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BACKGROUND: While 2–4% of lung cancers possess alterations in BRAF, little is known about the immune responsiveness of these
tumours.
METHODS: Clinical and genomic data were collected from 5945 patients with lung cancers whose tumours underwent next-
generation sequencing between 2015 and 2018. Patients were followed through 2020.
RESULTS: In total, 127 patients with metastatic BRAF-altered lung cancers were identified: 29 tumours had Class I mutations, 59 had
Class II/III alterations, and 39 had variants of unknown significance (VUS). Tumour mutation burden was higher in Class II/III than
Class I-altered tumours (8.8 mutations/Mb versus 4.9, P < 0.001), but this difference was diminished when stratified by smoking
status. The overall response rate to immune checkpoint inhibitors (ICI) was 9% in Class I-altered tumours and 26% in Class II/III (P=
0.25), with median time on treatment of 1.9 months in both groups. Among patients with Class I–III-altered tumours, 36-month HR
for death in those who ever versus never received ICI was 1.82 (1.17–6.11). Nine patients were on ICI for >2 years (two with Class I
mutations, two with Class II/III alterations, and five with VUS).
CONCLUSIONS: A subset of patients with BRAF-altered lung cancers achieved durable disease control on ICI. However, collectively
no significant clinical benefit was seen.
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BACKGROUND
BRAF alterations have been identified in 2–4% of lung cancers
[1–7]. Through the MAP kinase pathway, they can lead to cell
proliferation and tumour growth [8, 9]. Three distinct categories of
alterations in BRAF have been identified: Class I (V600) mutations
are the most common BRAF alterations in lung cancers in most
series [2–4, 8, 10–12], and operate as kinase monomers. Class II
alterations, by contrast, promote kinase activity as dimers. Class III
alterations have impaired kinase activity and drive signalling in a
RAS-dependent, heterodimer-dependent fashion [8, 13–15].
Class I-mutant lung cancers (BRAFV600) are clinically distinct from

other BRAF (non-V600) alterations in several respects [3, 16]. In
some studies, BRAFV600 mutations have been associated with the
female sex [4, 6, 17, 18] and with being a never-smoker [1, 17].
Patients with Class I-altered cancers also may benefit from
targeted therapies, including BRAF inhibitors and combined BRAF
and MEK inhibitors, which have been approved by the FDA and
included in national guidelines [19–24]. By contrast, patients with
non-V600 mutant lung cancers may have higher rates of brain

metastasis and tobacco exposure [4, 16]. Although some patients
with non-V600 alterations may respond to combined BRAF and
MEK inhibition [25, 26], neither BRAF nor combined BRAF and MEK
inhibitors are approved to treat non-V600 mutant lung cancers
[20]. Furthermore, patients with non-V600 mutant tumours have
shorter survival times [4, 16, 27, 28].
Because of the relative rarity of BRAF alterations in lung cancers

and with investigations ongoing regarding the biology of different
classes of BRAF-mutant disease, there is limited information on the
immunogenicity of these tumours [27, 29, 30]. Thus, it remains
unclear whether BRAF-altered lung cancers are similar to other
oncogene-addicted lung cancers, including those with EGFR and
ALK mutations, which are generally characterised by lower tumour
mutation burden (TMB) and insensitivity to immune checkpoint
inhibitors (ICI) [31–37]. The IMMUNOTARGET registry recorded a
24% response rate to ICI among 43 patients with BRAF-mutant
lung cancers across classes, suggestive of benefit among a subset
of patients with the mutation [38]. However, the extent to which
responses differ by BRAF alteration class remains unknown
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[27, 28, 38]. To determine whether the benefit from ICI for patients
differs among classes of BRAF alterations, we investigated immune
biomarkers as well as response to treatment of a large cohort of
patients with lung cancers, with the aim of defining optimal
approaches to therapy for different BRAF classes.

