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Abstract

In the field of object detection, domain adaptation is one of popular solution to align the distri-

bution between the real scene (target domain) and the training scene (source domain) by

adversarial training. However, only global features are applied to the Domain Adaptive

Faster R-CNN (DA Faster R-CNN) method. The lack of local features reduces the perfor-

mance of domain adaptation. Therefore, a novel method for domain adaptive detection

called Skip-Layer Network with Optimization (SLNO) method is proposed in this paper.

Three improvements are presented in SLNO. Firstly, different level convolutional features

are fused by a multi-level features fusion component for domain classifier. Secondly, a

multi-layer domain adaptation component is developed to align the image-level and the

instance-level distributions simultaneously. Among this component, domain classifiers are

used in both image-level and instance-level distributions through the skip layer. Thirdly, the

cuckoo search (CS) optimization method is applied to search for the best coefficient of

SLNO. As a result, the capability of domain alignment is strengthened. The Cityscapes,

Foggy Cityscapes, SIM10K, KITTI data sets are applied to test our proposed novel

approach. Consequently, excellent results are achieved by our proposed methods against

state-of-the-art object detection methods. The results demonstrate our improvements are

effective on domain adaptation detection.

1. Introduction

Recently, object detection is a research hotspot for scholars and industry in the computer

vision field. Object detection aims at identifying and localizing all object instances of interest

in an image. Especially, object detection for persons, cars, bicycles etc is widely used in the

unmanned driving area [1]. Object detection technology is the fundamental task for environ-

mental perception.

In the past ten years, the breakthrough for object detection has been achieved based on the

Convolutional Neural Network (CNN) and the large-scale public data sets. The mainstream
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approaches can be divided into two categories by the number of stages named two-stage

method and one-stage method. On the one hand, the most representative method of the two-

stage method is the Region-based Convolutional Neural Network (R-CNN) series. Girshick

et al. proposed a Region-based Convolutional Neural Network (R-CNN) for object detection

in 2014 [2]. Great performance is got by combining the regions with CNN features. Further-

more, R-CNN’s detection capability and speed are strengthened by mapping the region pro-

posals into the last layer feature maps of the CNN in Fast R-CNN [3]. Moreover, RPN is

applied to replace the Selective Search (SS) [4] for generating the region proposals in Faster

R-CNN [5]. On the other hand, the most representative methods of the one-stage method are

SSD [6]and YOLO [7, 8] series. Both of them are directly classified and regressed by using the

features extracted from CNN.

The state-of-the-art experimental results have been witnessed by excellent object detection

methods in the benchmark datasets. Nevertheless, the images collected by sensors from the

real world deviate from the training data in object appearance, backgrounds, illumination,

image quality, etc. For example, the appearance of objects collected by the camera of automatic

driving vehicles is variant at different places, seasons, times, and even weather. In other words,

there is a domain shift between the training (source) and testing (target) images. Obviously,

the generated model over the source domain can not be directly used to the unlabeled target

domain. Moreover, as we know, annotation data can not be collected easily. In the real word,

the proportion of labeled data is very small compared with unlabeled data. Therefore, the cost

for labeling all the collected data is high.

The unsupervised domain adaptation method [9] is developed to adapt object detection

models to the unlabeled target domains from the rich labeled source domains to solve the

above problems. Usually, adversarial training is an important way to suit normal samples of

neural network with disturbed samples. Therefore, the adversarial training method is intro-

duced to minimize the divergence between the source and the target domains. In other words,

the distribution of the source and target objects can be well aligned by finding the domain-

invariant features of the objects.

DA Faster R-CNN [9] is a classical method among the mainstream domain adaptive detec-

tion methods. Both the image and instance distributions are aligned across domains based on

adversarial training to solve the domain shift problems. Nowadays, DA Faster R-CNN has rap-

idly developed into a successful series. Saito et al. [10] and Zhu et al. [11] improved DA Faster

R-CNN focused on image-level alignment forces to align non-transferable backgrounds. Fur-

thermore, although instance-level domain classifiers can match region proposals in both

domains, current methods, such as DA Faster RCNN [9], MA Model [11], PDA Model [12],

DT Model [13] lack the ability to consider the lower-level feature maps with high resolution.

