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Abstract
Sensitive motor outcome measures are needed to efficiently evaluate novel therapies for neurodegenerative diseases. Devices 
that can passively collect movement data in the home setting can provide continuous and ecologically valid measures of 
motor function. We tested the hypothesis that movement patterns extracted from continuous wrist accelerometer data capture 
motor impairment and disease progression in ataxia-telangiectasia. One week of continuous wrist accelerometer data were 
collected from 31 individuals with ataxia-telangiectasia and 27 controls aged 2–20 years old. Longitudinal wrist sensor data 
were collected in 14 ataxia-telangiectasia participants and 13 controls. A novel algorithm was developed to extract wrist sub-
movements from the velocity time series. Wrist sensor features were compared with caregiver-reported motor function on the 
Caregiver Priorities and Child Health Index of Life with Disabilities survey and ataxia severity on the neurologist-performed 
Brief Ataxia Rating Scale. Submovements became smaller, slower, and less variable in ataxia-telangiectasia compared to 
controls. High-frequency oscillations in submovements were increased, and more variable and low-frequency oscillations 
were decreased and less variable in ataxia-telangiectasia. Wrist movement features correlated strongly with ataxia severity 
and caregiver-reported function, demonstrated high reliability, and showed significant progression over a 1-year interval. 
These results show that passive wrist sensor data produces interpretable and reliable measures that are sensitive to disease 
change, supporting their potential as ecologically valid motor biomarkers. The ability to obtain these measures from a low-
cost sensor that is ubiquitous in smartwatches could help facilitate neurological care and participation in research regardless 
of geography and socioeconomic status.
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Introduction

The development of new therapeutics is accelerating for 
rare and common neurodegenerative diseases with a large 
unmet medical need [1]. However, currently used tools for 
determining the efficacy of therapies remain subjective, 
imprecise, and insensitive. The creation of more sensitive 
and scalable quantitative motor outcome measures holds the 

potential to reduce the size, duration, and cost of neurology 
drug trials.

Ataxia-telangiectasia (A-T) is a rare autosomal recessive 
neurodegenerative disorder that affects one in every 40,000 
to 100,000 children [2]. The neurological manifestation of 
A-T is characterized by progressive cerebellar atrophy and 
ataxia, as well as tremor, neuropathy, and extrapyramidal 
features [3, 4]. Most children with classic A-T do not have 
obvious motor deficits at birth and walk at a typical age [2, 
5]. Gait instability typical of early childhood often fails to 
resolve with development; however, it is common for motor 
function to appear stable or mildly improving over the ages 
of 3 to 7 due to overall gain of gross motor milestones [5]. 
This masks disease progression and can contribute to delays 
in diagnosis until hand incoordination, gait imbalance, and 
other features of the disease worsen [2]. Disease-modifying 
therapies have the potential to slow or halt the disease pro-
cess in these early stages [6]; however, it is challenging to 
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prove that the drug is effective in these developmentally 
dynamic years of child development. Motor impairment 
progresses during primary school years, and children have 
difficulty with writing, coloring, and eating, along with 
increased gait imbalance. By early in the second decade, 
individuals with A-T begin using a wheelchair [2, 5]. Thus, 
gait-independent assessment tools are needed to sensitively 
track disease severity in older children, both for clinical care 
and to support inclusion in clinical trials.

Clinician-performed ataxia rating scales are currently 
used for assessments in A-T and other ataxias, including 
the Brief Ataxia Rating Scale (BARS) [7] and the Scale for 
the Assessment and Rating of Ataxia (SARA) [8]. Subjec-
tivity and imprecision in these scales necessitate large and 
long trials, which increase costs, place significant burden on 
patients, and are a barrier for successful drug development 
[9, 10]. These scales have additional limitations in pediat-
ric populations; in particular, they are not suitable for chil-
dren under the age of 4 and demonstrate age dependence in 
healthy individuals up until 10–12 years of age [11].

Wearable sensors with inertial measurement units (IMU) 
that contain triaxial accelerometers have been used in A-T 
and other pediatric ataxias to measure aspects of limb motor 
impairment during in-clinic administered tasks [12–15]. 
Multi-sensor IMU systems have been successfully used both 
inside [16–19] and outside [20] the clinic to quantify gait 
impairments in different ataxias. These are promising tech-
nologies for objective quantification of motor impairment 
but have limitations in that they are not applicable across all 
ages and are not designed to accommodate frequent, at-home 
use in children.

A hallmark characteristic of the ataxia phenotype is that 
movements are segmented or decomposed into smaller 
movements [21] or “submovements.” Movement segmen-
tation may emerge in part from decreased postural tone 
and support (e.g., against gravity) during voluntary move-
ments [21], from dyssynchrony of flexor and extensor mus-
cles during coordinated movements [22, 23], and/or from 
a compensatory strategy to decrease postural disturbances 
[24]. A recent work demonstrated the utility of quantifying 
characteristics of wrist submovements in individuals with 
ataxia during an in-person administered reaching task [14]; 
however, it is unknown if clinically useful submovement 
descriptions can be obtained from natural, at-home behavior.

We previously reported that measures of activity intensity 
derived from wrist sensor data collected cross-sectionally at 
home in 6–18-year-old individuals with A-T were signifi-
cantly different between A-T and control participants, cor-
related strongly with ataxia severity, and demonstrated high 
reliability [25]. Here, we report 1-year longitudinal wrist 
sensor data in the 6–18-year-old cohort, include new cross-
sectional data from children aged 2–6 years old, compare 
movement features with caregiver-report of function, and 

develop a novel approach for extracting and characterizing 
submovements from continuous wrist sensor data. We dem-
onstrate how submovements, in addition to activity intensity 
measures, are altered in A-T compared with controls, are 
strongly related to motor severity and function, and are sen-
sitive for detecting disease progression.

