Skip to main content
. 2022 Mar 3;13:821717. doi: 10.3389/fpls.2022.821717

TABLE 3.

Mean average precision (mAP), frames per second (FPS), root mean square error (RMSE), and root mean square percentage error (RMSPE) of SSD, Yolov3, Yolov4, Yolov5s, Yolov5m, Faster R-CNN, and our method in detecting wheat spikes.

Method Backbone Datasets mAP50 mAP75 FPS RMSE RMSPE Counting Acc
SSD VGG Mixed 0.4356 0.1652 60 10.30 0.26 0.4841
Yolov3 DarkNet53 + FPN Mixed 0.8983 0.4832 50 2.56 0.08 0.8991
Yolov4 CSPDarkNet53 + PANet Mixed 0.9127 0.4902 52 2.13 0.14 0.9095
Yolov5s CSPDarkNet53 + PANet Mixed 0.9272 0.5128 60 1.71 0.12 0.9302
Yolov5m CSPDarkNet53 + PANet Mixed 0.9312 0.5217 50 1.53 0.06 0.9330
Faster-RCNN ResNet101 + FPN Mixed 0.8536 0.4956 10 3.14 0.07 0.8805
Our method ResNet101 + BiFPN Mixed 0.9262 0.5023 22 1.96 0.06 0.9288

The results of our method are highlighted in bold.