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Brief Summary

Humans harbor a large quantity of microbes in the intestinal tract and have evolved symbiotic 

relationships with many of them. Several specific bacterial pathobionts have been associated with 

liver disease pathogenesis. Although bacteriophages (phages) and eukaryotic viruses (collectively 

known as “the virome”) outnumber bacteria and fungi in the intestine, little is known about 

the intestinal virome in patients with liver disease. Here, we will summarize changes in the 

fecal virome associated with fatty liver diseases and cirrhosis. As natural predators of bacteria, 

phages can precisely edit the bacterial microbiota. We will describe the potential of phages to 

target specific bacterial pathobionts as a novel treatment approach for liver disease and describe 

challenges to clinical applications.
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1. Introduction

Work over the last few decades have increasingly shed light on the myriad of ways in which 

the different microbial communities that colonize our guts are influencing human health and 

disease risk [1]. These microbial communities are composed of bacteria, fungi, viruses, and 

archaea that together encode over a hundred-fold more genes than the human genome [2]. 

The composition of the our gut microbiome is significantly influenced even from birth by 

our surrounding environment and these encoded genes in turn have the potential for both 

benefit and harm [3]. Most of our understanding of how the gut microbiota affects human 
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disease has been focused on bacteria, but with new advances in metagenomic methods, 

viruses are beginning to receive more attention.

The human intestinal virome is made up of about 90% bacteriophages (phages or 

prokaryotic viruses) and 10% eukaryotic viruses [4]. Eukaryotic DNA and RNA viruses 

include plant and mammalian viruses and can have intestinal cells as their host. Some 

eukaryotic viruses can affect human health by causing disease, like the well-known enteric 

pathogens Norovirus, Rotavirus, and Enterovirus, while others are not pathogenic. Plant 

viruses are likely derived from the diet [5]. On the other hand, the phageome consists 

of approximately 1015 bacteriophages and is largely composed of the order Caudovirales 

(family Siphoviridae, Myoviridae, and Podoviridae) and family Microviridae [6]. In healthy 

subjects, the intestinal viral microbiome exhibits a high level of interpersonal heterogeneity 

with relative intrapersonal stability [7, 8]. However, changes in the virome community can 

be seen with changes in lifestyle such as diet and with different disease states [8, 9]. Deep 

sequencing of the intestinal viral microbiome in healthy individuals suggests that there is 

a small core group of phages shared among a majority of people, with a wider range of 

more rare phages that are unique to individuals [10]. Understanding how the composition of 

the intestinal viral microbiome differs amongst individuals with different disease states will 

help elucidate the mechanism by which the viral microbiome influences disease. Already, 

differences in the viral microbiome have been implicated in the pathogenesis of obesity, type 

2 diabetes, colon cancer, inflammatory bowel disease, and more.

Here, we will review current literature focused on the human intestinal virome in liver 

disease. An estimated 1.5 billion people have chronic liver disease worldwide and an 

estimated 1.2 million cirrhotics will die per year, making it one of the leading causes 

of death globally [11]. Our existing strategies for reversing or preventing progression of 

liver disease are limited and often liver transplantation is the only therapy available to 

patients once they progress to end-stage liver disease. In recent years, we have improved 

our understanding of how the intestinal microbiome contributes to liver disease and with 

that, there is increased interest in targeting the intestinal microbiome to treat liver disease. 

Hence, we will also review the use of phage therapy in gastrointestinal and liver disease and 

summarize the key bacteria of interest in various liver diseases that may serve as potential 

targets for phage therapy in the future.

2. Intestinal virome in patients with liver disease

Both eukaryotic viruses and bacteriophages have been implicated in liver disease 

pathogenesis. Among the eukaryotic viruses are the known pathogenic and hepatotropic 

viruses, hepatitis A (Picornaviridae family) and E (Hepeviridae family) viruses, which can 

be transmitted by the oral-fecal route and detected in stool. Both HAV and HEV exist in 

two forms, a non-enveloped form comprised of a capsid surrounding the RNA genome and 

a quasi-enveloped form that is masquerading in a layer of host cell membrane [12]. The non-

enveloped form, which is found in the stool and saliva of infected individuals, can survive 

harsh conditions such as transit through the gastrointestinal tract and cross the intestinal 

barrier into the blood via mechanisms not yet well understood. Recent work suggests that 

once in the blood, HAV harnesses endosomal gangliosides to infect hepatocytes and Kupffer 
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cells [13], where it replicates and exits back into the bloodstream in its quasi-enveloped 

form, which camouflages its antigenic proteins from neutralizing antibodies [14]. Other 

known eukaryotic viruses that can be found in the intestinal virome and cause liver injury 

include Epstein-Barr virus (EBV), Cytomegalovirus (CMV), and severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) [15–17].