Methods

Participants

A total of 31 individuals with A-T and 27 age- and sex-
matched healthy siblings and step-siblings ranging in age 
from 2 to 20 years old participated in the study (see Table 1). 
Written informed consent and assent were obtained from 
all participants, and the study was approved by the Part-
ners Healthcare Research Committee Institutional Review 
Board (No. 2019P002752). Participants were identified in 
partnership with the Ataxia Telangiectasia Children’s Pro-
ject (A-TCP) and met the following criteria: (i) age between 
2 and 20 years, (ii) no history of other neurological or mus-
culoskeletal disorders, (iii) able to tolerate wearing a wrist 
sensor at home for up to 1 week. Data were collected at 
two time points. From January to June 2020, 15 children 
with A-T and 15 controls participated in the study (dataset 
1 or DS1). Activity intensity data from DS1 were previously 
reported [25]. From January to August 2021, 30 children 
with A-T and 25 controls participated in the study (dataset 2 
or DS2). Dataset 2 included 27 individuals who were part of 
dataset 1 and 28 new participants. Longitudinal wrist sensor 
data (data from both time points) were available for analysis 
in 14 children with A-T and 13 controls (LD dataset).

Clinical Assessments and Clinical Data Collection

As described in Khan et al. [25], DS1 included a detailed, in-
person neurological exam for each participant with A-T and 
scoring on BARS, which evaluates gait, speech, oculomotor 
function, the finger-nose-finger task, and the heel-to-shin 
task [7]. DS1 also included components of the A-T Neuro 
Examination Scale Toolkit, [26] in particular for evaluation 
of hyperkinetic movements.

DS2 included a subset of a caregiver-reported survey 
called the Caregiver Priorities and Child Health Index of 
Life with Disabilities (CPCHILD) [27]. Analyses that uti-
lized CPCHILD focused on Sect. 1 and 2, which included 13 
questions about personal care (e.g., eating, bathing, toileting, 
getting dressed) and mobility (e.g., transferring to bed/chair/
car, sitting, standing, moving inside and outside). These 
two sections were included given their relevance to A-T and 
potential relevance to wrist submovements. This CPCHILD 
subset score has a range of 0–78, and in contrast to BARS, 
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lower scores indicate more severe impairment. Individuals 
6–18 years old were included in CPCHILD analyses. In-
person clinical assessments were not included in DS2 due 
to the COVID-19 pandemic. Thus, data analysis included 
cross-sectional analyses of wrist sensor data with respect to 
clinical assessments and caregiver-reported outcomes, and 
longitudinal analysis of wrist-sensor data only.

Wearable Sensor Data Collection

The study used the GENEActiv Original actigraphy 
device (ActivInsights Ltd, Cambridge, UK), which meas-
ures tri-axial acceleration at 100 Hz with a MEMS sensor 
(range: + / − 8 g; res: 12bit). Devices were distributed to par-
ticipants as previously reported [25].

Wearable Sensor Data Processing and Feature Types

Each participant’s raw wearable sensor data were partitioned 
into day and night segments based on clear changes in each 
child’s daily activity level represented in the accelerometer 
data [25]. To account for differences in the time of day that 
sensor recording began across participants, day/night seg-
mentation was started at the onset of the first full night of 
recording. This produced a maximum of 6 consecutive 24-h 
periods of recording. Data analysis focused on daytime seg-
ments. Gravity and high-frequency noise were removed from 
the acceleration time-series using a sixth-order Butterworth 
filter with cutoff frequencies of 0.1 and 20 Hz. [28].

Several classes of features were extracted from daytime 
wrist sensor data for a total of 62 features. These included 

total power in the 0.1–5 Hz frequency range and a set of fea-
tures based on the distribution of activity intensity computed 
in 1-s time bins, which were previously evaluated cross-sec-
tionally in A-T [25]. These accounted for 8/62 features. The 
remaining 54/62 features described characteristics of wrist 
submovements, described in detail below. These included 
the mean (M) and standard deviation (SD) of submovement 
distance, peak velocity, and duration (24/62 features), and 
the mean, standard deviation, and kurtosis (Kr) of shape 
characteristics of the normalized submovement veloc-
ity–time curve (30/62 features).

Activity Index Feature Extraction

Relative scale Activity Index (AI) is a measure of activ-
ity intensity derived from tri-axial accelerometry data that 
correlates with energy expenditure and can differentiate 
between activity types [29]. The AI metric is based on the 
variance of acceleration in each of the three axes of motion. 
AI was computed from the unfiltered acceleration time series 
for each 1-s period of sensor recording [25]. AI features 
included the mean, median, mode, and entropy of the AI 
distribution (excluding periods of inactivity) and the per-
centage of daytime spent performing low, moderate, and 
high intensity activities [25].

Submovement Features

Submovements were defined as one-dimensional wrist 
velocity versus time functions flanked by zero velocity 
crossings in an analogous way to submovements defined 

Table 1  Participant demographics and clinical characteristics. 
Participant data is provided separately for Dataset 1, Dataset 2, and 
the combined Longitudinal Dataset. Nine individuals with A-T are 

listed as “uncertain” in the A-T phenotype column as they are 6 years 
old or younger, and it is too early to make a determination

* CPCHILD scores reported are for individuals 6–18 years of age
Abbreviations: A ambidextrous, BARS Brief Ataxia Rating Scale, CPCHILD Caregiver Priorities and Child Health Index of Life with Disabili-
ties

Diagnosis N Age at start Sex Handedness BARS (0–30) CPCHILD (0–78) Wheelchair 
use (N)

A-T phenotype (N)

Median Range M F R L A

Dataset 1 (DS1), January-June 2020
A-T 15 11.0 6.3–18.2 9 6 14 1 0 11.0–25.5 N/A 8 Classic (15)
Control 15 11.0 5.0–16.0 9 6 14 1 0 0 N/A 0 N/A
Dataset 2 (DS2), January–August 2021
A-T 30 10.8 2.6–20.0 18 12 26 2 2 N/A 20–72 13 Classic (20)

Mild (1)
Uncertain (9)

Control 25 10.8 2.3–17.2 13 12 21 3 1 N/A 73–78 0 N/A
Longitudinal Data (LD), data from DS1 and DS2
A-T 14 10.9 6.3–18.2 9 5 13 1 0 11.0–25.5 20–72 7 Classic (14)
Control 13 11.0 5.0–16.0 8 5 12 1 0 0 75–78 0 N/A

263The Cerebellum (2023) 22:261–271



1 3

during computer mouse movements [30]. Submove-
ments were extracted from the wrist velocity time series 
as described in eMethods. Submovements were catego-
rized into four groups based on duration (0.05–0.6 s and 
0.6–5 s) and the direction of movement in the plane (pri-
mary versus secondary, see eMethods). The mean (M) and 
standard deviation (SD) of duration, distance, and peak 
velocity of submovements were computed for each of the 
four groups, producing 24 features for each individual.