Three drawbacks of DA Faster R-CNN and related methods can be found based on the

introduction for these methods. Firstly, features from low layers are not used for training the

domain classifier. Therefore, the performance of the domain classifier is affected without con-

text information. Secondly, the distributions between the source domain and target domain in

image-level and instance-level are not effectively aligned. Thirdly, hyperparameters are defined

by fine tuning experience. So the classification capability is affected by not choosing the best

solution.

Three improvements are proposed in this work to solve the problem mentioned above.

First, a multi-level features fusion method is introduced for domain adaptive object detection.

The performance of the domain classifier is promoted based on rich sampling feature informa-

tion from low-level layers in our proposed method. Second, a multi-layer domain adaptation

method is designed to align the distributions between source and target domains in image-

level and instance-level respectively. Furthermore, the loss functions are modified according to
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the novel network framework. Therefore, the ability to align the source and target domain

shift is enhanced. Third, Cuckoo Search (CS) method [14] is applied to optimize a hyperpara-

meter of loss function. Therefore, the capability of loss function is strengthened.

The effectiveness of our proposed method is evaluated on the Cityscapes [15], Foggy City-

scapes [16], SIM10K [17], KITTI [18] data sets. Experiments show that our proposed methods

can significantly solve the domain shift problem. Furthermore, the performance of classifica-

tion capability is enhanced by introducing the CS optimization method.

2. Related work

2.1. Domain adaptive object detection

Recently, domain adaptation has become highlighted thought for object detection to reduce

domain discrepancy between the training and testing data. Because the cross-domain robust-

ness of object detection could be improved by domain adaptation, thus Chen et al. [9] tackle

the domain gap by designing image-level and instance-level components based on H-diver-

gence theory. Saito et al. [10] proposed an object detector constructed using an unsupervised

method to complete cross-domain tasks from label-rich to label-poor and verified the method

on four datasets. Zhu et al. [11] reposition the focus of the adaptation process from global to

local by mining the discriminative regions that are directly pertinent to object detection and

aligning them across different domains. He et al. [12] proposes two feature alignment module

with the scale reduction module (SRM) and weighted gradient reversal layer (WGRL) for

domain adaptive object detector. Hsu et al. [13] propose to bridge the domain gap with an

intermediate domain and then progressively solve more manageable adaptation subtasks.

Inoue et al. [19] proposed a new task framework for cross-domain supervised object detection,

which can detect everyday objects in various image domains without instance-level annota-

tions and significantly improves the average accuracy on the three image domain datasets.

What‘s more, Kim et al. [20] introduced a new unsupervised domain adaptation method for

object detection. The goal of this work is to alleviate the imperfect translation problem of

pixel-level adaptation and the source-biased discrimination problem of feature-level adapta-

tion at the same time. And the mean average precision of this method on various datasets is

better than the SOTA methods. More recently, Cai et al. [21] proposed the MTOR model in

response to the high generalization error of the synthetic image model on the real image after

the domain transfer and achieved a new record of a single model in a wide range of experi-

ments. Xie et al. [22] propose a multi-level domain adaptive model to align the distributions of

local-level features and global-level features simultaneously. Xu et al. [23] propose a categorical

regularization framework for alleviating overlooking problem across domains and get promi-

nent results.

2.2. Domain adaptive faster R-CNN

Our work is developed based on DA Faster R-CNN [9], which contains three components:

Image-level Adaptation, Instance-level Adaptation and Consistency Regularization.

2.2.1 Image-level adaptation. A domain classifier is trained to predict the domain label

for each image patch. In this way, the domain shift caused by the image-level difference such

as image style, scale, illumination, etc. is reduced.

2.2.2 Instance-level adaptation. A domain classifier is trained for the feature vectors to

align the instance-level distribution, such as object appearance, size, viewpoint etc.