Recent work by Jiang et al. investigating the intestinal virome in patients with alcoholic 

hepatitis and alcohol use disorder demonstrated that variations in intestinal viral taxa are 

associated with disease severity and mortality [18]. Comparing the intestinal viromes of 

patients with alcoholic hepatitis, alcohol use disorder, and controls, fecal samples from 

patients with alcohol use disorder had significantly higher viral diversity and richness 

compared to controls, and this was generally correlated with lower bacterial diversity. In 

alcoholic hepatitis patients, Escherichia-, Enterobacteria-, and Enterococcus phages were 

overrepresented compared to controls, while Parabacteroides phages were underrepresented. 

Further, increased abundance of Staphylococcus phages and Citrobacter phages were 

associated with higher disease severity.

Aside from differences in phage composition, fecal samples from patients with alcoholic 

hepatitis also contained significantly more mammalian viruses, such as those from the 

Parvoviridae and Herpesviridae families, than controls. Herpesviridae was only present in 

fecal samples from alcoholic hepatitis patients, with most of the assigned reads attributed to 

EBV [18]. It is unclear why EBV is only detected in the guts of patients with alcoholic 

hepatitis, though a possible hypothesis is suppression of immunosurveillance in these 

patients. Alternatively, EBV reactivation might predispose the development of hepatitis 

in alcoholic patients. Notably, a study of the intestinal virome in nonalcoholic fatty liver 

disease (NAFLD) did not observe increased proportions of mammalian viruses in these 

patients as compared to controls [19]. Further studies are needed to confirm and characterize 

the intestinal mammalian virus population in patients with alcohol-associated liver disease 

as this may shed light on its pathogenesis.

Another difference noted between NAFLD and alcohol-associated liver disease is that 

patients with NAFLD and fibrosis had significantly lower intestinal viral diversity 

and proportionately fewer phages compared to controls [19]. Incorporating fecal viral 

diversity with clinical data into a model to non-invasively predict histologic fibrosis 

severity significantly improved its diagnostic accuracy compared with clinical data alone. 

Additionally, the abundance of several Lactococcus and Leuconostoc phages were inversely 

correlated with severity of liver fibrosis, whereas the abundance of Lactobacillus phage was 

positively correlated with severity of liver fibrosis. Though the abundance of some phages 

were inversely correlated with their respective bacterial hosts, the viral diversity did not 

correlate with bacterial diversity. It is difficult to draw conclusions regarding how liver 

disease affects the phage/bacteria relationship with data from a single timepoint.

One study evaluated phage/bacteria interactions across two timepoints in compensated 

cirrhotics before and after 8 weeks of treatment with rifaximin [20]. This study found a 

significant reduction in the genus-level richness of the bacterial but not viral population 

after rifaximin use. Decreased complexity of bacterial-phage interactions was also seen 
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after rifaximin, with complete collapse of bacterial-phage interactions seen in phages 

directed against pathobionts such as Streptococcus, Pseudomonas, and Enterobacteriaceae 
spp. These changes are most likely secondary to the direct impact of rifaximin on the 

bacterial population, and it is unclear how much cirrhosis contributed to these dynamics. 

Cross-sectional analysis revealed that phage-bacterial correlation network complexity was 

highest in controls, lowest in cirrhotics taking only lactulose, and improved in cirrhotics 

taking both lactulose and rifaximin [20]. A notable technical difference between these 

studies is that this study performed metagenomic sequencing of fecal DNA whereas the 

prior two studies used filtration techniques to isolate RNA- and DNA-containing viral 

particles from stool, followed by metagenomic sequencing.

Research on the intestinal virome is in its infancy and a causative link between changes 

in the phageome and disease has not been established. It remains to be seen whether 

changes in the virome are drivers of disease, or whether they are the result of disease. 

Future longitudinal studies are required to confirm virome changes in independent cohorts 

of patients, and to test the stability of the fecal virome and its correlation with liver 

disease severity over time. The analysis of the virome depends on metagenomic sequencing, 

methods for virome research have not been standardized, and only a small fraction of 

all sequences can be assigned to known viral taxa in public databanks. Improvements 

in bioinformatic analysis will lead to a better understanding of phage-bacteria interaction 

dynamics. This will allow us to answer the question whether changes in phages are drivers 

for bacterial dysbiosis or vice versa.