Submovement velocity–time curve (i.e., submovement 
“shape”) characteristics were computed for long dura-
tion (0.6–5 s) submovements as described in eMethods. 
Briefly, submovements were normalized to have velocities 
ranging 0–1 and were resampled in time to be 40-dimen-
sional (40D) vectors (normalized submovement examples 
are shown in Fig. 1). Principal component analysis (PCA) 
was used to identify the top 5 “basis functions” (PC 1–5) 
that could be used to optimally reconstruct all normalized 
submovements. The principal component (PC) “scores” 
for a given submovement are the linear weights on these 
five principal component vectors in order to reconstruct 
the submovement. Thus, the magnitude of PC scores rep-
resents how much each principal component contributes 
to the submovement. PC 1 and 2 represented low-fre-
quency characteristics of the velocity–time curve and PC 
3–5 represented higher frequency characteristics (Fig. 2). 
The mean absolute value (M), standard deviation (SD), 
and kurtosis (Kr) of each principal component score (PC 
1–5) for each of the two normalized submovement groups 
were computed for each individual. In total, this resulted 
in 30 submovement shape features for each individual.

Submovement Feature Grouping

In order to understand and visualize the statistical relation-
ships between the 62 wrist sensor features, features were 
manually sorted into a smaller set of interpretable feature 
groups: 3 groups based on activity index and total power, 6 
groups based on submovement distance, peak velocity, and 
duration, and 9 groups based on submovement shape charac-
teristics. For the 3 activity index (AI) groups, AI entropy and 

Fig. 1  Examples of normalized 
submovements from an individ-
ual with ataxia-telangiectasia. 
The x-axis is resampled time 
so that each submovement is 
represented by forty time points. 
The y-axis is velocity, normal-
ized to the range 0–1. Normal-
ized submovements can take on 
a range of different shapes with 
varied peak locations and low 
and high-frequency components

Fig. 2  The top five principal component eigenvectors (PCs), repre-
senting basis functions that explain the majority of variance in the 
submovement velocity versus time curve (i.e., submovement shape). 
Submovements (see Fig.  1 for examples) can be partially recon-
structed by a linear combination of the five principal component 
vectors shown. Each panel provides a visualization of an eigenvec-
tor, with the element values displayed on the y-axis for each dimen-
sion of the 40-dimensional vector. PCs 1 and 2 demonstrate a single 
sine wave cycle with a peak in the first half and second half of the 
submovement, respectively. PCs 3, 4, and 5 have increasing cycles in 
half-cycle increments, with 1.5, 2, and 2.5 cycles, respectively
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percentage of daytime spent performing low intensity activi-
ties were each given their own group. AI mean, median, 
mode, percentage of daytime spent performing moderate 
and high intensity activities, and total power were grouped 
together as they reflect activity intensity in a similar way. 
The correlation matrix of the 62 features with the 18 feature 
groups marked is shown in eFigure 3.

Statistical Analyses

All statistical analyses were completed in MATLAB. The 
Mann–Whitney U test was used to determine individual fea-
ture and age differences between A-T and control groups, 
and Cohen’s d was used to measure effect size. The Wil-
coxon signed rank test was used to determine if change in a 
feature over a 1-year period was different from zero in A-T 
and control groups. Intraclass correlation coefficients (ICCs) 
were used to determine the reliability of wrist sensor features 
over a 1-week recording period (i.e., comparing data from 
days 1–3 versus days 4–6 from individuals with a full 6 days 
of data collection): a 2-way mixed effects model was used 
for evaluation [31]. Absolute value of Pearson correlation 

coefficients (|r|) and p values were used to evaluate relation-
ships between wrist sensor features and ataxia rating scales 
and caregiver reported outcome measures. p values less than 
0.05 were considered significant. The Benjamini–Hochberg 
method was used to adjust for multiple comparisons within 
each of the 18 feature groups of interest [32].

Results

Demographic and clinical information for participants is 
shown in Table 1. There were no age differences between 
A-T and control groups in each of the three datasets 
(p = 0.27–0.82). Participants wore the wrist sensor for 
5.8 ± 0.7 (M ± SD) full days with a range of 3–6 days.

Wrist Sensor Features Differentiate A‑T and Control 
Participants

Sixteen out of the 18 feature groups contained wrist move-
ment features that were significantly different between 
A-T and control participants (p = 2 ×  10−2-1 ×  10−8, effect 

Fig. 3  Relationship between each wrist sensor feature group and key 
clinical comparisons, including A-T versus control groups (rows 1–2), 
change over time in the A-T group (row 3) and the control group (row 
4), reliability of features for both groups combined (row 5), relation-
ships with the Brief Ataxia Rating Scale (BARS, rows 6–7), and rela-
tionships with Caregiver Priorities and Child Health Index of Life 
with Disabilities (CPCHILD, rows 8–10). Row 4 does not have any 
text since no features showed statistically significant change in the 
control group. Rows 1–4 report the number of features (Nf) that are 
significant within the feature group along with the most significant 
p value. Green text indicates when values are higher in the control 

group compared with the A-T group, and red text indicates when the 
value is higher in A-T compared with controls. Rows 5–10 report the 
number of significant features along with Intraclass Correlation Coef-
ficients (ICC) or maximum absolute value of the Pearson correlation 
coefficient (r). The color of each cell also represents the value of 
the correlation coefficient. Abbreviations: Ns number of subjects, Nf 
number of features, AI activity intensity, SM submovement, PC prin-
cipal component, M mean, SD standard deviation, Kr kurtosis, ICC 
intraclass correlation coefficient, BARS Brief Ataxia Rating Scale, 
CPCHILD Caregiver Priorities and Child Health Index of Life with 
Disabilities
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size = 0.6–2.3, Fig. 3, row 1). Four out of these 16 groups had 
features that remained significantly different when only con-
sidering children 6 years old and younger (p = 0.042–0.004, 
effect size = 1.3–2.3, Fig. 3, row 2). Individuals with A-T 
spent more time performing low intensity movements and 
less time performing high intensity movements, had shorter 
and less variable submovement distances, and had slower 
and less variable submovement peak velocities (Fig. 3, row 
1; Fig. 4B,C; eFigure 4, row 1).