METHODS
We identified patients with lung cancers who underwent next-generation
sequencing (NGS) at our institution using the MSK-IMPACT assay between
January 2015 and January 2018 [39]. Data on treatment outcomes and
survival were collected through April 2020. To allow sufficient time for follow-
up of patients’ treatment course in the metastatic setting, patients were
considered to have had metastatic disease if their tumours had been found to
have recurred/metastasised before June of 2019, with survival defined from
the date of metastatic diagnosis. The study was approved by the Institutional
Review Board, performed in accordance with the United States Common Rule,
and all patients provided written informed consent for data collection.
BRAF alterations were categorised as Class I (V600), Class II or Class III, or

as variants of unknown significance (VUS) using standard criteria [13, 14].
For purposes of analysis, patients were grouped into a cohort having

cancers with BRAFV600 mutant disease or as having either BRAF non-V600
alterations (Class II or III alterations) or VUS.
TMB was assessed using previously published methods and reported as

mutations/megabase [34, 40–42]. PD-L1 was determined based on
institutional standards using the verified E1L3N antibody (Cell Signaling
Technology, Danvers, MA) [43].
The overall response rate (ORR) to ICI was assessed by RECIST v1.1 in all

evaluable patients by a dedicated study radiologist who was blinded to
treatment and mutational status. Some patients were treated with more
than one line of ICI. For all patients, data from their first treatment with ICI
was analysed.
Categorical variables, including clinicopathologic characteristics, were

compared using Fisher’s exact test. Differences in TMB were compared
using the Mann–Whitney U test. A stratified Wilcoxon (Van Elteren) test
was used to assess TMB across BRAF classes, stratified by smoking status.
Overall survival (OS) and time to treat discontinuation (TTD) were
computed using Kaplan–Meier estimates, in the former case with
adjustment for left truncation to account for the time of sequencing.
Patients who were known to have died prior to having available
sequencing data were excluded from the survival analyses. Patients who
received ICI as part of non-approved experimental combination therapy on
a trial were also excluded from survival and time-on-treatment analyses.

Table 1. Baseline demographic characteristics of patients with BRAF-altered lung cancers.

V600 Non-V600

Class I (n= 29) Class II (n= 36) Class III (n= 23) P value*

Median age at metastatic diagnosis, years (range) 65 (43–93) 70 (39–88) 59 (46–84) 0.70

Sex

Female 20 (69%) 20 (56%) 14 (61%) 0.36

Smoking status

Never 13 (45%) 4 (11%) 2 (9%) 0.002

Ever (median pack-years) 16 (20) 32 (30) 21 (30) —

Histology

Adenocarcinoma 29 (100%) 30 (83%) 23 (100%) 0.17

Squamous cell 0 3 0 —

Neuroendocrine 0 3 0 —

Co-mutation

NF1 0 3 (8%) 4 (17%) 0.09

RAS 0 4 (11%) 2 (9%) 0.17

EGFR** 1 (0.03%) 5 (14%) 2 (9%) 0.26

KEAP1 0 9 (25%) 14 (39%) <0.001

STK11 0 9 (25%) 13 (57%) <0.001

TMB (range) 4.9 (1–19.3) 8.9 (0–82.5) 9.8 (2–32.5) <0.001

PD-L1 status known 11 (38%) 19 (53%) 11 (48%) 0.27

PD-L1 status 0.039

0% 3 11 8

1–49%*** 4 6 3

≥50% 4 2 0

ICI for metastatic disease (median line) 13 (2) 21 (3) 16 (2.5) 0.17****

Pembrolizumab 4 4 2 —

Nivolumab 6 11 9 —

Ipilimumab/nivolumab 2 2 1 —

Atezolizumab 1 1 0 —

Experimental***** 0 3 4 —

ICI immune checkpoint inhibitors, TMB tumour mutation burden.
Bold entries indicate significant P values.
*P values represent comparisons between patients with V600 vs. other BRAF mutations.
**Sensitising mutations, including L858R and exon 19 deletion.
***Includes one case of PD-L1 staining called as “<5”.
****P value refers to the receipt of ICI ever.
*****Includes clinical trials of ICI in combination with another agent.
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Comparisons of survival time with respect to BRAF mutation status were
computed using the Cox proportional hazards model with left truncation.
In addition, the relationship between survival time post-metastatic
diagnosis with and without ICI treatment was depicted with smoothed
hazard estimates and evaluated as a time-dependent covariate in a Cox
proportional hazards model.
Because of the known association between EGFR activating mutations

(L858R or exon 19 deletions) and lack of benefit from immunotherapy [31],
we carried out sensitivity analyses of survival with and without receipt of
immunotherapy both including and excluding patients with these tumour
mutations.
All statistical analyses were performed using GraphPad Prism version 8

(San Diego, CA), STATA version 16 (College Station, TX), or R version 4.0 (R
Project for Statistical Computing, Vienna, Austria)).