3. Phage biology and their therapeutic potential

3.1. Bacteriophages - natural predators of bacteria.

Phages are viruses that infect bacteria and are considered to be the most numerous group 

of viruses on the planet with an estimated 1031 total phage particles [21]. Shortly after 

the discovery of phages by Frederick Twort in 1915 [22], they were used to treat bacterial 

hemorrhagic dysentery. Phage therapy is the practice of using preparations of infectious 

phages to treat bacterial infections, which has the advantage over antibiotics of targeting 

specific bacterial species or strains while self-replicating and spreading to infect additional 

target bacterial cells. Phage therapy became very popular throughout the world to treat a 

wide range of diseases caused by both Gram-positive and Gram-negative pathogens, such 

as Staphylococcus, Streptococcus, Vibrio, Klebsiella, Enterobacter, Shigella, Escherichia, 

Pseudomonas and Providencia to name a few [23]. Commercial production of phage 

cocktails was initiated in France by what would later become L’Oreal [24], followed by the 

Eliava Institute of Bacteriophage, Microbiology and Virology (EIBMV) (Tbilisi, Georgia) 

and the Hirszfeld Institute of Immunology and Experimental Therapy (HIIET) (Wroclaw, 

Poland). In the US, pharmaceutical giant Eli Lilly (Indianapolis, IN) produced seven phage 

cocktails [24].

After the discovery and use of antibiotics, phage therapy fell out of favor in many western 

countries, particularly the US. Much of the concern regarding the efficacy of phages as 

a therapeutic stemmed from reproducibility issues where the same successful cocktail of 

phages used on one patient did not work for all patients. This was presumably due to the 
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narrow host range of the selected phages. Another problem was inflammatory responses to 

the phage cocktail [25]. This was more likely due to contamination of the lysate by bacterial 

endo and exotoxins used to grow the phages in production rather than an immune response 

to the phages. Likewise, there was concern that the rapid lysis of cells by phage-encoded 

lytic enzymes can cause septic shock; however, this argument also applies to bactericidal 

antibiotics.

Phages come in all shapes and sizes with genomes consisting of either double-stranded 

or single-stranded DNA or RNA, which were originally used to define them into 

21 morphotypes before nucleic acid sequencing technologies were used for taxonomic 

classification [26, 27]. Phages can be tailed, polyhedral, filamentous, pleomorphic, 

enveloped or not, but it is the double-stranded DNA tailed phages, in the order Caudovirales, 

that are the most common and are the phages commonly used for therapeutic purposes. 

In addition to morphotype and nucleic acid type, there are two main lifestyle categories 

of phages, lytic (a.k.a., virulent, obligately lytic) and temperate. Lytic phages can replicate 

only via the lytic life cycle that ends with the destruction of the infected bacterial cell and 

release of progeny phages (Figure 2A) while temperate phages are capable of choosing 

between the lytic and lysogenic life cycles (Figure 2B). The latter includes the integration 

of phage DNA into the bacterial chromosome and its passive replication [28–30]. Temperate 

phages show reduced lytic abilities, may incorporate and transfer (i.e. transduce) bacterial 

DNA, including drug resistance and pathogenicity genes, and can convert a bacterium into a 

“lysogen” (i.e., bacterial cell with a viral genome integrated into the bacterial chromosome) 

that becomes immune to superinfection by the same phage or related phages. Therefore, 

temperate phages have historically not been used as therapeutics [31]. However, temperate 

phages can be modified to become obligately lytic [32, 33] and since temperate phages 

are commonly found in bacteria, their modification could expand the arsenal of therapeutic 

phages, at least for some pathogens with limited numbers of or a lack of lytic phages [34].

Although the host range of a phage tends to be quite narrow (e.g., strain/serotype- or 

species-specific) [35], there are lytic phages that can infect more distantly related bacteria 

[36]. Host specificity is largely determined by receptor-binding proteins (RBPs), a.k.a. 

anti-receptors [37–43]. These phage-encoded proteins enable high affinity binding of phage 

virions to receptors located on the outer surface of bacterial cells such as lipopolysaccharide 

(LPS), lipoteichoic acid, capsular polysaccharide, flagella and pili [44]. Swapping domains 

or altering the sequence of specific regions of RBPs has resulted in altered host range 

specificity to enable the phage to attach to different strains or different bacterial genera 

[45–48]. Phages typically encode a single RBP, but can encode more than one, resulting in 

polyvalency (i.e., the ability to bind to more than one receptor and potentially more than one 

host organism/strain) [49].

