uniquely ascertain the rate 𝛽10 of the transmis-
ion between the university population and the surrounding community
s compared with the rates 𝛽 and 𝛽 of the transmission within
11 00

10
he university population and the surrounding community. Instead, the
vailable data allow a range of parameter values to be identified that
anges from parameter values that combine smaller transmission rates
ithin the university population and the surrounding community with

arger transmission rates between them to values of the parameters that
ombine larger transmission rates within the university population and
he surrounding community with smaller transmission rates between
hem.

It can also be observed that the parameter samples tend to combine
larger value of 𝑓i, the initial fraction of asymptomatically infectious

ndividuals in the university population, with a smaller value of 𝑓i, the
nitial fraction of individuals infectious in the surrounding community.
hus, it is considered more consistent with the data that the prevalence

n the university population, predominantly students, was higher than
he prevalence in the surrounding community at the beginning of the
all term.

Fig. 5 compares the data with the corresponding predictions of the
dentified model. We ran the hybrid deterministic model using the best
stimate of the parameter values, that is, the maximum-a-posteriori es-
imate in (44), and we show the predictions using the rounded markers
onnected with the thick solid lines. We also ran for each parameter
ample drawn from the posterior a sample of the hybrid stochastic
odel, using, for each parameter sample, a new, independent, sample
ath of the Wiener process and new, independent, samples from the
inomial distributions. Based on these simulations, we determined the
.5% and 97.5% percentiles for the predictions, which we show as the
arkly shaded regions. Thus, the darkly shaded regions quantify the
ombined impact of the parameter uncertainty, the variability in the
pidemic process, and the variability in the case detection efficacy of
he screening, on the predictions. For the surrounding community, the
ightly shaded region adds the impact of the uncertainty contributed
y the variability in the observation process. The lightly shaded and
arkly shaded regions largely overlap, thus indicating that the added
ncertainty contributed by the variability in the observation process is
mall compared with the other uncertainty contributions. As a man-
festation of the aforementioned compensation effect, the uncertainty
anges are relatively smaller for the predictions (Fig. 5) than for the
arameter values (Fig. 4).

.3. Some insight into the hybrid stochastic modeling

We computed the evolution of the number of non-isolated pre-
ymptomatically and asymptomatically infectious individuals in the
irst cohort, that is, among those who, if they participate, take a
eekly test on Mondays (Fig. 6). As in Fig. 5, the thick solid line was
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Fig. 4. Bayesian posterior: One- and two-dimensional density plots of the parameter samples drawn from the posterior.
Fig. 5. Bayesian posterior: Comparison of the observed counts (orange rounded markers) with the predicted counts obtained with the identified model (best estimate provided by
the hybrid deterministic model in blue rounded markers, uncertainty margins provided by the hybrid stochastic model in blue shaded regions; please see also the text in Section 6.2
for more details) for (a) the surrounding community and (b) the university population. The dashed lines serve to recall that the identification does not take into account the
observed incidence counts for the city of Liège for weeks 38 and 43.
Fig. 6. Some insight into the hybrid stochastic modeling: Evolution of the number
of non-isolated pre-symptomatically and asymptomatically infectious individuals in the
first cohort, that is, among the individuals, who, provided that they participate, take a
weekly test on Mondays (best estimate provided by the hybrid deterministic model in
thick solid line, a few sample paths provided by the hybrid stochastic model in thin
solid lines, and uncertainty margins provided by the hybrid stochastic model in shaded
region; please see also the text in Section 6.3 for more details).
11
obtained with the hybrid deterministic model using the maximum-a-
posteriori estimate in (44) and is the best estimate; the shaded region
was obtained with the hybrid stochastic model and quantifies the
combined impact of the parameter uncertainty, the variability in the
epidemic process, and the variability in the case detection efficacy of
the screening; and the thin solid lines are a few sample paths simulated
with the hybrid stochastic model. This figure highlights that the hybrid
stochastic model represents the evolution of the infectious disease and
its transmission as a continuous-time stochastic dynamics, with the
screening periodically resulting in a number of infectious individuals
being removed.

6.4. Illustration of the identified model informing a retrospective study

We used the identified model to simulate aspects of the transmission
dynamics that were not amenable to direct observation.

