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ABSTRACT Bacterial infections routinely cause inflammation and thereby impair osseoin-
tegration of orthopedic implants. Acinetobacter spp., which cause osteomyelitis following
trauma, on or off the battlefield, were, however, reported to cause neither osteomyelitis
nor osteolysis in rodents. We therefore compared the effects of Acinetobacter strain M2 to
those of Staphylococcus aureus in a murine implant infection model. Sterile implants and
implants with adherent bacteria were inserted in the femur of mice. Bacterial burden, lev-
els of proinflammatory cytokines, and osseointegration were measured. All infections were
localized to the implant site. Infection with either S. aureus or Acinetobacter strain M2
increased the levels of proinflammatory cytokines and the chemokine CCL2 in the sur-
rounding femurs, inhibited bone formation around the implant, and caused loss of the
surrounding cortical bone, leading to decreases in both histomorphometric and biome-
chanical measures of osseointegration. Genetic deletion of TLR2 and TLR4 from the mice
partially reduced the effects of Acinetobacter strain M2 on osseointegration but did not al-
ter the effects of S. aureus. This is the first report that Acinetobacter spp. impair osseointe-
gration of orthopedic implants in mice, and the murine model developed for this study
will be useful for future efforts to clarify the mechanism of implant failure due to
Acinetobacter spp. and to assess novel diagnostic tools or therapeutic agents.
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Implant infection is one of the most difficult orthopedic complications, as progressive
inflammation leads to osteolysis, reduced osteogenesis, impaired osseointegration,

and implant loosening (1). This process is typically initiated by macrophage production
of inflammatory cytokines that induce production of RANKL by mesenchymal cells and/or T
cells (2–6). RANKL then stimulates differentiation and activity of osteoclasts, myeloid-lineage
cells that are responsible for the bone resorption that causes local osteolysis (4–7).
The inflammatory cytokines also potently reduce osteogenesis (8–14) and thereby impair
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osseointegration (15). Despite the importance of osseointegration to achieve successful out-
comes of both orthopedic and dental implants (16, 17), few previous murine infection stud-
ies included implant materials that allow osseointegration (18–24).

Staphylococcus aureus is the most common and the best characterized cause of orthopedic
implant infections (1). Members of the Gram-negative Acinetobacter calcoaceticus-Acinetobacter
baumannii complex are an increasingly common cause of osteomyelitis and delayed healing
in soldiers with orthopedic battlefield wounds (25–28). Most of those infections appear to be
acquired in the hospital (i.e., nosocomial) rather than on the battlefield (28–32). Acinetobacter
spp. are also becoming increasingly prevalent in hospital-acquired infections in civilians (33).
These difficult-to-treat nosocomial infections are facilitated by the ability of Acinetobacter spp.
to persist on surfaces in health care environments (34) and to aerosolize (35, 36). Acinetobacter
spp. also frequently acquire multidrug resistance, further complicating clinical outcomes
(32, 37–39). Despite growing literature on inflammatory responses to Acinetobacter spp. in soft
tissues and the bloodstream (33, 40–44), little is known about responses in the skeletal envi-
ronment other than that some, but not all, A. baumannii strains cause osteomyelitis in rats (45,
46) and the report that A. baumannii increases bone formation in mice without inducing oste-
olysis (47). That report is especially surprising given that osteolysis is a typical sequela of osteo-
myelitis in both human and veterinary medicine (48) and in preclinical research in mice (49).

In this study, we used a bioluminescent S. aureus-Xen36 (50, 51) implant infection
model based on our murine model of osseointegration (52) to compare the effects of
S. aureus with the effects of the Acinetobacter calcoaceticus-A. baumannii complex. We
used Acinetobacter strain M2, which was isolated from a hip infection in a civilian set-
ting (53) and recently reclassified from A. baumannii to Acinetobacter nosocomialis (54).
A summary of the study is shown in Figure 1.