3.2. Resurgence of phage therapy

The widespread overprescribing of antibiotics by physicians coupled with the overuse 

of antibiotics in the livestock industry are two key factors that are thought to have 

led to the global spread of antibiotic-resistant bacteria [50, 51]. This poses a serious 

public health problem since there are few, or in some cases, no drugs available to treat 
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life-threatening bacterial infections. Antibiotics are not entirely safe either, as they can 

cause allergic reactions and severe side effects, including organ damage and a clearing of 

the normal commensal gut microbiota, leaving the gut vulnerable to secondary infections 

by opportunistic pathogens such as Clostridioides difficile [52]. Because phages are host 

specific rather than broad spectrum like many antibiotics, phage therapy has the potential 

to have fewer off-target effects on beneficial bacterial microbiome species. Phages are now 

being used to treat livestock infections [53–55], to prevent food spoilage [56–61], in human 

compassionate use cases, and in clinical trials (see below).

3.3. Phage therapy in gastrointestinal diseases

Over the last two decades, several clinical trials have been performed with T4-like phages 

(Table 1). Oral administration of phage cocktails is considered to be safe in both healthy 

adults and children, with only occasional side effects independent of phage dosage [62–

65]. To determine the safety and efficacy of phage therapy on treating gastrointestinal 

infections, a T4-like coliphage cocktail was orally given to children hospitalized with acute 

diarrhea for four days. Non-bacterial causes of diarrhea were not ruled out. No adverse 

events were reported, suggesting the overall safety of the phage cocktail [66]. However, 

substantial intestinal replication of phages was not observed, and phage treatment did not 

show improvement over placebo control in quantitative diarrhea parameters, such as stool 

output and frequency [66]. This could be explained by the fact that only half of the patients 

actually harbored Escherichia coli (E. coli) strains susceptible to the administered phages, 

and E. coli only represented 5% of the total fecal bacteria. Overall, this trial confirmed 

the safety of phage treatments in children with diarrhea. Though the trial failed to show 

efficacy, this could potentially be explained by low E. coli abundance in the stool samples or 

symptoms caused by a non-bacterial source such as viral gastroenteritis.

One successful case was reported in 2016, in which a 68-year-old male patient was suffering 

from necrotizing pancreatitis complicated by a pancreatic pseudocyst infected with multi-

drug-resistant Acinetobacter baumannii [67]. Phages were applied by intracavitary and 

intravenous routes, and the patient completely recovered after five months [67]. Although 

this is only a case report, the obvious clinical improvements suggest that phage therapy 

might be useful for treating bacterial infections, and especially those caused by multidrug-

resistant bacteria.

Phage therapy may also be a promising way to precisely edit the gut microbiota. Two 

randomized, placebo-controlled trials have been performed to determine the safety and 

efficacy of phages in adults suffering mild to moderate gastrointestinal distress (e.g., gas, 

bloating, diarrhea, constipation, etc) (NCT03269617; NCT04511221). Over the 28-day 

study, oral administration of the coliphage cocktail was considered to be safe and tolerated. 

Patients experienced a similar reduction in gastrointestinal symptom severity during both 

the treatment and placebo periods, suggesting that the phage therapy was ineffective, but 

there was also no evidence that patients’ initial symptoms were secondary to overgrowth of 

the bacteria targeted by the phages administered. Future studies can evaluate phage therapy 

efficacy by documenting the interactions of phages in these cocktails with the specifically 

targeted bacterial strains obtained from the subjects.
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In addition to these clinical trials, there are also some preclinical with encouraging 

results (Table 1). Adherent-invasive E. coli (AIEC) have been shown to be involved in 

the pathogenesis of inflammatory bowel diseases [68, 69]. Administration of a phage 

cocktail against these E. coli strains reduced intestinal AIEC colonization in transgenic 

mice expressing human AIEC receptor [70]. Furthermore, wild-type mice colonized with 

AIEC were protected from dextran sodium sulfate-induced colitis upon phage treatment, 

with less E. coli in feces, as well as in ileal and colonic sections [70]. To evaluate the ability 

of phage cocktail in targeting AIEC strains in patients, ileal biopsies from patients with 

Crohn’s disease were spiked with an AIEC strain. Active phage replication was detected 5 

hours and 24 hours after phage administration, confirming the killing potential of phages in 

such environment [70]. A phase 1/2a placebo-controlled clinical trial was therefore initiated, 

to assess the safety and efficacy of the phage cocktails in patients with inactive Crohn’s 

Disease (NCT03808103).