RESULTS
Clinical characteristics and immunogenicity of BRAF-altered
lung cancers
We identified 5945 patients who were diagnosed with lung
cancers and underwent NGS during the study period. Of these,
177 patients had tumours harbouring alterations in BRAF, and 127
had the metastatic disease during the study period. Of the
patients with metastatic disease, 29 patients had Class I mutant-
tumors (22.8%), 36 had Class II-altered cancer (28.3%), 23 had Class
III alterations (18.1%) and 39 had VUS (30.7%).
Baseline characteristics of all patients with Class I, II and III BRAF-

altered lung cancers are shown in Table 1, and of patients with a
VUS in Supplementary Table S-1. Across BRAF Classes I–III, the
median age at diagnosis of metastatic disease was 59–70 years.
While more patients with Class I tumours were female as
compared to patients with Class II/III-altered cancers, a significant
differential effect was not detected (69% versus 58%, P= 0.36).

More patients with Class I-mutant cancers were never-smokers
compared to patients with lung cancers harbouring Class II/III
alterations (45% versus 10%, P= 0.002).
Fewer patients with BRAF Class I mutations than with Class II/III-

altered lung cancers had co-mutations in NF1 (0 versus 7 in Class
II/III, P= 0.09). Similarly, no patients with Class I mutations had co-
mutations in RAS, while six with Class II/III alterations had a RAS co-
mutation (P= 0.17). Of patients with RAS mutant tumours, three
had KRAS G12V mutations, and one each had KRAS G12D, G13C
and G13D-mutant tumours. Eight tumours had activating EGFR
mutations (L858R or exon 19 deletions); one had a Class I
alteration, five had Class II and two had Class III BRAF alterations.
Seven (87.5%) of the eight patients with tumours harbouring EGFR
co-mutations had received a prior EGFR-directed TKI, with the
BRAF alteration found in the setting of resistance in all cases.
Seven BRAF fusions were detected, with four of these patients
having a concomitant sensitising EGFR mutation present. All four
had received EGFR-directed therapy prior to BRAF fusion detec-
tion. None of the patients with BRAF Class I-mutant tumours had
KEAP1 or STK11 mutations. Of patients with BRAF Class II-altered
tumours, eight had mutations in STK11 and eight had mutations in
KEAP1. Among patients with Class III-altered tumours, nine had
mutations in STK11 and ten had mutations in KEAP1, with four
patients with VUS having mutations in STK11 and six having
mutations in KEAP1, respectively.
Median TMB was higher in tumours with BRAF Class II/III

alterations than in those with Class I alterations (median: 8.8
mutations/Mb versus 4.9, P < 0.001). However, when differences in
TMB between Class I versus II/III-altered tumours were stratified by
smoking status (ever versus never-smokers), differences in TMB
between Class I versus Class II/III-altered tumours were diminished
(P= 0.09).
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Fig. 1 Overall survival of patients with lung cancers according to the type of BRAF alteration. Overall survival in patients with Class
I-mutant versus BRAF Class II/III lung cancers.
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Data on PD-L1 status were available for 11 tumours in the Class I
cohort (38%) and 30 tumours in the Class II/III cohort (51%, P=
0.27). The distribution of PD-L1 status (0%, 1–49%, or ≥50%)
differed between Class I and Class II/III BRAF-altered cancers (P=
0.04). Among patients with Class I cancers, 27% (3/11) had PD-L1
negative tumours, compared to 63% (19/30) of patients with Class
II/III tumours. Moderate (1–49%) PD-L1 expression was observed in
36% (4/11) of Class I tumours and 30% (9/30) of Class II/III tumours.
Four patients with Class I-mutant tumours had high (≥50%) PD-L1
expression (36.4%) versus two (6.7%) with Class II/III-altered lung
cancers (Table 1). In all, 13% of patients with VUS mutations had
high PD-L1 expression (Supplementary Table S-1).
Patients were followed for a median of 47.9 months (4.0 years)

from the date of sequencing (interquartile range: 34.4–55.7). The
median OS of patients with Class I-mutant lung cancers was
26 months compared to 9.1 months overall in patients with BRAF
Class II/III-altered lung cancers (HR= 1.9, P= 0.02) (Fig. 1). When
patients with Class II and III alterations were compared to those
with Class I-mutant lung cancers, a median OS of 8.9 months for
Class II and 13 months for Class III alterations was observed (HR
2.27 and 1.52, respectively, P= 0.03) (Supplementary Fig. S-1A).
Median survival for patients whose tumours had VUS was
16 months (Supplementary Fig. S-1B).
In order to exclude the possibility that concomitant sensitising

EGFR alterations could be driving the clinical characteristics of
those eight patients with Class I–III BRAF mutations and a
concomitant sensitising EGFR alteration, we further assessed
survival excluding patients with sensitising EGFR alterations.
Median survival for patients with Class I-mutant disease was 29,

while it remained 9.1 months among those patients with Class II/
III-altered disease (HR 1.96, P= 0.02).