A-T submovement velocity versus time profiles (sub-
movement shapes) were also significantly different in A-T 
and control participants. Both low-frequency components 
(PC 1 and 2) represented a single sine wave cycle, but the 
peak of the cycle was in the first half of the submovement 
for PC 1 and was in the second half for PC 2 (Fig. 2). The 
magnitude and variance of PC 1 scores were larger in con-
trols and highly significant in distinguishing A-T and con-
trol participants (Fig. 3, row 1; Fig. 4D). In contrast, A-T 
submovements had larger and more variable higher fre-
quency oscillations. This is reflected by increased mean PC 
3 scores in the A-T group—the two significantly different 
features in the high-frequency group (PC 3–5 M) were PC 
3 mean scores in the primary and secondary directions of 
movement (Fig. 3, row 1). The histogram for PC 3 scores 
was also less peaked at zero in A-T compared to controls, 
consistent with larger high-frequency contributions to A-T 
submovements (Fig. 4F). Thus, submovement velocity–time 
curves from A-T participants had smaller and less variable 
low-frequency components, particularly at the beginning of 
the submovement, and larger and more variable higher fre-
quency components.

Wrist Sensor Features Are Reliable and Capture 
Disease Progression

For participants in dataset 2 with six full days of data 
(N = 49), the reliability of wrist sensor features was evalu-
ated by comparing features computed from days 1–3 with 
features obtained from days 4–6. The majority of wrist 
sensor features showed good to excellent reliability with a 
median ICC of 0.86 and range of 0.33–0.96 (Fig. 3, row 5).

Data from 27 participants (14 A-T, 13 controls) were 
collected at two time points separated by 1 year. Features 
were evaluated for their ability to detect disease progres-
sion over the 1-year interval. Features from 6 out of the 18 
feature groups demonstrated statistically significant change 
in the A-T group (Fig. 3, row 3). No features showed sig-
nificant change in the control group (Fig. 3, row 4). For all 
features with longitudinal change, the direction of change 
was congruent with disease progression based on the rela-
tionship between the feature and the neurologist-performed 
ataxia rating scale (BARS). Over the 1-year interval, indi-
viduals with A-T had reduced mean activity index (AI) and 

decreased AI entropy. There was a trend toward smaller 
submovement distances, velocities, and durations; how-
ever, these did not remain significant after adjustment for 
multiple comparisons. Submovement shapes had larger 
high-frequency oscillations (PC 3–5) and more variability 

Fig. 4  Normalized histograms of long duration (0.6–5  s) submove-
ment properties for individuals with A-T versus controls (column 
1, A–H), younger versus older individuals with A-T (column 2, 
I–P), and younger versus older controls (column 3, Q–X), for data-
set 2 (N = 55). Participants with A-T are shown in red and controls 
in green. The line is the population group mean, and the line width 
indicates group standard deviation. Duration, distance, and velocity 
histograms are plotted in log scale. Each histogram bin that is signifi-
cantly different between groups is marked to indicate the level of sig-
nificance: p < 0.001(*); p < 0.0001(red*). Abbreviations: PC principal 
component
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in these high-frequency components (Fig. 3, row 3). These 
longitudinal observations were further supported by cross-
sectional age-group differences in the A-T population: older 
A-T participants (8 years old and up) had smaller and slower 
submovements compared with younger A-T participants 
(Fig. 4J–K). Additionally, older A-T participants had fewer 
submovements with no high-frequency components, indi-
cated by a smaller histogram peak at PC 3 and PC 4 scores 
of zero (Fig. 4N–O). These age-group changes were not seen 
for healthy participants (Fig. 4R–S, V–W), indicating that 
the changes were largely disease-related rather than age-
related changes.

Wrist Sensor Features Correlate with Ataxia Severity 
and Caregiver‑Reported Function

Features from 11 out of 18 feature groups were signifi-
cantly correlated with BARS total score (|r|= 0.52–0.77, 
p = 0.048–0.0007, Fig. 3, row 6), and features from 10/18 
groups were significantly correlated with BARS domi-
nant arm score (|r|= 0.53–0.81, p = 0.044–0.0003, Fig. 3, 
row 7). The wrist movement features that correlated with 
BARS total and BARS dominant arm were similar to the 
features that distinguished A-T from control participants 
and progressed over time in the A-T group. With increasing 
ataxia severity, the mean and entropy of activity intensity 
decreased; submovement distances, velocities, and dura-
tions decreased and became less variable, and the mean and 
variance of high-frequency oscillations (PC 3–5) increased 
(Fig. 3, rows 6–7). Although the magnitude and variance of 
PC 1 scores were larger in controls and highly significant 
in distinguishing A-T and control participants, they did not 
correlate with ataxia severity and did not change over time 
(Fig. 3, rows 3,6–7). On the other hand, kurtosis of the PC 
1–2 and 3–5 distributions, reflecting the amount of prob-
ability density outside the central range of the distribution 
and how heavy-tailed the distributions were, decreased with 
increasing ataxia severity.

Comparing wrist sensor features with CPCHILD 
total, standing, and eating scores demonstrated that a 
subset of wrist sensor features was related to caregiver-
reported function (features from 6/14, 7/14, and 0/14 
groups, respectively, Fig.  3, rows 8–10). Wrist sen-
sor features had significant relationships with standing 
(|r|= 0.51–0.83, p = 0.038–7 ×  10−5) and overall motor 
function (|r|= 0.50–0.72, p = 0.048–0.0016), whereas there 
were no significant relationships with eating after adjust-
ment for multiple comparisons. Whereas activity index 
and submovement distance and peak velocity features were 
related to ataxia severity and distinguished A-T from con-
trols, they were not significantly correlated with motor func-
tion based on CPCHILD. However, variable and increased 

high-frequency oscillations were significantly correlated 
with increased motor impairment (Fig. 3, rows 8–9).