4. Potential for phage therapy in liver disease

4.1. Known bacterial pathobionts driving liver disease as potential targets for phage 
therapy

Our existing knowledge of the taxonomic differences in the bacterial microbiota of patients 

with liver disease can help guide further investigation into potential targets for phage 

therapy. In the following subsections, we summarize fecal bacteria changes in selected 

human liver diseases (Table 2).

4.1.1 Non-alcoholic fatty liver disease (NAFLD)—NAFLD is a spectrum of disease 

beginning with excessive fat deposition in the liver in the absence of significant alcohol 

use that can progress to liver inflammation, known as non-alcoholic steatohepatitis (NASH), 

and eventually fibrosis [71]. Several studies have found a decreased fecal abundance of 

Faecalibacterium and specifically Faecalibacterium prausnitzii in both obese and non-obese 

NASH patients [72–74]. Ruminococcus was enriched in obese NASH patients in one 

study [75], but reduced in other studies of obese [73] and non-obese NASH patients [74]. 

Ruminococcus obeum was specifically found to be reduced in NAFLD patients in one 

study [76]. Advanced fibrosis secondary to NASH is associated with an overall decrease 

in intestinal bacterial diversity and an increase in the relative abundance of Gram-negative 

bacteria such as Bacteroides and Escherichia [76–80]. Although no causative role of these 

bacterial strains for steatohepatitis has been demonstrated in preclinical models, Yuan et al. 

demonstrated that an ethanol-producing Klebsiella pneumoniae (K. pneumoniae) strain was 

present in 60% of a Chinese cohort of NAFLD patients. Introduction of this strain into mice 

induced steatohepatitis [81].

4.1.2 Alcohol-associated liver disease—Heavy alcohol use leads to a spectrum 

of liver disease beginning with steatosis, which can be reversible, but can progress 

to steatohepatitis and fibrosis in susceptible patients [82]. Studies of the intestinal 

bacterial microbiome in patients with alcohol-associated have revealed enrichment of 

Enterobacteriaceae [83, 84] and a reduction of Lactobacillus [84], Bacteroidetes [83, 

85], and Akkermansia [86]. A recent study by Duan et al. demonstrated that patients 
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with alcoholic hepatitis have an increased relative abundance of Enterococcus faecalis (E. 
faecalis) and specifically a strain that secrets the exotoxin cytolysin. Presence of cytolysin-

secreting E. faecalis correlated with the severity of liver disease and with mortality in 

patients with alcoholic hepatitis, and oral administration of cytolysin-positive E. faecalis 

promotes ethanol-induced liver injury in mice [87].

4.1.3 Autoimmune hepatitis—Autoimmune hepatitis is a chronic inflammatory liver 

disease with poorly understood pathogenesis, though genetic susceptibility and loss of 

tolerance against liver antigens are proposed mechanisms [88]. Patients with autoimmune 

hepatitis have an overrepresentation of potential pathobionts, including Veillonella species 

such as Veillonella dispar, in their fecal microbiomes [89]. Translocation of Enterococcus 
gallinarum (E. gallinarum) to the liver triggered an autoimmune response in mice genetically 

predisposed to autoimmunity. Subsequent antibiotic treatment prevented the formation of 

pathogenic autoantibodies and T cells, thus improving mortality [90]. E. gallinarum DNA 

was detected in the livers of most of patients with autoimmune hepatitis but in none of the 

healthy control livers [90].

4.1.4 Primary sclerosing cholangitis (PSC)—Primary sclerosing cholangitis (PSC) 

is a cholestatic liver disease characterized by inflammation of the bile ducts leading to 

stricturing and sclerosis and eventually progressive biliary fibrosis and cirrhosis. Several 

recent studies compared the fecal bacterial microbiota of patients with PSC and healthy 

controls [91]. Patients with PSC are consistently shown to have lower bacterial microbiome 

diversity than healthy controls. Additionally, Veillonella has been consistently shown by 

many studies to be enriched in the stool of PSC patients compared to healthy controls 

[92–97]. Enterococcus, Streptococcus and Lactobacillus are also frequently enriched in PSC 

patients, whereas there is a relative depletion of short chain fatty acid (SCFA)-producing 

Firmicutes, such as Faecalibacterium and Coprococcus. Germ-free mice inoculated with 

fecal matter from patients with PSC were more susceptible to hepatobiliary injury by 

diethyldithiocarbamate and harbored K. pneumoniae, Proteus mirabilis, and E. gallinarum 
in their mesenteric lymph nodes [98]. Further, specific K. pneumoniae strains could induce 

pore formation on human intestinal epithelial organoids, suggesting that increased bacterial 

translocation could be a potential mechanism of increased susceptibility to hepatobiliary 

injury [98].

