Table 2.
Hyper-parameters search space of classifiers for optimization.
| Classifiers | Hyper-parameters | Range |
|---|---|---|
| Extra-Trees | Estimators | 600, 700, 800 |
| Criterion | Gini, Entropy | |
| Max. features | Auto, Sqrt, Log2 | |
| SVM | C | 0.10 to 1.0, step = 0.10 |
| Kernel | Linear, Poly, rbf, Sigmoid | |
| Gamma | Auto, Scale | |
| RF | Estimators | 600, 700, 800 |
| Max. features | Auto, Sqrt, Log2 | |
| AdaBoost | Estimators | 600, 700, 800 |
| Algorithm | SAMME, SAMME.R | |
| MLP | Hidden layer sizes | (64), (64,64), (128), (128,128) |
| Activation | identity, logistic, tanh, relu | |
| Solver | lbfgs, sgd, adaml | |
| Learning rate | constant, invscaling, adaptive | |
| XGBoost | Estimators | 600,700,800 |
| Max. depth | 4,5,6 | |
| GBoost | Estimators | 600, 700, 800 |
| Criterion | friedman_mse, mse | |
| Max. features | auto, sqrt, log2 | |
| Loss | deviance, exponential | |
| LR | Penalty | l1, l2, elasticnet |
| Solver | newton-cg, lbfgs, liblinear, sag, saga | |
| k-NN | Number of neighbours | 5 to 8, step = 1 |
| Algorithm | auto, ball tree, kd tree, brute | |
| HGBoost | Max. iteration | 100 to 600, step = 100 |
| Loss | binary crossentropy |