2.2.3 Consistency regularization. To learn the cross-domain robustness of bounding

box predictor, consistency between the domain classifier on different levels needs to be

enforced.

PLOS ONE Skip-Layer network for domain adaptive detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0263748 March 17, 2022 3 / 18

https://doi.org/10.1371/journal.pone.0263748


2.3. Cuckoo search optimization method

Cuckoo Search (CS) [14] is a heuristic algorithm proposed by Yang and Deb. The algorithm

simulates the parasitic brooding process of the cuckoo and introduces the Levy flight [24]

mechanism to update the nest position, which can quickly and effectively solve the optimiza-

tion problem.

In order to simulate the breeding mode of the cuckoo, three assumptions are made to intro-

duce the cuckoo algorithm: 1) each cuckoo can only lay one egg at a time and randomly select

a nest to hatch; 2) The nest with the best eggs are kept to the next generation; 3) The number

of nests is fixed, and the probability of host finding cuckoo eggs is Pa. Specifically, the process

of the algorithm is described as follows. First, a certain number of nests is determined, and

cuckoos lay eggs in them. The solution space of the objective function includes eggs and the

optimal nest, which is determined by the quality of the stored eggs. Secondly, the host aban-

dons the egg or abandons the nest to build a new one after some eggs are found by the host.

Finally, the best eggs can be obtained through multiple iterations of the above process by

evaluating all the nests. In other words, the optimal solution for the objective function can be

found. The flowchart is as shown in Fig 1.

3. Approach

3.1. Overview

In section 3.2, the framework of our proposed novel skip-layer method is introduced. In section

3.3, a multi-level features fusion method is illustrated. In section 3.4, the multi-layer domain

adaptation is applied to align the distributions between domains in both image-level and

instance-level. In section 3.5, loss functions are modified based on the skip-layer improvements.

Finally, in section 3.6, the parameters of the loss function are optimized by the CS method.

3.2. Proposed skip-layer network

The top-level feature maps of the convolutional layer are applied to the domain classifier in

DA Faster R-CNN [9]. However, the resolution for top-level feature maps is low. In addition,

the lower-level feature maps with high resolution are not considered. Because the lower and

higher feature maps are not contained in the domain classifiers, the adaptive model’s generali-

zation ability is weakened. Furthermore, the distribution bias between the source and target

domains is not reduced effectively by domain classifiers with only top-level feature maps. In

order to solve the problems mentioned above, Skip-Layer Network is developed to enrich the

information of domain classifiers in this paper. The framework of Skip-Layer Network is illus-

trated in Fig 2.

Two improvements are designed to promote the capability of domain classifiers. Firstly, a

multi-level features fusion method is introduced to fuse the different convolution layer feature

maps for domain classifiers. Secondly, a multi-layer domain adaptation method is developed

to reduce the distribution bias between the source and target domains. The details of two

improvements are described as follows.

3.3. Multi-level features fusion

In the classical forward convolutional propagation process, the overfitting problem is solved

by introducing the pooling method. Kernel size N in the pooling method is applied to sample

the convolutional feature maps. As a result, rich semantic information is contained in the

higher-level feature maps. Additionally, rich pixel information is possessed in the lower-level

feature maps. Thereupon, each level of convolutional feature maps has its limitations. Inspired
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by the feature pyramid networks [25], we believe the fused features from different convolu-

tional layers contains more informations than single layer. More informations will be benefit

to improve the performance of the domain classification. Therefore, the multi-level features

fusion method is proposed to solve the abovementioned problems. For example, as shown in

Fig 3, the feature maps from top to bottom is the feature maps from conv5, conv4, conv3,

conv2 and conv1 sequentially. Because the top-level feature maps possess rich semantic infor-

mation, thus top-level feature maps are applied to enhance each level of feature maps by the

upsampling method. Two methods are introduced in this section to complete the fusion.

Firstly, the channel consistency method is used to process the channel differences problem

between the connected convolutional layers.