4.1.5 Cirrhosis—Patients with cirrhosis have decreased proportions of beneficial, 

autochthonous taxa, such as Lachnospiraceae and Ruminococcaceae and instead have 

an overrepresentation of potentially pathogenic bacteria such as Enterobacteriaceae, 
Staphylococcaceae, and Enterococcaceae, whose abundance correlates with disease 

progression and endotoxemia [85, 99, 100]. Another study found higher relative abundance 

of bacteria normally associated with oral flora in the intestinal microbiome of cirrhotics, 

as well as increased Veillonella and Streptococcus species as compared to controls [2]. 

Changes in intestinal bacterial microbiome composition have also been correlated with 

severity of liver disease. The ratio of autochthonous taxa such as Ruminococcaceae, 
Lachnospiraceae, and Clostridiales to non-autochthonous ones such as Enterobacteriaceae 
and Bacteroidaceae was much higher in healthy individuals than cirrhotics and decreased 
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with higher MELD score and degree of hepatic decompensation [101]. Moreover, increased 

relative abundance of pathogenic bacteria was associated with the development of 

complications such as hepatic encephalopathy.

Cirrhotic patients not only have increased relative abundance of pathogenic bacteria in their 

intestinal bacterial microbiomes, they also have increased risk of bacterial translocation, 

a process which bacteria migrate from the intestinal lumen to extraintestinal sites [102]. 

Aerobic Gram-negative bacteria, such as E. coli, K. pneumoniae, Pseudomonas aeruginosa, 

and other Enterobacteriaceae, translocate much more readily than anaerobic bacteria [103]. 

Notably, these species have also been implicated in decompensation of cirrhosis [104]. 

Increasingly, studies are comparing cirrhotic patients based on etiology of cirrhosis and 

while many intestinal bacterial communities are shared across the spectrum of liver disease 

etiologies, differences in the patterns of dysbiosis across the different etiologies of cirrhosis 

may provide a better understanding of the mechanisms underlying these associations.

4.2. Preclinical phage utilization in liver disease

Although no clinical trial using phage therapy for patients with liver disease has been 

published, two preclinical studies used phage therapy to treat liver disease. Duan et al. 

demonstrated that intestinal levels of E. faecalis are significantly increased in patients 

with alcoholic hepatitis [87]. Furthermore, the presence of a specific strain of E. faecalis 
that produces the bacterial exotoxin cytolysin correlates with increased severity of 

disease and mortality in patients with alcoholic hepatitis. Transplantation of feces from 

cytolysin-positive patients with alcoholic hepatitis worsened ethanol-induced liver disease in 

gnotobiotic mice, whereas treatment of these mice with specific phages targeting cytolytic 

E. faecalis by oral gavage, reversed the exacerbation of liver disease. No improvement in 

liver disease was seen in the gnotobiotic mice treated with phages targeting non-cytolytic E. 
faecalis. This preclinical study demonstrates the utility of targeting specific species of the 

intestinal bacterial microbiome to modify disease progression.

Another study showed that selective elimination of the ethanol-producing K. pneumoniae 
strain using phages prior to fecal transplantation into mice prevented development of 

diet-induced steatohepatitis [81]. These studies are good examples of how elimination of 

pathobionts by phages can improve liver disease in mouse models.

5. Conclusion and future directions

Recent advances in the field of microbiota research have identified a few bacterial strains 

that correlate with liver disease in patients and that are causatively linked to disease 

pathogenesis, as targets for therapy. Despite the renewed interest in phage therapy, there 

are many roadblocks preventing phage therapy from being the standard of care. One major 

roadblock is the narrow host range of phages, which limits wide therapeutic utility and the 

use of the same phages in different patients. One possibility is to use a cocktail of multiple 

phages. Limited host range can also be addressed through natural or engineered alterations 

in phage-encoded receptor-binding proteins, capable of targeting different hosts [45–47, 49, 

105–107]. To avoid using phages with undesirable off-targets (i.e., to commensal bacteria), 

experiments should include analysis of effects of any potential therapeutic phage on the 
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composition of the microbiome. Phage host range will never be as broad as standard of 

care broad-spectrum antibiotics. In addition, phages can be made to bind multiple receptors 

(i.e., polyvalent), thereby extending the host range of a single virion [46]. By targeting more 

than one receptor, we avoid many of the obstacles that bacteria have evolved to prevent 

phage adsorption (e.g., mutations to or physically blocking of receptors with extracellular 

polysaccharides). Blocking of receptors by biofilms can be avoided by expressing an 

extracellular polysaccharide-degrading enzyme in the phage [108].