We computed the daily number of new infections in the univer-
sity population due to contacts within the university population, the
daily number of new infections in the university population due to
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Fig. 7. Illustration of the identified model informing a retrospective study: Daily
umber of new infections in the university population due to contacts within the
niversity population (blue), daily number of new infections in the university pop-
lation due to contacts with the surrounding community (orange), and daily number
f individuals who test positive in the screening test program (green) predicted by
he hybrid stochastic model (the thick solid lines and the diamond markers are the
est estimate provided by the hybrid deterministic model; the shaded regions are the
ncertainty margins provided by the hybrid stochastic model; please note that the green
iamond markers and shaded regions are predictions and not the observations; please
ee also the text in Section 6.4).

ontacts with the surrounding community, and we compared these
aily numbers with the daily number of individuals predicted to test
ositive in the screening test program (Fig. 7). Here too, the thick solid
ines represent the best estimate, and the shaded regions quantify the
ombined impact of the parameter uncertainty, the variability in the
pidemic process, and the variability in the case detection efficacy of
he screening. The results suggest that exogeneous infections due to
ontacts with the surrounding community may have been a significant
actor, even though, again, as a manifestation of the aforementioned
ompensation effect, the assessment of their significance is subject to
ignificant uncertainty. For parameter samples that combine a larger
alue of the rate 𝛽10 of the transmission between the university popu-
ation and the surrounding community with smaller values of the rates
11 and 𝛽00 of the transmission within the university population and the
urrounding community, the number of new infections due to contacts
ithin the university population is smaller, and the number of new

nfections due to contacts with the surrounding community is larger.
The results suggest that the screening test program had an important

nd valuable impact, having allowed a significant number of asymp-
omatically infectious individuals to be identified and isolated and
hus prevent further transmission. However, the results indicate that
he daily number of infectious individuals identified by the screening
est program was significantly smaller than the daily number of new
nfections, thus leading to the assessment that the transmission rates
ere too high and the participation rate of about 30% and the test

requency of once-a-week tests not enough to contain the spread.
We also used the identified model to simulate two hypothetical

cenarios in which the initial condition and the transmission rates
ere those that we identified, but we used different values for the
articipation rate, the test frequency, and the diagnosis delay. The use
f the identified transmission rates represents, in the hybrid stochastic
odel, contact patterns and transmissibility similar to those present in

he period in which the data were collected. In the first hypothetical
cenario, there is no screening testing (Fig. 8(a)). The comparison of
he results obtained for the real scenario (Fig. 8(b)) with those for
his hypothetical scenario (Fig. 8(a)) leads to the estimate that the
creening testing allowed about 628 infections to be avoided. In the
econd hypothetical scenario, the participation rate is higher (90%),
he test frequency higher (twice-a-week tests), and the diagnosis delay
horter (1 day), and, rather than after two weeks as in the real scenario,
he screening testing starts at the beginning of the semester (Fig. 8(c)).
he comparison of the results obtained for the hypothetical scenario
ithout screening testing (Fig. 8(a)) with those for this hypothetical
12
scenario with intensified screening testing (Fig. 8(c)) leads to the
estimate that with the higher participation rate, the higher test fre-
quency of twice-a-week tests, the shorter diagnosis delay, and the start
at the beginning of the semester, the screening test program might
have allowed significantly more, namely, about 7597 infections to be
avoided, thus suggesting key importance of a high participation rate, a
high test frequency, and a short diagnosis delay.

7. Discussion of limitations and hypotheses

The proposed model, the proposed Bayesian identification, and their
application to the massive COVID-19 screening at the University of
Liège involve simplifications and hypotheses. Here, we will discuss
some of the main simplifications and hypotheses.

7.1. Imperfect compliance with isolation in the university population

The model does not account explicitly for potentially imperfect
compliance with isolation in the university population.

To address this limitation, the model can be enriched. Such a model
enrichment can be achieved by modifying the model by replacing the
equations in the first two lines in (1) with

𝑑�̃�
𝑑𝑡

= −𝛽00 �̃�
𝑖1 +⋯ + 𝑖�̃�

�̃�
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11 +⋯ +𝑤p
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−𝛾𝑒 (46)

nd by modifying the equations in the first two lines in (2) analo-
ously. Thus, in this modified model, instead of not contributing to
ransmission, symptomatically infectious individuals and isolated pre-
ymptomatically and asymptomatically infectious individuals have a
educed contribution to transmission, with a significance controlled
y a compliance factor 𝑓ic. We set 𝑓ic = 20%. By comparing results
btained with the modified model (Fig. 9) with the corresponding
esults in Section 6 (Figs. 4 and 8(b)), we can observe that accounting
or imperfect compliance with isolation in the university population
ainly results in a lower value being identified for the transmission

ate 𝛽10, because less exogenous introductions are needed to explain the
rowth in infections when more (now also symptomatic and isolated
re-symptomatic and asymptomatic) individuals contribute to transmis-
ion and the imperfect compliance renders the screening test program
ess impactful.