Response to ICI
Among patients with metastatic disease, 13 patients with Class
I-mutant lung cancers and 37 patients with Class II/III BRAF-altered
lung cancers received ICI. The median line of therapy at which
patients received ICI was either the second or third line across all
cohorts (Table 1). Eight of the patients who were treated with ICI
had received prior BRAF-directed targeted therapy; of these, seven
had Class I cancers and one patient had a Class II AGK-BRAF
rearrangement.
Among patients with Class I–III alterations, nivolumab mono-

therapy was the most common ICI received (N= 26). Five patients
received nivolumab with ipilimumab, two received atezolizumab
and ten received pembrolizumab. Seven patients with Class I–III
alterations were treated on a clinical trial in which ICI was given as
part of an experimental combination with a different agent,
including with kinase inhibitors, immune-stimulating agents, and
angiogenesis modulators; these patients were excluded from
further analysis. Demographic and clinical information for patients
who received ICI either alone or as part of non-experimental
therapies are presented in Table 2.
Among the 34 patients treated with non-experimental ICI with

available scans assessed by RECIST, the ORR of patients with Class I
tumours was 9% (1/11) as compared to 26% (6/23) in patients with
Class II/III-altered disease (P= 0.25) (Fig. 2a). The response rate
among the 15 patients whose tumours had VUS was 13% (2/15)
(Supplementary Fig. S-2). Among patients with an EGFR co-alteration,
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three received non-experimental ICI, two of whom were evaluable
by RECIST and had progression of the disease as their best overall
response.
Across all BRAF alterations, patients had a higher risk of death if

they had received ICI (at 24 months, HR equalled 1.64, 95% CI:
1.04–3.15; at 36 months HR was 1.69, 95% CI: 1.00–4.60) (Fig. 2b).
Worse survival was also seen across Class I–III-altered tumours (at
24 months, HR equalled 1.88, 95% CI (1.18–4.05); at 36 months HR
was 1.82, 95% CI: 1.17–6.11) (Fig. 2c). There was no evidence of a
difference in survival between patients who received ICI as part of
first- or second-line therapy versus those who received ICI as part
of later lines of therapy (first line: log-rank P= 0.40; second line:
log-rank P= 0.70) (Fig. 2d).
Given that patients with sensitising EGFR mutations generally

do not benefit from immunotherapy [31], we further analysed
differences in survival excluding patients with these alterations
who did and did not receive ICI. In the smaller cohort excluding
these patients, a trend toward worse survival was seen in patients
with any BRAF alteration who had received immunotherapy across
classes (at 24 months, HR was 1.40, 95% CI 0.87–3.11; at 36 months,
HR was 1.18, 95% CI 0.82–4.42). A similar trend was seen in those
patients with Classes I–III alterations (at 24 months, HR was 2.29,
95% CI 0.98–3.78; at 36 months HR was 2.21, 95% CI 0.95–6.54).
A trend toward worse survival was also evident among patients

with Class I alterations who received ICI versus those who never
received ICI (HR at 24 months, 2.19, 95% CI: 0.46–9.61; HR at
36 months 1.56, 95% CI 0.39–8.08) (Fig. 2e). There was a trend
toward worse survival in those with Class II/III-altered cancers who
received ICI at 24 months of follow-up and this difference was
significant at 36 months follow-up (HR at 24 months 2.67, 95% CI
0.72–9.63; HR at 36 months 4.83, 95% CI 1.35–34.24) (Fig. 2f).

Time on ICI therapy
The time on treatment of patients with Class I–III alterations
ranged from 1 dose to 3.3 years (Fig. 3). The median time on
treatment was 1.9 months in patients with Class I mutations and
was also 1.9 months in patients with Class II/III alterations (P=
0.31). The median time on treatment of patients with BRAF VUS
was longer than for patients with Class II/III alterations (2.6 versus
1.9 months, P= 0.05) (Supplementary Fig. S-3). One patient in the
Class II/III cohort was treated with ICI for >3 years. Four patients
were on ICI for >2 years, including two patients with Class I
mutations and two patients with Class II/III alterations (one Class II
BRAF p.G469A and one Class III BRAF p.G596R). Five patients with
BRAF VUS were on therapy for >2 years, and four remained on
treatment for >3 years.
Using established cut-offs for TMB (≥10 mutations/Mb) [42],

time on treatment did not differ among all patients with high
TMB ≥ 10 mutations/Mb or low TMB <10 mutations/Mb (1.9 versus
1.8 months, P= 0.6).
Among the eight patients with Class I–III alterations who

received BRAF-directed therapy before getting ICI for metastatic
disease, time on ICI ranged from 1 day to 2.3 years. While one
patient in this group had an OS from metastatic diagnosis of
4.9 months, five patients had an OS greater than 2 years, including
three who were alive at the time of data collection.