Other obstacles to widespread use of phage therapeutics have to do with pharmacokinetics 

and pharmacodynamics within the human body. For example, some phages administered 

systemically can be cleared rapidly from circulation [109]. It is therefore critical to 

determine the dose of phages being administered and their clearance from the site where 

they are applied to. This will allow that phages will be present at the specific site long 

enough to lyse bacteria.

One of the crucial factors to the success of phage therapy is to screen the patients for 

the presence and sufficient abundance of the targeted bacteria in the intestine and to test 

the susceptibility of the target bacteria against the phages. Combining this personalized 

treatment approach with the precise execution by phages, phage-based therapies could 

become powerful new drugs to treat many diseases including liver diseases.
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Key Points

• Over 90% of the human intestinal virome is composed of bacteriophages, 

with eukaryotic plant and mammalian viruses making up the remaining 

fraction.

• Patients with liver disease exhibit differences in both the diversity and 

composition of their intestinal viromes compared to healthy control, though 

the impact of these differences on the bacterial microbiome needs more study.

• Use of phage therapy for the treatment of multi-drug resistant infections 

shows promise in case reports, and several clinical trials involving phage 

therapy are underway.

• Our knowledge of taxonomic differences in the bacterial microbiomes of 

patients with liver disease specific to etiology can help inform potential 

targets for phage therapy.

• Preclinical data suggest that selective targeting of bacterial strains such as 

E. faecalis or K. pneumoniae by phage therapy can modify liver disease 

progression, such as in alcoholic hepatitis or steatohepatitis respectively.
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Figure 1. Intestinal virome.
The intestine and liver are intimately connected and communicate via the portal vein and the 

common bile duct. The intestinal microbiota contains bacteria, fungi, archaea and viruses. 

Viruses in the intestinal virome are predominantly phages (also called phageome), but also 

contain some eukaryotic viruses. Lytic phages can lyse bacteria and contribute to changes in 

the bacterial microbiota. Graphic illustration was created in Biorender.com.
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Figure 2. Bacteriophage life cycles.
Depicted are the two main types of tailed phage life cycles, lytic (A) and lysogenic (B). 

Lytic growth consists of replicating the genome, expressing structural proteins, packaging 

the genome into particles, assembling the mature virions, and ending in lysis and cell death 

of the host bacterium. In contrast, lysogenic growth is a storage state whereby the phage 

integrates its genome into the bacterial host chromosome surviving by vertical transmission 

through host cell division. Lysogenic phages can also undergo lytic growth under certain 
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conditions. Proteins related to the repressors cI and cro (brown color) are responsible for 

switching from lysogenic to lytic development.
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Table 1:

Overview of recent studies of phage-related treatment in gastrointestinal diseases (English literature only)

Type of 
study

Phage (target) Dose and method Subject Result and 
conclusion

Reference

Clinical trial Phage T4 (E. coli) 105 PFU/ml, dose A, 103 

PFU/ml, dose B, Oral 
administration

15 healthy individuals Safe, but E. 
coli abundance not 
changed

Bruttin [62]

Clinical trial T4-like Phages (E. coli) 3×109 PFU/ml, dose A, 
3×107 PFU/ml, dose B, Oral 
administration

15 healthy individuals Safe, gut microbiota 
profile not affected

Sarker [63]

Clinical trial Commercial phage 
cocktail ColiProteus (E. 
coli)

20ml for adults, 10ml 
for children, and 10-fold 
dilution Oral administration

5 healthy adults, 10 
healthy children

Overall safe, 
with occasional 
reported side effect 
independent of 
dosage

McCallin 
[110]

Clinical trial T4-like Phages or 
ColiProteus (E. coli)

108 or 106 PFU for older 
children (T4-like phages), 
107 or 105 PFU for younger 
children (T4-like phages), 
5×108 or 109 PFU for all 
(ColiProteus),
Oral administration