RESULTS
Bacterial burden. To establish a murine model of chronic, localized implant infection

(Fig. 2A), we first used implants with adherent S. aureus-Xen36 that is bioluminescent as
long as the bacteria are viable (51). Signs of systemic infection were not detected in any
mice. Moreover, the bioluminescence imaging (BLI) signals were seen only in the leg sur-
rounding the implant, demonstrating that infection is localized to the implant site (Fig. 2B).
BLI in the high-dose S. aureus group increased by 4 h postimplantation and remained stable
for 7 days (Fig. 2C). BLI decreased between 7 and 14 days but then stabilized and remained
significantly higher than that without bacteria for at least 28 days postimplantation (Fig. 2D).
BLI in the low-dose S. aureus group was intermediate between that of the other two groups
at all tested time points (Fig. 2B and C). The validity of the BLI approach was confirmed by in
vitro measurements showing that the BLI signals were related in a dose-dependent manner
to the number of bacteria either in suspension or adherent to the implants (Fig. 3A and B).

Having established a chronic, localized murine model of implant infection, we measured the
bacterial burden surrounding implants that were seeded with S. aureus or Acinetobacter strain M2
(Fig. 1). Again, signs of systemic infection were not detected in any mice. Numbers of CFU and
luxA gene copies on implants and in surrounding femurs were increased in the high-dose S. aureus
group at days 7 and 15 postimplantation, and the low-dose S. aureus group showed intermediate
levels (Fig. 2E, F, and I to J). Since day 7 measurements of CFU and luxA gene copies were per-
formed on the samemice as the BLImeasurements (Fig. 2B), we askedwhether therewere correla-
tions among the results. Quadratic regression analysis (Fig. 3C and D) showed that BLI signals cor-
relate with sums of CFU on implants and in surrounding femurs (r2 = 0.71) or luxA gene copies
on implants and in surrounding femurs (r2 = 0.55). The bacterial burden was also increased in
the high-dose Acinetobacter strain M2 group, as assessed by numbers of CFU (Fig. 2G and H)
and adeR gene copies (Fig. 2K and L). However, low-dose Acinetobacter strain M2 failed to es-
tablish infections (Fig. 2G, H, and K-L), and the high dose of Acinetobacter strain M2 resulted
in lower bacterial burdens than the high dose of S. aureus (Fig. 2E to H). We therefore also
included a higher inoculum of Acinetobacter strain M2 that was prepared by overnight incuba-
tion of implants with a high concentration of bacteria, which also consistently induced local-
ized implant infections without inducing any signs of systemic infection (Fig. 2G, H, and K-L).
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Interleukin 1b (IL-1b) and IL-6 in femurs surrounding implants were measured as exam-

ples of local inflammatory cytokines (Fig. 1). They were both dose dependently increased by S.
aureus and Acinetobacter strain M2 (Fig. 4A to D). CCL2 was measured as a chemokine that is
chemotactic mainly for macrophages (55). CCL2 levels were also increased by Acinetobacter
strain M2 but were not significantly affected by S. aureus (Fig. 4E and F).

Osseointegration. Implants that were not fixed in the femur at the time of eutha-
nasia were recorded as gross integration failures. These failures occurred in 60% of mice in
the high-dose S. aureus group at both days 15 and 28 (Fig. 5A). Gross integration failures
were rare at earlier time points with S. aureus and never seen with Acinetobacter strain M2
or without bacteria (Fig. 5A).