Power Law Relationship Between Submovement 
Velocity and Distance

Prior work has demonstrated a two-thirds power law relation-
ship between submovement velocity and distance during spe-
cific motor tasks [33] and a two-thirds power law relationship 
between curvature and velocity during handwriting and draw-
ing, [34, 35] which may reflect how the motor system plans 
and optimizes movement [36, 37]. We also observed a strong 
power law relationship between long duration submovement 
peak velocity and submovement distance, as indicated by 
the linear relationship on the log–log 2D histogram (slope: 
0.80–0.83, r2: 0.93; Fig. 5, top row), as well as short duration 
submovements (slope: 0.69–0.73, r2: 0.92–0.94; eFigure 5, 
top row). The power law relationship was similar for A-T and 
control groups; however, the center of the 2D distribution 
was shifted toward smaller and slower submovements for the 
long duration submovements in A-T, consistent with the 1D 
distance and velocity histograms in Fig. 4B–C.

Discussion

Our results demonstrate that real-life, triaxial accelerometer 
data from a wrist sensor contain reliable and interpretable 
information about motor impairment in individuals with 
ataxia-telangiectasia. Submovement and activity intensity 
features derived from the wrist sensor data distinguished 
individuals with A-T from controls, had high reliability, 
detected disease progression over a 1-year interval, and 
correlated strongly with ataxia rating scales and caregiver-
reported function.

We found that both activity intensity (AI) and submove-
ment feature classes carried information relevant to A-T phe-
notypes. Consistent with prior work, mean activity intensity 
and the range of activity intensities were strongly reduced in 
A-T compared with controls [25]. Additionally, we observed 
that mean intensity was also significantly reduced in chil-
dren ≤ 6 years old, and several AI-based features detected 
disease progression over a 1-year interval. The observed 
decrease in mean AI and entropy of the AI distribution in 
A-T participants over time is consistent with the natural his-
tory of the disease, which includes slower movements and 
decreased ability to participate in motor activities over time. 
While AI-based features correlated with ataxia severity, they 
did not show statistically significant relationships with car-
egiver-reported motor function. It is possible that slowing 
and reducing the intensity of movements assists in the pres-
ervation of everyday motor functions, thereby weakening 
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the observed relationship between activity intensity fea-
tures and caregiver-reported function. It is also possible that 
CPCHILD does not fully capture the motor function changes 
in A-T, and an A-T-specific caregiver-reported outcome tool 
is needed.

Submovement kinematic features including peak veloc-
ity and distance (mean and variance) were strongly reduced 
in A-T, and variance of these measures was significantly 
reduced in the younger age group. Peak velocity, distance, 
and duration all decreased with increasing ataxia severity 
but were not significantly correlated with caregiver-reported 
motor function. This is consistent with the possibility that 
reductions in movement speed and distance help maintain 
motor function, resulting in a weaker observed relationship 
between the variables. Variability in submovement duration 
significantly decreased over a 1-year interval in A-T par-
ticipants. Similarly, peak velocity and distance variability 
trended toward a decrease over time in A-T participants; 
however, these observations were not significant after adjust-
ment for multiple comparisons. These findings demonstrate 
that submovement distances, velocities, and durations are 
decreased in A-T and related to ataxia severity and may 
become less variable with disease progression.

Submovement shape features captured both low-fre-
quency (PC 1–2) and higher frequency (PC 3–5) oscilla-
tions in the velocity–time profile (Fig. 2). The low-frequency 
component with a velocity peak in the first half of the sub-
movement (PC 1) was much weaker and less variable in A-T 
compared with controls but did not change with increasing 

motor severity. On the other hand, the low-frequency com-
ponent representing a peak in the second half of the sub-
movement (PC 2) became more variable as ataxia severity, 
and functional impairment increased. Similar to PC 2, the 
mean and variance of high-frequency (PC 3–5) oscillations 
increased with worsening ataxia and impaired motor func-
tion, and showed progression over a 1-year interval (4/12 
features changed in A-T and 0/12 changed in controls, Fig. 3, 
rows 3–4). The mean and variance of high-frequency oscil-
lations consistently showed moderate to strong relationships 
with BARS total, BARS arm subscore, CPCHILD total, and 
CPCHILD standing. They also demonstrated high reliabil-
ity and detected disease change in A-T participants over a 
1-year interval. However, they did not distinguish between 
A-T and control populations as strongly. This suggests that 
high-frequency components have different meanings in 
A-T versus control populations: in controls, high-frequency 
components may reflect more flexible and complex move-
ment, whereas in A-T they represent decomposed move-
ments which become increasingly segmented with disease 
progression.

There is evidence that voluntary movements are com-
posed of motor primitives or submovements that are strung 
together to form motor behaviors [38–40]. Submovements 
have been observed during ballistic reaching movements 
[41], slow finger movements [42], rotary wrist movements 
[43], periodic elliptical drawing [44], and handwriting 
[33, 34]. Measurements have typically been performed 
in the laboratory setting using sophisticated equipment 

Fig. 5  Two-dimensional, log–
log histograms showing the 
relationships between submove-
ment peak velocity and sub-
movement distance (A–B) and 
submovement duration versus 
distance (C–D), separately for 
controls and individuals with 
A-T for long duration (0.6–5 s) 
submovements. The linear 
regression line and equation of 
each log–log relationship are 
shown in white. The slope of 
the line is equivalent to the scal-
ing exponent of the power law 
relationship between the two 
variables

268 The Cerebellum (2023) 22:261–271



1 3

such as motion capture systems or robotic arms to record 
movements. Our observations of submovement properties 
during natural movement are consistent with previously 
reported properties of submovements during motor tasks. 
Older individuals appear to compensate for greater noise 
and lower perceptual efficiency by increasing the number 
of submovements and decreasing the velocity of submove-
ments during accuracy-constrained movement tasks [45]. 
During the finger-nose-finger reaching task, individuals 
with different types of cerebellar ataxia were found to have 
smaller, shorter, and slower submovements, as well as an 
increased proportion of submovements with more than one 
velocity peak [14]. Consistent with these observations, 
but in the context of improving motor function, healthy 
infants’ reaching trajectories become straighter, and move-
ment units decrease in number and increase in duration, 
with the dominant unit beginning the movement [46]. In 
stroke survivors during recovery, the number of submove-
ments decreases, and their temporal overlap increases 
giving rise to smoother trajectories during point-to-point 
movements [47]. These observations are consistent with 
the smaller and slower submovements with increased high-
frequency oscillations observed in A-T.