20 older children, 20 
younger children

Both cocktails are 
safe

Sarker [65]

Clinical trial T4-like Phages or 
ColiProteus (E. coli)

3.6×108 PFU (T4-like 
phages), 1.4×109 PFU 
(ColiProteus), Oral 
administration

120 children with 
diarrhea

Safe, but lack of 
efficacy

Sarker [111]

Clinical case 
report

Phage cocktail (A. 
baumannii)

5×109 PFU Intracavitary 
and Intravenous

68-year-old male 
with necrotizing 
pancreatitis complicated 
by pancreatic pseudocyst

Patient completely 
recovered

Schooley 
[67]

Clinical trial Phage cocktail 
PreforPro (E. coli)

One 15mg capsule, Oral 
administration

32 healthy individuals 
with mild to moderate 
gastrointestinal distress

Safe and tolerable, 
but no difference 
from placebo

Gindin [112]

Clinical trial Phage cocktail 
PreforPro (E. coli), 
together with probiotics 
Bifidobacterium 
animalis subspecies 
lactis strain BL04

One 15mg capsule, Oral 
administration

68 healthy individuals 
with mild to moderate 
gastrointestinal distress

Safe and tolerable, 
but no compelling 
evidence of efficacy

Grubb [113]

Preclinical 
study

Phage cocktail 
(adherent-invasive E. 
coli)

3×107 PFU Oral 
administration

Wild-type mice colonized 
with 108 CFU of 
adherent-invasive E. coli, 
Dextran sodium sulfate-
induced colitis

Fecal E. coli level 
decreased, dextran 
sodium sulfate-
induced colitis 
ameliorated

Galtier [70]

Preclinical 
study

Phage cocktail (E. 
faecalis)

1010 PFU Oral 
administration

Gnotobiotic mice 
colonized with stool 
samples from cytolysin-
positive patients with 
alcoholic hepatitis, 
Ethanol-induced liver 
disease

Fecal E. faecalis level 
decreased, ethanol-
induced liver disease 
ameliorated

Duan [87]
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Table 2:

Bacterial genera and species with known correlations to different etiologies of liver disease

Increased Decreased

Nonalcoholic 
fatty liver 
disease

• Bacteroides [76, 77, 79]

– Bacteroides vulgatus [76]

• Blautia [75, 79, 80]

• Dorea [75, 114]

• Escherichia [74, 76, 78, 80, 115]

– Escherichia coli [76, 78]

• Lactobacillus [73, 74, 114]

• Klebsiella [81]

– Klebisella pneumoniae [81]

• Roseburia [114]

• Ruminococcus [75, 79]

• Bacteroides [78, 80]

– Bacteroides caccae [78]

• Bifidobacterium [74, 115]

• Coprococcus [73, 115, 116]

• Faecalibacterium [72–74, 85, 115]

– Faecalibacterium prausnitzii [73, 74]

• Lactobacillus [116]

• Oscillospira [75]

• Roseburia [116]

• Ruminococcus [73, 74, 76, 116]

– Ruminococcus obeum [76]

Alcohol-
associated liver 
disease

• Blautia [117]

• Dorea [117]

• Enterococcus [87, 118]

– Enterococcus faecalis [87]

• Prevotella [83, 85]

• Veillonella [118]

• Akkermansia [86, 118]

• Faecalibacterium [117]

– Faecalibacterium prausnitzii [117]

• Ruminococcus [117]

Autoimmune 
hepatitis

• Enterococcus [90]

– Enterococcus gallinarum [90]

• Veillonella [89, 119]

– Veillonella dispar [89]

• Prevotella [119]

Primary 
sclerosing 
cholangitis

• Enterococcus [92, 95, 96]

• Lactobacillus [92, 95, 96]

• Streptococcus [92, 95, 96]

• Veillonella [92–96, 120]

• Clostridium [93–95]

• Coprococcus [92, 94, 95]

• Faecalibacterium [92, 95, 120]

• Ruminococcus [95, 120]

Cirrhosis • Enterococcus [85]

– Enterococcus faecalis [85]

• Prevotella [2, 121]

• Streptococcus [2, 79, 85, 122–124]

• Veillonella [2, 85, 116, 121, 123, 124]

– Veillonella parvula [124]

– Veillonella atypica [124]

• Akkermansia [79]

• Coprococcus [2, 85, 123]

• Faecalibacterium [2, 122, 124]

– Faecalibacterium prausnitzii [122, 124]

• Lactobacillus [85]

• Roseburia [85]
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