Consistent with our previous studies (15, 52, 56), osseointegration increased in groups with-
out bacteria between 7 and 15 days postimplantation (Fig. 5B to G). In contrast, biomechanical
(Fig. 5B to G) and histomorphometric (Fig. 5H to K) measures of osseointegration were reduced
by either type of bacteria (Fig. 5). These results can be seen in images from mice with median
histomorphometry results in each group (Fig. 6). Without bacteria, abundant bone formation
occurred in contact with implants and between implant threads, and bone resorption was not
observed (Fig. 6A to D). In contrast, there was much less bone formation adjacent to implants in
the S. aureus and Acinetobacter strain M2 groups, but both types of bacteria induced periosteal
bone formation (Fig. 6E to H). Osteoclasts were observed on the endosteal and periosteal sides

FIG 1 Flow chart of the experiments and number of mice enrolled in each experiment.
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of the original cortex with both types of bacteria (Fig. 6E to G). The combination of periosteal
bone formation and endosteal resorption in the absence of endosteal bone formation caused
cortical migration away from infected implants (Fig. 6F and H), similarly to the cortical migration
that occurs in patients with high-turnover osteoporosis (57).

Effect of TLR2 and TLR4. To gain further understanding of the effects of Acinetobacter
spp., we compared wild-type mice and mice lacking both TLR2 and TLR4, two of the primary
immune receptors for Gram-negative bacteria. Deficiency of both TLRs did not detectably al-
ter osseointegration in the absence of bacteria (Fig. 7A to C) or in the presence of high-dose
S. aureus (Fig. 7D to F) but partially reduced effects in the Acinetobacter strain M2 overnight
incubation group (Fig. 7G to I). The effects of TLR deletion are not due to differential bacterial
clearance, as the number of bacteria was unaltered at all time points (see Fig. S1A to F in the
supplemental material). Moreover, deletion of TLR2 and TLR4 did not detectably affect the
levels of CCL2, IL-6, or IL1b in either the absence or presence of infection (Fig. S2).

DISCUSSION

The major goal of the current study was to compare the effects of S. aureus with the
effects of Acinetobacter spp., which have been reported to increase bone formation in
mice without inducing osteolysis (46). We first used bioluminescent S. aureus-Xen36 (51)
to establish a murine model of implant infection based on our previous osseointegration

FIG 2 Chronic infection localized to implant site. (A) Diagram depicting implantation in mouse femur. (B) Representative images at 7 days postimplantation
from mice with median BLI intensity in groups shown in panel C. (C and D) BLI was measured 1 day preimplantation and 4 h to 7 days (C) or 7 to 28 days
(D) postimplantation. n = 5 mice/group. *, P , 0.05 compared to group without bacteria at the same time point (two-way ANOVA with Bonferroni’s post
hoc analysis). (E to L) The numbers of CFU (E to H) and gene copies (I to L) were measured on implants (E, G, I, K) and in surrounding femurs (F, H, J, L).
Solid horizontal bars indicate means for parametric analysis (*, P , 0.05). Dashed bars indicate medians for nonparametric analysis (#, P , 0.05).

Choe et al. Infection and Immunity

March 2022 Volume 90 Issue 3 e00669-21 iai.asm.org 4

https://iai.asm.org


model (15, 56). Both Acinetobacter strain M2 and S. aureus caused local infections on
implants and in surrounding bones that were well tolerated and did not induce any sys-
temic signs of infection. Interestingly, Acinetobacter strain M2 required a higher initial
inoculum to establish infection than S. aureus. This may reflect that different strains of
Acinetobacter exhibit large differences in virulence in rodent models (45, 58–61). In this
regard, our infection model uses implants that are preincubated with the bacteria, which likely
introduces a higher inoculum than occurs during implant infection in patients. Nonetheless,
both Acinetobacter strain M2 and S. aureus induced production of inflammatory cytokines and
impaired histomorphometric and biomechanical measures of osseointegration. The effects of
Acinetobacter strain M2 and S. aureus on osseointegration are likely caused by inflammation
that both impaired osteogenesis and induced osteolysis around the implants. Consistent with
that possibility, bone loss commonly occurs around infected implants in patients (1) and in
previous murine studies of S. aureus (21–23, 62).