The higher-level convolutional layers have more channels than the lower-level convolu-

tional layers. Therefore, the upsampling results cannot be concatenated to the current level

Fig 1. The flowchart of the cuckoo search method.

https://doi.org/10.1371/journal.pone.0263748.g001
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feature maps directly. In our proposed method, 1x1 convolution layers are introduced to

adjust the number of convolutional layer channels. The 1x1 convolution layer could change

the channels feature maps to make the number of channels between connected convolutional

layers the same.

Secondly the lower-level feature maps are sampled in the forward propagation by pooling

layer, then the size of higher-level feature maps is smaller than the size of lower-level feature

maps. However, the size of expansion results must be the same as the size of feature maps.

Then, the concatenated method can be used to merge the two types of feature maps. In this sit-

uation, upsampling is introduced to expand the size of higher-level feature maps to fit the

Fig 2. The framework of skip-layer network.

https://doi.org/10.1371/journal.pone.0263748.g002

Fig 3. The multi-level feature fusion method.

https://doi.org/10.1371/journal.pone.0263748.g003
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lower-level feature maps. The kernel size of the upsampling result is the same as the kernel size

of the forward propagation pooling layers. Thereafter, the feature maps are unified to the same

size between the higher and lower layers. In other words, the connected convolutional feature

maps can be fused.

Finally, the information for each level of convolutional feature maps are strengthened by

the multi-level features fusion component. As a result, the ability of domain adaptive classifier

is enhanced.

3.4. Multi-layer domain adaptation

The domain classifier does not effectively solve the distribution deviation between the source

domain and the target domain in DA Faster R-CNN. The reason is that the context convolu-

tional layer information is not included in the domain classifier. Inspired by SharpMask [26],

high-level information and low-level pixel data are both important for object detection. Partic-

ularly, rich spatial information is captured by lower layers in convolutional net. Meanwhile,

object-level knowledge is extracted by upper layers, which factors such as pose and appearance

are invariant. Then taking advantages of different levels information could also enhance the

ability of domain classifier. This paper proposes a multi-layer domain adaptive method by

applying the domain adaptive classifier through skip layers to solve this problem.

As shown in Fig 2, the multi-layer domain adaptation is used in both image-level and

instance-level at the same time. Besides, the multi-level features fusion results are shared by

the image-level and instance-level domain classifiers. In other words, the fused feature maps

need to be calculated only one time from top to bottom. Nevertheless, the multi-layer domain

adaptation is applied independently through skip layers. More details are described as follows.

As shown in Fig 4, multiple image-level domain classifiers are built to reduce the domain

distance in the corresponding image-level representation. Firstly, the reverse gradient layer

(GRL) [27] is used to align the source domain and the target domain for minimizing the

domain distance. Then, domain adaptive in DA Faster R-CNN is implemented by adversarial

training. In other words, the loss result is minimized for the domain adaptive classifier while

Fig 4. The detail architectures of the multiple image-level adaptation.

https://doi.org/10.1371/journal.pone.0263748.g004
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the loss result is maximized for the base detection network. In our proposed method, two fully

convolution layers with kernel size 1x1 are added after GRL layer. Because the lower-level fea-

ture maps with high resolution contain richer context information, thus the number of output

channels for the lower-level convolutional layer could less than that for the higher-level convo-

lutional layer. In this way, the number of channels for the first convolution layer is decreased

from 512 to 256. Additionally, the training time could be decreased for less calculation as well.

Two channels are defined for the second convolution layer. At last, the loss could be calculated

after a softmax layer and the gradients by backpropagate method.

Our proposed method has three advantages. First, the features of the adjacent layers are

similar to each other. So the redundant problem is produced when aligning the domain distri-

bution layer by layer. The skip architecture could avoid the problem effectively. Second, the

skip architecture is a compromise of performance and training time. The parameters of model

should be trained from random initialization. Therefore, the training time is long when using

each convolutional layer. However, the training time can be reduced by applying the skip layer

framework. Third, the adversarial training strategy can be implemented with less adaptive

domain classifiers. And the convergence of model is easier in the training phase.

