Table 3.
The result of pre-trained models on Pitt dataset.
| Model | Embedding | Classifier | Precision | Recall | Accuracy | F1 |
|---|---|---|---|---|---|---|
| BertCNN | Bert | CNN | 58.85 | 56.25 | 56.25 | 52.79 |
| BertRCNN | Bert | RCNN | - | 50.00 | 50.00 | 33.33 |
| BertDPCNN | Bert | DPCNN | 41.11 | 47.92 | 47.92 | 35.59 |
| ERNIEDPCNN | ERNIE | DPCNN | - | 50.00 | 50.00 | 33.33 |
| BertLogistic | Bert | Logistic Regression | 88 | 85 | 86.20 | 85.60 |
| Transformer+GP | Transformer | Transformer | 94.00 | 89.00 | 93.50 | 91.19 |