FIG 3 Bioluminescence imaging (BLI) accurately reflects bacterial number in vitro and in vivo. (A) BLI and CFU were measured in S. aureus suspensions after
2-fold serial dilutions. Statistical analysis was by quadratic regression analysis. Inset shows BLI of bacterial suspensions. (B) BLI was measured on implants
without insertion into mice. Statistical analysis was by one-way ANOVA with Bonferroni’s post hoc analysis. Solid horizontal bars indicate means. Inset
images are of the implant with BLI closest to the mean. (C and D) BLI was measured in intact mice, and CFU and luxA gene copies were measured on
implants and in surrounding femurs at day 7. Statistical analysis was by quadratic regression analysis.
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This is the first demonstration in mice that Acinetobacter infection impairs osseoin-
tegration, a major complication of orthopedic implant infection (1). This finding would
not have been predicted based on the report that A. baumannii increases osteogenesis in
mice without detectably inducing osteolysis (47). This discrepancy could be due to testing
different amounts (24) or different strains of Acinetobacter (45, 58–61). Consistent with that
possibility, some, but not all, Acinetobacter strains cause osteomyelitis in rats (45, 46).
Alternatively, the discrepancy could be due to a different balance, or different spatiotempo-
ral pattern, between effects on osteogenesis and osteolysis (63). Consistent with that possi-
bility, the micro-computed tomography (uCT) images in reference 47 appear to show a small
amount of local osteolysis in combination with robust new bone formation in response to A.
baumannii compared with a greater amount of osteolysis and more limited, but still substan-
tial, bone formation in response to S. aureus. Moreover, we found that both Acinetobacter
strain M2 and S. aureus inhibited osteogenesis on implant surfaces and in the peri-implant
region and induced bone resorption on the endosteal and periosteal sides of the original
cortex. In contrast, new bone formation was induced on the periosteal side of the original
cortex by either type of bacteria. The periosteal new bone formation is a common response
to local cortical defects induced by infection (62, 64) or surgical drill holes (63, 65) and also
occurs in our osseointegration model in the absence of infection (15, 56).

Impaired osteogenesis and induction of osteolysis around orthopedic implants involve
inflammatory processes that include detection of pathogen-associated molecular patterns
(PAMPs) by Toll-like receptors (TLRs) (66). Our findings indicate that osseointegration inhibi-
tion by Acinetobacter spp. depends, in part, on TLR-dependent inflammation. These results
are consistent with findings that Acinetobacter can activate the innate immune system
through TLR2, TLR4, or other pattern recognition receptors, as well as through acyl-homo-
serine lactones and multiple other virulence factors that act independently of pattern rec-
ognition receptors (33, 67, 68).

Macrophage recruitment likely restrains the bacterial burden (9, 69–71) and increases
production of inflammatory cytokines that cause inflammatory osteolysis (2, 3, 9, 69) and
inhibit osteogenesis and osseointegration (8–14). Consistent with this concept that adverse
effects on local bone turnover by bacteria are due primarily to “collateral damage” from
the host immune response (72), we found that inflammatory cytokines are increased in
bones with infected implants. Macrophages can also contribute to inflammatory bone loss
by serving as osteoclast precursors (9, 73), which likely facilitates the bone resorption surround-
ing infected implants.

Importantly, measurement of bacterial strain-specific bioluminescence and strain-specific
genes would not be affected by contaminating bacteria that might have caused misinterpreta-
tion of the CFU data. In addition, both genetic and CFU data correlated with bioluminescence
imaging of S. aureus-Xen36, and the absence, or very low level, of measurable CFU from mice
with uninfected implants confirmed the absence of cross-contamination. Measurement of
bacterial genes also serves as an example of PCR-based microbiological diagnosis, which
is required to document the viable but nonculturable bacteria that can occur in orthope-
dic infections (74–76).