Multiple instance-level adaptation is developed to enhance the ability of the instance feature

alignments. As shown in Fig 5, the region proposals are mapped from ground truth to the fea-

ture maps and from RPN to the feature maps for the source and target domains. Thereafter,

two fully connection layers with 4096 output nodes are added to extract the instance-level

information from the ROI-based feature vectors. In other words, the extracted features are

linked to the instance level domain classifier component by GRL. Additionally, three fully con-

nection layers with 1024, 1024 and1 output nodes are added sequentially. All the fully connec-

tion layers are activated by ReLU. In addition, these layers are generalized by Dropout with 0.5

Fig 5. The detail architecture of instance level adaptation.

https://doi.org/10.1371/journal.pone.0263748.g005
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ratio. Identically, all the instance-level domain classifiers’ architecture through low-level layers

to high-level layers is the same. The size of feature maps at different layers is unified after ROI

pooling. The weights of all the instance-level domain adaptive classifiers through low to high

are optimized, respectively.

Obviously, the same instances are classified with different level features through the skip

layers. The low-level feature maps with rich context information are applied to align domain

distribution in our proposed methods. Therefore, the aligning domain distribution is better

than the DA Faster R-CNN.

3.5. Modified loss functions

According to the improvements mentioned above, the loss functions of the original DA Faster

R-CNN need to be modified to fit the skip-layer network. The multiple image-level adaptation

loss function can be modified as

Lmulti� img ¼ �
X

i;k;u;v

½Dilogp
ðu;vÞ
ði;kÞ þ ð1 � DiÞlogð1 � pðu;vÞði;kÞ Þ� ð1Þ

where Dii denotes the domain label of the i-th training image. Di = 0 for the source domain

and Di = 1 for the target domain. i denotes the i-th image. k represents the k-th layer. (u, v)

denotes the location in the feature maps of the domain classifier. pðu;vÞði;kÞ . denotes the output of

the domain classifier where activated at location (u, v) of the i-th image in the k-th layers.

The multiple instance-level adaptation loss can be modified as

Lmulti� ins ¼ �
X

i;k;j

½Dilogpi;k;j þ ð1 � DiÞlogð1 � pi;k;jÞ� ð2Þ

where i,k,Di dote the same as the Eq(6). j means the j-th region proposal. pi,k,j represents the

output of the instance-level domain classifier for the j-th region prosal in the i-th image at k-th

layer.

Furthermore, consistency regularization should also be modified to satisfy the multiple

level adaptation. We donotes the k-th layer of the i-th image in image-level domain classifier

representation as Iik. And we take the average over all activations in the representation as its k-

th layer of the i-th image in image-level probability. The multiple consistency regularizer can

be modified as:

Lmulti� cst ¼
X

i;k;j

k
1

jIikj

X

u;v

pðu;vÞði;kÞ � pi;k;jk2
ð3Þ

where the |Iik| denotes the total number of activations in the k-th layer of the i-th image, and

||�|| is the L2 distance.

Then the overl training loss is the sum of detection loss and adaptation loss, which can be

modified as:

L ¼ Ldet þ lðLmulti� img þ Lmulti� ins þ Lmulti� cstÞ ð4Þ

where λ is a trade-off parameter to balance the detection loss and adaptation loss. The detec-

tion loss Ldet is the same as the original Faster R-CNN. The standard SGD algorithm can opti-

mize the total loss in an end-to-end manner.

Faster R-CNN ] with VGG16 [28] is used as the primary detection model in our experiments.

All the domain adaptation improvements are used to do adversarial training. In the testing phase,

these improvements can be removed. In other words,he original Faster R-CNN architecture with
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adapted weights can be used to predict the bounding box and classes of objects in the testing

phase. Thereupon, the testing time is not affected by our proposed improvements.