DISCUSSION
In this study, we analysed data from the largest cohort reported to
date of patients with BRAF-altered lung cancers treated with ICI.
Our study affirms that BRAF-altered lung cancers are clinically
heterogeneous, with patients with Class I-mutant disease having
longer survival than patients whose tumours had Class II/III
alterations [4, 16, 27, 28]. While patients with Class I-mutant
tumours have options for targeted therapy, our study found no
significant clinical benefit from ICI in either the Class I or Class II/III

groups. The median time on treatment of patients with either
Class I-mutant or Class II/III-altered disease was just 1.9 months.
Moreover, long-term follow-up of our cohort enabled compar-

ison of overall survival data from patients who had and had not
received ICI. The hazard ratio for deaths per person-months
comparing patients with Class I–III-altered tumours who ever
received ICI versus those who never received ICI at 36 months was
1.82 (1.17–6.11). Our analysis of survival by receipt of ICI was able
to account for several clinical factors that can influence treatment
outcomes, including BRAF class and line of therapy. Notably, there
was no difference in survival observed between patients who had
received ICI as first- or second-line treatment versus those who
had received ICI later on in their disease course. We further
analysed differences in survival after receipt of ICI among patients
who did not have activating EGFR alterations, given the known
association of these alterations with lack of ICI benefit [31]. In this
smaller cohort of patients who did not have a concomitant EGFR
alteration, there was still a trend toward worse outcomes with ICI,
although this narrowly missed the cut-off for statistical
significance.
There are a variety of potential explanations for why we did not

see a clear benefit from ICI in most patients with BRAF alterations
in our cohort. We cannot entirely exclude the possibility that
receipt of ICI directly caused harm, such as by delaying more
effective treatment. Nonetheless, given the benefit of ICI for other
lung cancers [44, 45], we believe this explanation is less likely,
especially for those patients who received ICI as second-line or
later therapy. We hypothesise that the patients treated with ICI
may have been sicker prior to treatment and were therefore
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deemed unlikely to tolerate standard chemotherapy. These
patients may have had poor baseline expected survival and may
have been more likely to come off treatment faster.
The lack of a clear observed benefit with ICI for BRAF-altered

tumours in our study differs from prior data presented by the
Israel Lung Cancer group from Dudnik and colleagues. In this
above-mentioned work, which included an investigation of 22
patients with BRAF-altered NSCLC, median overall survival was not
reached among those patients who had received prior ICI, while it
was just 21.1 months in those without prior ICI exposure [27].
Notably, Dudnik et al. did not explicitly differentiate between VUS
and other non-V600 BRAF-altered tumours. Nonetheless, this
difference in methodology alone likely does not account for the
disparate results seen in our cohort, as our results were
unchanged when patients with VUS were included in our
supplementary survival analyses.
Differences in data analysis technique likely is a key factor in the

disparate findings of our study and the Israel Lung Cancer
investigation. In particular, our analysis took into consideration left
truncation to account for differences in the timing at which
patients underwent next-generation sequencing. This statistical
adjustment can help to account for patients who may not have
survived to the time of sequencing [46]. The importance of this
adjustment for an aggressive molecular alteration was under-
scored by the experience of our patients, with at least five patients
in the cohort passing away prior to receipt of a sequencing report
showing a BRAF alteration.
While our results showing a signal of harm with ICI are novel, the

lack of benefit from ICI observed does accord with previous data
showing low progression-free survival (PFS) among patients with
BRAF-mutant lung cancers [27, 28, 38]. In the Dudnik study, PFS on ICI
was 3.7 months in patients with Class I mutations, as compared to
4.1 months in patients with all other BRAF alterations [27]. Similarly,
the IMMUNOTARGET registry included 43 patients with BRAF-altered
lung cancers, with the Class II/III cohort having a PFS of 4.1 months
on ICI as compared to 1.8 months in the Class I cohort [38]. Guisier
et al.’s study included 26 patients with Class I-mutant lung cancers
and 18 with Class II/III alterations, with a recorded PFS in the former
group of 5.3 months compared to 4.9 months in the latter group [28].
While collectively patients in our study did not benefit from ICI,