FIG 4 Cytokines and chemokines are increased by implant infection. (A to F) IL-1b (A and B), IL-6 (C and D), and CCL2 (E and F) were measured in femurs
surrounding implants at 7 days postimplantation. Solid horizontal bars indicate means for parametric analysis (*, P , 0.05). Dashed bars indicate medians
for nonparametric analysis (#, P , 0.05).
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In conclusion, infection with either S. aureus or Acinetobacter strain M2 increases inflam-
matory cytokines and impairs implant osseointegration in our new murine model of ortho-
pedic implant infection. The murine model will also be useful for future studies to clarify the
mechanism of implant failure due to Acinetobacter spp. and to assess novel diagnostic tools
or therapeutic agents.

MATERIALS ANDMETHODS
Preparation of implants with adherent bacteria. Titanium alloy screw-shaped implants (Ti – 6Al – 4V,

3.2-mm length, 1.0-mm diameter; Antrin Miniature Specialties, Inc., Fallbrook, CA) were autoclaved (15 lb/in2 and
273°F for 8 min, followed by a 30-min dry cycle) and then rigorously cleaned with five cycles of alternating treat-
ments in alkali ethanol (0.1 N NaOH and 95% ethanol at 32°C) and 25% nitric acid (56). We employed S. aureus-
Xen36 (Caliper Life Sciences, Hopkinton, MA), which contains a stable copy of the bacterial luxABCDE operon and
is therefore bioluminescent as long as the bacteria are viable (50, 51), and Acinetobacter strain M2 (53).

FIG 5 Osseointegration is decreased by implant infection. (A) Implants that were not fixed in the femur at euthanasia were classified as gross integration failures.
†, P , 0.05 compared to group without bacteria at the same time point (x2 test). (B to K) Biomechanical (B to G) and histomorphometric (H to K) measures of
osseointegration. Solid horizontal bars indicate means for parametric analysis (*, P , 0.05). Dashed bars indicate medians for nonparametric analysis (#, P , 0.05).
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One day before each implant surgery, a single colony of S. aureus-Xen36 or Acinetobacter strain M2
was inoculated into 5 mL of lysogenic broth (LB) medium (Fisher Scientific, Fair Lawn, NJ) or Mueller-
Hinton broth (MHB) medium (Fisher Scientific, Fair Lawn, NJ), respectively, and incubated at 37°C overnight
in a bacterial shaker. Overnight suspensions were diluted 100-fold in LB or MHB medium and incubated at
37°C until early log phase was reached (A600/0.1-cm light path = 0.05; Nanodrop 1000; Fisher Scientific).
Those low-concentration bacterial suspensions (1 � 109 to 3 � 109 CFU/mL) were centrifuged (1,500 � g,
5 min) and resuspended in 1/30 volume of LB broth or MHB to obtain high-concentration suspensions
(3 � 1010 to 9 � 1010 CFU/mL). The rigorously cleaned implants were incubated with low- or high-concen-
tration bacterial suspensions for 20 min at 37°C with gentle shaking to obtain low- and high-dose implant
groups (52). Implants with higher levels of Acinetobacter strain M2 were obtained by incubation with high-
concentration suspensions for 24 h and are referred to as the overnight incubation group. Implants with
adherent bacteria were rinsed 3 times in phosphate-buffered saline (PBS) (pH 7.4) and immediately
implanted into mice as described below. Additional implants were simultaneously prepared to measure
the adherent CFU as described below. Numbers of adherent S. aureus-Xen36 CFU were 2 � 104 to 6 � 104

and 0.5 � 106 to 2 � 106 CFU/implant in low- and high-dose groups, respectively. Numbers of adherent
Acinetobacter strain M2 CFU were 4 � 105 to 7 � 105, 1 � 106 to 3 � 106, and 1 � 107 to 3 � 107 CFU/
implant in low-dose, high-dose, and overnight incubation groups, respectively.