It is notable that we observed a bimodal distribution 
of submovement durations, motivating separation of sub-
movements into short (0.05 − 0.6 s) and long (0.6 − 5 s) 
duration groups (eFigure 2). The shorter submovements 
had durations that were largely consistent with those 
reported in the literature during specific motor tasks. 
These shorter duration submovements also demonstrated 
an approximately two-thirds power law relationship 
between distance and velocity (eFigure 5) that has been 
previously reported [14, 33]. The longer submovement 
group included durations that overlapped with prior work, 
but also included durations that were longer than those 
reported (mean 0.2–0.44 s, [45] mean 0.2–0.6 s, [46] mean 
1.2 s, [47] range 0.05–2.4 s [14]). It is not surprising that 
there is variation in submovement duration across studies 
as duration is influenced by motor task parameters [45] 
and by how submovements are defined and segmented 
[48]. It is possible that longer duration submovements rep-
resent co-articulation or concatenation of movement com-
ponents and the formation of new movement primitives 
[39, 49]. If such higher order movement chunks emerge 
to efficiently represent and control learned movements, 
one might expect to see these more often during everyday 
behavior, where well-learned and habitual movements are 
prevalent. It is also possible that the longer durations we 
found are in part due to incomplete segmentation of natu-
ral behavior submovements. The strong power law rela-
tionship between submovement distance and peak veloc-
ity (r2 = 0.93) and the reliability of submovement shape 
features suggest that these long duration submovements 

are unlikely due to inaccurate segmentation. Furthermore, 
the strong relationships with ataxia severity and motor 
function, and consistency with reported changes in older 
populations, infant development, and stroke recovery, sup-
port that longer duration submovements are a meaningful 
representation of real-life motor behavior.

In summary, the wrist movement changes observed in 
A-T participants indicate that movements become less 
intense, with a reduced range of intensities, and submove-
ments become smaller, slower, and less variable in their dis-
tances and speeds. The primary low-frequency component, 
with a peak in the first half of the submovement velocity 
profile, is reduced and less variable in A-T. These changes 
suggest that A-T wrist movements during everyday behavior 
are decomposed into smaller, less powerful, and less flex-
ible submovements. This could reflect a compensatory con-
trol mechanism to improve the accuracy and smoothness 
of movement. These changes could also be in part due to 
decreased participation in certain types of motor activities. 
High-frequency components contributed more and were 
more variable in A-T compared with controls. Increased 
high-frequency oscillations were strongly related to ataxia 
severity and impaired motor function and showed progres-
sion over a 1-year interval. These larger and more variable 
high-frequency components may reflect flexor–extensor 
dyssynergy [50] and/or decomposition of movements into 
smaller primitives as part of a compensatory strategy [45, 
51].

The interpretability, reliability, and sensitivity of move-
ment features extracted from passive wrist sensor data 
indicate that this technology has potential as an assessment 
tool and motor outcome measure in A-T clinical trials and 
clinical care. Importantly, wrist movement characteristics 
tended to reflect overall ataxia severity and motor func-
tion, similarly to or more so than arm-specific ataxia and 
function subratings. This supports that the motor meas-
urements are ecologically valid and may more closely 
represent everyday function than measurements from pre-
scribed motor tasks. Since the extraction of submovement 
and activity intensity features are not dependent on per-
formance of a specific motor task, the same feature types 
obtained from a sensor worn on the ankle or waist could 
provide additional information regarding gait, balance, and 
lower limb function, which is often affected early in A-T. 
It is also possible that not relying on tasks that are specifi-
cally used to assess the ataxia phenotype may enable the 
current approach to integrate information across the other 
movement disorders often present in A-T (e.g., chorea), 
[4, 25] producing a more comprehensive evaluation of 
the motor state. However, additional research is needed 
to understand the effects of other movement disorders on 
submovement and activity intensity properties. The con-
sistency of submovement patterns with studies in other 

269The Cerebellum (2023) 22:261–271



1 3

populations contributes to the validity of the measures 
and suggests that they could apply to other neurological 
conditions that affect motor planning and/or execution. As 
the technology was tested in children as young as 2 years 
old as well as in individuals who were wheelchair bound, 
it has potential for application across a wide age range 
and spectrum of disease severity. Finally, the use of a 
low-cost, low-burden sensor that is ubiquitous in smart-
watches could support participation in neurological care 
and research for individuals regardless of geography and 
socioeconomic status.

There were several limitations of the study. First, the 
sample size of the study was relatively small, and the 
population contained a wide range of disease severity 
and age. A larger population of participants in the young-
est age group would support analysis of wrist movement 
patterns during periods of rapid motor development and 
enable a detailed characterization of the age dependence 
of wrist sensor features. A-T participants were recruited 
from across the USA to obtain as representative a sample 
as possible in this rare disease population. Future research 
is needed to build upon these findings in larger and more 
homogeneous neurological disease populations. BARS, 
similar to other ataxia rating scales, is age dependent up 
to approximately 11 years of age [11]. Thus it is possible 
that motor immaturity contributed in part to the observed 
relationships between wrist sensor features and BARS rat-
ings. Natural wrist movements in the real world are gener-
ated as part of a very large range of motor behaviors. Our 
analysis of wrist submovements ignores different types 
of behaviors and treats them as a single group. Caution 
is needed in comparing submovement properties during 
natural behavior with submovement properties during 
well-controlled motor tasks due to important differences 
in behavioral context as well as differences in how sub-
movements are identified.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12311- 022- 01385-5.

