TABLE 3.
Mean average precision (mAP), frames per second (FPS), root mean square error (RMSE), and root mean square percentage error (RMSPE) of SSD, Yolov3, Yolov4, Yolov5s, Yolov5m, Faster R-CNN, and our method in detecting wheat spikes.
| Method | Backbone | Datasets | mAP50 | mAP75 | FPS | RMSE | RMSPE | Counting Acc |
| SSD | VGG | Mixed | 0.4356 | 0.1652 | 60 | 10.30 | 0.26 | 0.4841 |
| Yolov3 | DarkNet53 + FPN | Mixed | 0.8983 | 0.4832 | 50 | 2.56 | 0.08 | 0.8991 |
| Yolov4 | CSPDarkNet53 + PANet | Mixed | 0.9127 | 0.4902 | 52 | 2.13 | 0.14 | 0.9095 |
| Yolov5s | CSPDarkNet53 + PANet | Mixed | 0.9272 | 0.5128 | 60 | 1.71 | 0.12 | 0.9302 |
| Yolov5m | CSPDarkNet53 + PANet | Mixed | 0.9312 | 0.5217 | 50 | 1.53 | 0.06 | 0.9330 |
| Faster-RCNN | ResNet101 + FPN | Mixed | 0.8536 | 0.4956 | 10 | 3.14 | 0.07 | 0.8805 |
| Our method | ResNet101 + BiFPN | Mixed | 0.9262 | 0.5023 | 22 | 1.96 | 0.06 | 0.9288 |
The results of our method are highlighted in bold.