Animal surgery. Wild-type C57BL/6J female mice were purchased from Jackson Laboratory (Bar
Harbor, ME). TLR22/2;TLR42/2 mice (77, 78) were gifts from Amy Hise (CWRU Department of Pathology).
All procedures were approved by the CWRU Institutional Animal Care and Use Committee. Mice were
maintained under specific-pathogen-free conditions with unlimited access to food and water in the CWRU
Animal Resource Center, where all procedures were performed. All procedures were approved by the
CWRU Institutional Animal Care and Use Committee. Mice were randomized among groups (Fig. 1), anes-
thetized by intraperitoneal administration of ketamine (1 to 2 mg/mouse), xylazine (170 to 340mg/mouse),
and acepromazine (30 to 60 mg/mouse), and treated with analgesics (local marcaine and systemic slow-
release buprenorphine) as recommended by the CWRU Animal Resource Center veterinarians. An anterior
incision was made from the patella to the proximal end of the right femur, and a unicortical pilot hole was
made manually (0.75-mm pilot hole drill; KLS Martin, Jacksonville, FL) at the anterior medial aspect of

FIG 6 Representative histomorphometry images of osseointegration in the presence and absence of
implant infection. (A to H) Representative images from mice with median histomorphometry results
in groups without bacteria (A to D), with high-dose S. aureus (E and F), or with overnight incubation
of Acinetobacter strain M2 (G and H). White boxes in low-power images indicate locations of high-
power images. All scale bars, 100 mm. Black arrows and arrowheads indicate bone formation on
endosteal and periosteal sides of original cortex. White arrowheads indicate osteoclasts.
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the diaphysis (one-third of femoral length from the distal end). Implants were gently screwed through the
pilot hole until contact was made with the opposite cortex (Fig. 2A). Muscles were allowed to return to the
original position, and incisions were closed with sutures. In less than 5% of the mice, the femur fractured
during implantation, and those mice were euthanized immediately. All other mice tolerated the surgery
well and could ambulate immediately. Mice were euthanized by carbon dioxide inhalation followed by
thoracotomy prior to histomorphometrical or biomechanical testing.

BLI. Bioluminescence (52) from anesthetized mice was measured 24 h before surgery as a baseline
and longitudinally at the indicated time points after implant placement (Xenogen IVIS 200 system
[Perkin Elmer/Caliper Life Sciences, Hopkinton, MA] in the CWRU Center for Imaging Research). Data
were analyzed using Xenogen Living Image 2.5 (Perkin Elmer/Caliper Life Sciences). Oval regions of inter-
est (ROI) of the same size were placed on the femoral region where the BLI signal originated for each
mouse. BLI signals were quantified as the flux of photons within each ROI (photons/second) and
reported after background subtraction.

Histomorphometry. Dissected femurs were fixed in formalin for 24 h and dehydrated in 70% etha-
nol. Histopathological preparation was performed in the CWRU Department of Orthopaedic’s Hard
Tissue Core Facility as described previously (56). Undecalcified ground cross sections (100 mm) were
stained with Sanderson's rapid bone stain (Surgipath Medical Industries, Richmond, IL). This stain allows
identification of osteoblasts, osteoclasts, osteoid, and mineralized bone in a single section (79). Because
of the small size of the implants, it was possible to obtain only one central section of the implant per

FIG 7 TLR2 and/or TLR4 mediate the effects of Acinetobacter strain M2 on osseointegration. Biomechanical measures of osseointegration in control groups
without bacteria (A to C), in the high-dose S. aureus groups (D to F), and in the Acinetobacter strain M2 overnight incubation groups (G to I) were
compared in TLR22/2;TLR42/2 mice and their wild-type (WT) control mice. *, P , 0.05 (parametric analysis). Error bars denote standard deviations. n = 5 to
9 mice/group.
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mouse. Bone-to-implant contact and peri-implant bone were measured in a blinded manner using
ImageJ analysis software (National Institutes of Health, Bethesda, MD). The bottom edge of the implant
was excluded from all calculations (56).