Acknowledgements The authors thank Rachelle Gupta and Siddharth 
Patel for helpful comments on the manuscript. The authors would also 
like to thank the patients and families who collaborated with us on 
this project.

Author Contribution All authors contributed to the study conception 
and design. ACL, NCK, SR, and JKT contributed to the acquisition of 
data. ASG performed the data analysis and wrote the first draft of the 
manuscript. All authors revised the manuscript for intellectual content.

Funding ASG is a consultant for Biogen Inc., Triplet Therapeutics, and 
Remix Therapeutics and is funded by NINDS R01 NS117826, the Mas-
sachusetts Life Sciences Center, Biogen Inc., the Ataxia-Telangiectasia 
Children’s Project, and the University of Pennsylvania Orphan Disease 
Center. ACL, NCK, SR, and JKT have no disclosures to report.

Data Availability All data included in this study will be shared by 
request from any qualified investigator.

Declarations 

Ethics Approval Written informed consent and assent were obtained 
from all participants prior to participation, and the study was approved 
by the Partners Healthcare Research Committee Institutional Review 
Board (No. 2019P002752).

Conflict of Interest The authors declare no competing interests.

References

 1. Cavazzoni, P. The Path forward: advancing treatments and cures 
for neurodegenerative diseases. https:// www. fda. gov/ news- events/ 
congr essio nal- testi mony/ path- forwa rd- advan cing- treat ments- and- 
cures- neuro degen erati ve- disea ses- 07292 021# footn ote1F ootno te  
reference is out of range._sde0aq9 (2021).

 2. Rothblum-Oviatt C, et  al. Ataxia telangiectasia: a review. 
Orphanet J Rare Dis. 2016;11:1–21.

 3. Lavin MF, Gueven N, Bottle S, Gatti RA. Current and potential 
therapeutic strategies for the treatment of ataxia-telangiectasia. Br 
Med Bull. 2007;81–82:129–47.

 4. Nissenkorn, A. & Ben-Zeev, B. ataxia telangiectasia. vol. 132 
(Elsevier B.V., 2015).

 5. Crawford TO. Ataxia telangiectasia. Semin Pediatr Neurol. 
1998;5:287–94.

 6. Bennett CF, Krainer AR, Cleveland DW. Antisense oligonucleo-
tide therapies for neurodegenerative diseases. Annu Rev Neurosci. 
2019;42:385–406.

 7. Schmahmann JD, Gardner R, MacMore J, Vangel MG. Develop-
ment of a brief ataxia rating scale (BARS) based on a modified 
form of the ICARS. Mov Disord. 2009;24:1820–8.

 8. Schmitz-Hübsch T, et  al. Scale for the assessment and rat-
ing of ataxia: development of a new clinical scale. Neurology. 
2006;66:1717–20.

 9. Rummey C, Kichula E, Lynch DR. Clinical trial design for Frie-
dreich ataxia—where are we now and what do we need? Expert 
Opin Orphan Drugs. 2018;6:219–30.

 10. Brooker SM, Edamakanti CR, Akasha SM, Kuo SH, Opal P. Spi-
nocerebellar ataxia clinical trials: opportunities and challenges. 
Annals of Clinical and Translational Neurology. 2021;8:1543–56.

 11. Brandsma R, et al. Ataxia rating scales are age-dependent in 
healthy children. Dev Med Child Neurol. 2014;56:556–63.

 12. Shaikh AG, Zee DS, Mandir AS, Lederman HM, Crawford TO. 
Disorders of upper limb movements in ataxia- telangiectasia. 
2013;8:4–9.

 13. Martinez-Manzanera O, et al. Instrumented finger-to-nose test 
classification in children with ataxia or developmental coordina-
tion disorder and controls. Clin Biomech. 2018;60:51–9.

 14. Oubre B, et al. Decomposition of reaching movements enables 
detection and measurement of ataxia. Cerebellum. 2021. https:// 
doi. org/ 10. 1007/ s12311- 021- 01247-6.

 15. Knudson, K. C. & Gupta, A. S. Assessing cerebellar disorders 
with wearable inertial sensor data using time-frequency and 
autoregressive hidden MARKOV model Approaches. (2021).

 16. LeMoyne, R. et al. Wearable body and wireless inertial sensors for 
machine learning classification of gait for people with Friedreich’s 
ataxia. BSN 2016—13th Annual Body Sensor Networks Confer-
ence 147–151 (2016).

270 The Cerebellum (2023) 22:261–271

https://doi.org/10.1007/s12311-022-01385-5
https://www.fda.gov/news-events/congressional-testimony/path-forward-advancing-treatments-and-cures-neurodegenerative-diseases-07292021#footnote1Footnote
https://www.fda.gov/news-events/congressional-testimony/path-forward-advancing-treatments-and-cures-neurodegenerative-diseases-07292021#footnote1Footnote
https://www.fda.gov/news-events/congressional-testimony/path-forward-advancing-treatments-and-cures-neurodegenerative-diseases-07292021#footnote1Footnote
https://doi.org/10.1007/s12311-021-01247-6
https://doi.org/10.1007/s12311-021-01247-6


1 3

 17. Hickey A, et al. Validity of a wearable accelerometer to quan-
tify gait in spinocerebellar ataxia type 6. Physiol Meas. 
2016;37:N105–17.

 18. Terayama K, Sakakibara R, Ogawa A. Wearable gait sensors to 
measure ataxia due to spinocerebellar degeneration. Neurol Clin 
Neurosci. 2018;6:9–12.

 19. Shah VV, et al. Gait variability in spinocerebellar ataxia assessed 
using wearable inertial sensors. Mov Disord. 2021. https:// doi. org/ 
10. 1002/ mds. 28740.

 20. Ilg W, et al. Real-life gait assessment in degenerative cerebel-
lar ataxia: toward ecologically valid biomarkers. Neurology. 
2020;95:e1199–210.

 21. Holmes, G. The Cerebellum of Man. (1939).
 22. Babinski J. Sur le rôle du cervelet dans les actes volitionnels 

nécessitant une succession rapide de mouvements (diadocociné-
sie). Rev Neurol. 1902;10:1013–5.