our data did show durable responses in a select group of patients
with BRAF alterations. These durable responses were observed
across BRAF classes. In the case of Class I-mutant tumours,
our identification of select patients with durable responses to
ICI contrasts with the typical finding of a lack of response to ICI
among oncogene-addicted tumours [31–37]. Response to ICI
among patients with BRAF Class I-mutant tumours is not unique to
lung cancer. In melanoma, both ICI and targeted therapies are
considered first-line options for Class I disease based on robust
overall response rates [47, 48]. Given the lack of survival benefit
observed in patients with Class I-mutant tumours who received ICI
in our study and the response rate of ~64% to targeted therapy in
patients with Class I mutations [49], our results affirm a strategy of
prioritising BRAF/MEK inhibition for Class I-mutant lung cancers.
These data should not be interpreted as precluding immunother-
apy in those patients whose tumours progress on BRAF-directed
therapy, given the durable responses observed in a minority of
patients across the BRAF-mutant class. Rather, our study may point
to the benefits of using BRAF/MEK-directed targeted therapy
before ICI in patients with a BRAF Class I mutation. Indeed, several
patients in our cohort who had received BRAF-directed therapy
prior to ICI achieved prolonged responses.
Our study also included patients who achieved durable

responses with Class II/III-altered tumours. Prior research has
shown a trend towards higher TMB, generally a marker of ICI
benefit [40, 42], in Class II/III-altered tumours as compared to Class
I-altered tumours [27]. In our study, TMB was significantly higher in
patients with Class II/III alterations than in patients with Class

I-mutant lung cancers. Based on our analyses, this difference could
be accounted for by smoking status. Overall survival was
ultimately worse in the Class II/III patients who received ICI than
in those who had never received ICI despite the higher TMB, and
time-on-treatment did not appear to differ by TMB in our study.
Durable responses to ICI were also seen in the cohort of patients

with VUS. Interestingly, the largest subset of BRAF alterations in
our cohort were categorised as VUS using an established, NGS
assay [50]. Further multi-centre investigations in additional
patients will enable a more granular assessment of whether
individual Class II/III alterations and VUS have different sensitivity
to ICI.
Our study has several limitations. First, while it represents the

largest cohort to date of patients with BRAF-mutant disease who
received ICI, it is a single-institution study from a tertiary cancer
centre. Reassuringly, demographic features of the patients in our
study, including higher rates of never-smokers among those with
lung cancers possessing Class I alterations, are in agreement with
prior investigations [1, 17].
Our analysis is retrospective, and we cannot rule out the

possibility that providers may have chosen ICI over chemotherapy
for patients with lower performance scores, who would be
expected to have a worse prognosis regardless of therapeutic
strategy. Our real-world data also includes patients who received
different immunotherapy and chemo-immunotherapy regimens.
In particular, it is notable that the median line of therapy at which
patients in our cohort received ICI was between two and three
depending on BRAF class. Due to evolving standards of care,
current first-line therapy for most patients with lung cancers
entails the use of ICI, often in combination with chemotherapy
[44, 45]. While no difference in survival was observed between
patients who received ICI as first- or second-line therapy and those
who received ICI in later lines, further studies will be needed to
fully investigate the role of ICI in the early-line setting for patients
with BRAF alterations, particularly when used as part of combina-
tion chemo-immunotherapy.
Finally, not all patients who received ICI had available archival

tissue for PD-L1 immunohistochemistry. Previous research on
patients with BRAF-mutant lung cancers has shown that higher
PD-L1 levels correlate with a higher likelihood of response to
immunotherapy [27], and future investigations of the PD-L1
positive, BRAF-altered cohort are warranted.
Clinically, our study has several advantages, including its

analysis of real-world data with long-term follow-up of patients
with standardised RECIST measures. This longer-term follow-up
enabled the investigation of differences in the durability of
responses in both the Class I–III and VUS cohorts. Moreover, a
large majority of patients in the study received ICI monotherapy,
enabling interrogation of the efficacy of ICI, while minimising the
confounding factor of combination therapies.
Overall, our data from a large cohort of patients do not

demonstrate an overall survival benefit for ICI among patients
with Class I–III disease. Nonetheless, a subset of patients with
BRAF-altered disease may achieve durable cancer control on ICI.
Further investigations into the immunogenicity of individual BRAF
non-V600 lung cancers, including VUS, are warranted.
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