Biomechanical testing. Pullout testing was performed immediately after euthanasia at a displace-
ment rate of 1 mm/min as we described previously (52, 56). Pullout testing required approximately 3
min per mouse. Ultimate force, average stiffness, and work to failure were determined from load versus
displacement curves according to ASTM standard F543-07. To reduce preloading variability, calculations
of work began when force equaled 0.1 N.

To minimize the risk of bacterial cross-contamination during biomechanical testing, each day of test-
ing was restricted to implants from either S. aureus or Acinetobacter strain M2 experiments. On each day
of testing, the group of implants without bacteria were tested first, followed by the group with the low-
est dose of bacteria, and then the groups of implants with progressively higher doses of bacteria. All
grips and fixtures were sterilized with 70% ethanol between testing of each femur, and a new fixture as-
sembly was used for each group of implants described in the previous sentence. After biomechanical
testing, the same femurs were homogenized and each homogenate was subdivided for CFU counting,
real-time PCR, and cytokine measurements (Fig. 1).

CFU counting and bacterial gene-specific real-time PCR. CFU and bacterial gene copies on
implants and in surrounding femurs were quantified after pullout testing (52). Implants were sonicated
for 10 min (50 W, 43,000 Hz) in PBS with 0.3% Tween 80, followed by vortexing for 5 min (50, 51).
Femurs were homogenized in PBS (Pro200H; Pro Scientific, Oxford, CT) (50). CFU in sonicates and ho-
mogenates were counted on LB broth agar plates. DNA was extracted from sonicates and homogenates
(Power Biofilm DNA isolation kit; MO BIO, Carlsbad, CA). Real-time PCR assays with primers that target
the S. aureus-Xen36 luxA gene (59-GACTTTCGCGTATTCGGCAC-39 and 59-ATTGAGCAGCCCACTCAGTC-39;
Primer-BLAST, National Center for Biotechnology Information) (52) or the Acinetobacter strain M2 adeR
gene (59-CACGCTAGCCATCCCATTGA-39 and 59-GCCTGAACTCTAGCGACCAC-39) were quantified using
the standard curve method as we described previously (80). Single peaks in melt curve analysis were
confirmed in each assay.

Evaluation of proinflammatory cytokines and chemokine. For evaluation of proinflammatory
cytokines and chemokine (52), femur homogenates were centrifuged (9,000 � g, 10 min) and superna-
tants were stored at –20°C. Concentrations of tumor necrosis factor alpha (TNF-a), IL-1b , IL-6, and CCL2
were measured with ELISA DuoSet minikits (catalog no. DY410, DY401, DY406, and DY479; R&D Systems,
Minneapolis, MN).

Statistical analysis. Individual mice were the experimental unit for all statistical analyses (Prism 7;
GraphPad Software, San Diego, CA). Power analysis using an alpha of 0.05 and a beta of 0.8 and our pre-
vious data in the murine implant infection model (52) found that the needed sample sizes were n = 5 or
6 for histomorphometry and n = 8 to 11 for biomechanical testing (SigmaStat; Systat Software, San Jose,
CA). Sample sizes were adjusted based on data from the early experiments in the study. In experiments
with more than three time points, statistical significance was determined by two-way analysis of var-
iance (ANOVA), followed by Bonferroni’s post hoc tests. In all other experiments, statistical significance
was determined by Student's t test or one-way ANOVA, followed by Bonferroni’s post hoc test in experi-
ments with multiple groups. Nonparametric Mann-Whitney tests or Kruskal-Wallis analysis of variance
followed by the Student-Newman-Keuls post hoc tests were applied to data sets that were not normally
distributed or were not of equal variance. Normality was determined with the Shapiro-Wilks test, and
variances were compared by F tests for experiments with two groups or by Bartlett’s test for experi-
ments with multiple groups (Prism 7; GraphPad Software). Tests were reported as significant if the
P value was,0.05. Curve fitting was by quadratic regression analysis (Prism 7; GraphPad Software).

SUPPLEMENTAL MATERIAL
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