 23. Vilis T, Hore J. Effects of changes in mechanical state of limb on 
cerebellar intention tremor. J Neurophysiol. 1977;40:1214–24.

 24. Morton SM, Bastian AJ. Relative contributions of balance and 
voluntary leg-coordination deficits to cerebellar gait ataxia. J Neu-
rophysiol. 2003;89:1844–56.

 25. Khan NC, Pandey V, Gajos KZ, Gupta AS. Free-living motor 
activity monitoring in ataxia-telangiectasia. Cerebellum. 2021. 
https:// doi. org/ 10. 1007/ s12311- 021- 01306-y.

 26. Jackson TJ, et al. Longitudinal analysis of the neurological features 
of ataxia-telangiectasia. Dev Med Child Neurol. 2016;58:690–7.

 27. Narayanan UG, et al. Initial development and validation of the 
Caregiver Priorities and Child Health Index of Life with Disabili-
ties (CPCHILD). Dev Med Child Neurol. 2006;48:804–12.

 28. Bouten CV, Koekkoek KT, Verduin M, Kodde R, Janssen JD. A 
triaxial accelerometer and portable data processing unit for the 
assessment of daily physical activity. IEEE Trans Biomed Eng. 
1997;44:136–47.

 29. Bai J, et  al. An activity index for raw accelerometry data 
and its comparison with other activity metrics. PLoS ONE. 
2016;11:1–14.

 30. Walker N, Meyer DE, Smelcer JB. Spatial and temporal char-
acteristics of rapid cursor-positioning movements with electro-
mechanical mice in human-computer interaction. Hum Factors. 
1993;35:431–58.

 31. Shrout PE, Fleiss JL. Intraclass correlations: Uses in assessing 
rater reliability. Psychol Bull. 1979;86:420–8.

 32. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a 
practical and powerful approach to multiple testing. J R Stat Soc. 
1995;57:289–300.

 33. Miranda, J.G.V., Daneault, JF., Vergara-Diaz, G. et al. Complex 
Upper-Limb Movements Are Generated by Combining Motor 
Primitives that Scale with the Movement Size. Sci Rep 8, 12918 
(2018). https:// doi. org/ 10. 1038/ s41598- 018- 29470-y

 34. Viviani P, Terzuolo C. Trajectory determines movement dynam-
ics. Neuroscience. 1982;7:431–7.

 35. Lacquaniti F, Terzuolo C, Viviani P. The law relating the kin-
ematic and figural aspects of drawing movements. Acta Psychol. 
1983;54:115–30.

 36. Viviani P, Flash T. Minimum-jerk, two-thirds power law, and 
isochrony: converging approaches to movement planning. J Exp 
Psychol Hum Percept Perform. 1995;21:32–53.

 37. Richardson MJE, Flash T. Comparing smooth arm movements 
with the two-thirds power law and the related segmented-control 
hypothesis. J Neurosci. 2002;22:8201–11.

 38. Viviani P. Do units of motor action really exist? Experimental 
Brain Research Series. 1986;15:201–16.

 39. Flash T, Hochner B. Motor primitives in vertebrates and inverte-
brates. Curr Opin Neurobiol. 2005;15:660–6.

 40. Hogan N, Sternad D. Dynamic primitives of motor behavior. Biol 
Cybern. 2012;106:727–39.

 41. Flash T, Hogan N. The coordination of arm movements: an 
experimentally confirmed mathematical model. J Neurosci. 
1985;5:1688–703.

 42. Vallbo AB, Wessberg J. Organization of motor output in slow 
finger movements in man. J Physiol. 1993;469:673–91.

 43. Crossman ER, Goodeve PJ. Feedback control of hand-movement 
and Fitts’ Law. Q J Exp Psychol A. 1983;35:251–78.

 44. Viviani P, Cenzato M. Segmentation and coupling in com-
plex movements. J Exp Psychol Hum Percept Perform. 
1985;11:828–45.

 45. Walker, N., Philbin, D. A. & Fisk, A. D. Age-related differences in 
movement control: adjusting submovement structure to optimize 
performance. J. Gerontol. B Psychol. Sci. Soc. Sci. 52B, P40–P53 
(1997).

 46. von Hofsten C. Structuring of early reaching movements: a lon-
gitudinal study. J Mot Behav. 1991;23:280–92.

 47. Rohrer B, et al. Submovements grow larger, fewer, and more 
blended during stroke recovery. Mot Control. 2004;8:472–83.

 48. Rohrer B, Hogan N. Avoiding spurious submovement decomposi-
tions: a globally optimal algorithm. Biol Cybern. 2003;89:190–9.

 49. Sosnik R, Hauptmann B, Karni A, Flash T. When practice leads to 
co-articulation: the evolution of geometrically defined movement 
primitives. Exp Brain Res. 2004;156:422–38.

 50. Hallett M, Shahani BT, Young RR. EMG analysis of patients 
with cerebellar deficits. J Neurol Neurosurg Psychiatry. 
1975;38:1163–9.

 51. Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: 
abnormal control of interaction torques across multiple joints. J 
Neurophysiol. 1996;76:492–509.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

271The Cerebellum (2023) 22:261–271

https://doi.org/10.1002/mds.28740
https://doi.org/10.1002/mds.28740
https://doi.org/10.1007/s12311-021-01306-y
https://doi.org/10.1038/s41598-018-29470-y

	Real-life Wrist Movement Patterns Capture Motor Impairment in Individuals with Ataxia-Telangiectasia
	Abstract
	Introduction
	Methods
	Participants
	Clinical Assessments and Clinical Data Collection
	Wearable Sensor Data Collection
	Wearable Sensor Data Processing and Feature Types
	Activity Index Feature Extraction
	Submovement Features
	Submovement Feature Grouping
	Statistical Analyses

	Results
	Wrist Sensor Features Differentiate A-T and Control Participants
	Wrist Sensor Features Are Reliable and Capture Disease Progression
	Wrist Sensor Features Correlate with Ataxia Severity and Caregiver-Reported Function
	Power Law Relationship Between Submovement Velocity and Distance

	Discussion
	Acknowledgements 
	References