.2. Other limitations and hypotheses

• The interplay of the university population with the broader com-
munity is complex. The choice of which population size to use for
the surrounding community and which data to use as observed
incidence counts for it in the Bayesian identification is difficult
(city, agglomeration, province, . . . ). We chose the population size
of the surrounding community after the one of the city of Liège,
and we used as observed incidence counts the ones reported by
Belgium’s Public Health Institute Sciensano for the city of Liège.
Our choice was based on the consideration that many students
live in student housing in the city of Liège.
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Fig. 8. Illustration of the identified model informing a retrospective study: Evolution of the number of individuals who remain susceptible (blue), are non-isolated pre-
ymptomatically or asymptomatically infectious (purple), and are symptomatically infectious (red) in the university population in (a) a hypothetical scenario without screening
esting, (b) the real scenario, and (c) a hypothetical scenario with a higher participation rate of 90%, a higher test frequency of 2/7 day−1, and a shorter diagnosis delay of 1 day

(best estimate provided by the hybrid deterministic model in thick solid lines and uncertainty margins provided by the hybrid stochastic model in shaded regions; please see also
the text in Section 6.4 for more details).
Fig. 9. Discussion of limitations and hypotheses: Results obtained with the model modified as in (45)–(46) to provide some insight into the impact of accounting explicitly for
mperfect compliance with isolation in the university population.
• The way we formulated the model and its Bayesian identification
entails an assumption of statistical homogeneity. Loosely speak-
ing, the formulation will tend to extrapolate from the positivity
rate observed among the individuals who participated in the
screening test program that those who did not participate were
positive with a similar rate. However, this assumption may not be
adequate. For example, individuals who did not participate in the
on-campus screening test program may have isolated themselves
more stringently and been less exposed, so that the identified
model may overestimate the number of infections.

• In the case history, we took the transmission rates to be constant
(independent of time). In doing so, we sought a model able to
explain the data with a minimal number of parameters (there
were 5 parameters to be identified). However, the transmission
rates may have changed over time, notably towards the end of
the period under study, as more interventions were taken.

• In the case history, we used deterministic, fixed values for the
parameters characterizing the dynamics of the disease and the
states of infectiousness and for the parameters characterizing the
screening test. Although their values were selected with refer-
ence to the state of the art, these parameters carry their own
uncertainty, whose impact adds to the uncertainty ranges that
we obtained for the parameters and the predictions. Uncertainty
in the parameter 𝑓s, which describes for the university popula-
tion the fraction of infected individuals who develop symptoms,
and uncertainty in the sensitivity 𝑠e of the screening test are
particularly notable. If the sensitivity of the screening test was
higher than what we assumed (𝑠e = 85%), the identified model
would overestimate the number of infected individuals, since a
smaller total number of infections would have sufficed to explain
13
the numbers of asymptotically infectious individuals who tested
positive.

• In the case history, because the screening test program was set
up in a way whereby testing kits were retrieved and returned
anonymously, it is possible that some tests may not have been
used for their intended purpose. Individuals who tested positive
may have used a testing kit of an acquaintance a short while
later to know whether they still tested positive. And weakly symp-
tomatic individuals from the surrounding community suspecting
infection may have used a testing kit of an acquaintance from the
university population to know whether they were infected. Due to
such possible unintended use of the screening tests, the identified
model may overestimate the number of infections.

• In the case history, we found that owing to a compensation effect,
the transmission rates, inferred only from the screening test data
and observed incidence counts, carry significant uncertainty (data
limitation). Information from contact surveys, demographic and
other social data could help constrain the parameter values. Such
information could be integrated through the prior in the Bayesian
identification.

• The transmission rates identified in the case history are relevant
to the restrictions and the variants prevalent at the time the
data was collected. Transmission rates are likely to change in
accordance with the restrictions and the prevalent variants.

8. Conclusion

We proposed a hybrid stochastic model for infectious disease trans-

mission in a university campus with periodic screening situated within
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a larger surrounding community. This hybrid stochastic model repre-
sents the evolution of the infectious disease and its transmission using
continuous-time stochastic dynamics, and it represents the screening
testing as discrete stochastic events. The stochastic model of these
discrete stochastic events takes into account the number of individuals
who participate in the screening test program, the frequency of the
periodic screening, and the properties of the test, including the sensitiv-
ity and the diagnosis delay. We proposed a Bayesian methodology for
the identification of parameters of the hybrid stochastic model, along
with a characterization of their uncertainty, from the screening test
data for the university population and observed incidence counts for
the surrounding community. We applied the proposed methodology to
a massive COVID-19 screening conducted at the University of Liège in
Fall 2020. The application in the retrospective modeling study suggests
that a high rate of participation and a high test frequency are important
to reduce spread.
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