3.6. Loss function parameter optimized with CS

The trade-off parameter λ is set as 0.1 in the total loss function to balance the detection loss

anadaptation loss based on the experience. However, this value is not the optimal global one.

The realization of finding the best value for the trade-off parameter is a difficult problem. Usu-

ally, the grid search method is one of the solutions to find the best value of λ. Nevertheless, the

value of the searching step is hard to define in the grid search method. The optimal results can-

not be obtained when the value of the searching step is not right. In other words, the explora-

tion ability is effected by the searching step.

In this paper the optimization method CS is introduced to optimize the trade-off parameter

λ. Cuckoo eggs represent the parameter. In other words, each egg is one possible solution of

parameter λ. The objective function evaluates the quality of the eggs. In this work, the object

detection loss function Ldet is the objective function. Firstly, many nests are built, and each

nest is laid with one egg by a cuckoo. Secondly, some eggs are found by the host with the prob-

ability of Pa. Then the hosts abandon the current nests and build new nests by the Lévy flight

method. Thereafter, train the improved DA Faster R-CNN model until satisfying certain itera-

tions. After that, the quality of the eggs in the nests is calculated by the objective function.

Then the solutions are ranked based on the qualities and the current best nest can be obtained.

Iterate the process until the termination conditions are met. The flowchart in Fig 6. represents

the parameters optimization process through CS.

4. Experiments and results

In order to evaluate the effectiveness of our approach, three experiments are performed: 1)

Foggy Weather Adaptation. In this part, methods for detecting objects are investigated in nor-

mal weather to that in foggy weather. 2) Synthetic Data Adaptation. In this experiment, the

ability of our proposed methods are tested for the synthetic data to the actual world data. 3)

Cross Camera Adaptation. In this section, our novel methods are validated for the photos

under different camera setups. Additionally, the visualization of feature distribution is evalu-

ated to support our standpoint. The experiments represent that our proposed improvement

can enhance the model’s overall discriminating ability.

4.1. Empirical setup

Data sets introduction. Our proposed methods are evaluated on three domain shifts in

our experiments——Cityscapes to Foggy Cityscapes, SIM10K to Cityscapes, Cityscapes to

KITTI. The source training data with annotation information (bounding boxes and object cat-

egories) and the target training data without annotation are provided. Details of the data sets is

shown in Table 1 and in the references [15–18].

Cityscapes [15] is a large-scale dataset containing diverse stereo video sequences recorded

in street scenes from 50 different cities. It contains 3475 high quality pixel-level annotated

frames, which 2975 images are taken as the training set and 500 images are taken as the valida-

tion set. The annotations have 30 classes in detail. But only 8 representative classes are used in

our experiment: person, rider, car, truck, bus, train, motorcycle, and bicycle. What‘s more,

pixel-level instance annotations are transformed to bounding boxes for object detection task.

Foggy Cityscapes [16] derives from Cityscapes. The synthetic foggy images are generated

with a fog simulation pipeline for Cityscapes. So it shares the same annotations with the City-

scapes and has the same number of classes and images.
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SIM10K [17] contains 10000 images with bounding boxes of 58701 cars captured from

gaming engine Grand Theft Auto V(GTAV).

KITTI [18] is a part of the KITTI Vision Benchmark Suite, which aim to develop novel

challenging real-world computer vision benchmarks. It is famous in auto-driving. There are

only 3 annotated classes in this dataset: car, pedestrian, and cyclist, which are the most inter-

ested objects in the driving environment. The object detection benchmark consists of 7481

training images and 7518 test images, comprising a total of 80256 labeled objects.

Fig 6. The flowchart of parameters optimization process with CS.

https://doi.org/10.1371/journal.pone.0263748.g006

Table 1. Dataset information.

Dataset No. of categories No. of annotated images No. of annotated objects

Cityscapes [15] 30(8) 3475 \

Foggy CityScapes [16] 30(8) 3475 \

SIM10K [17] 1 10000 58,701

KITTI [18] 3 7481 80,256

https://doi.org/10.1371/journal.pone.0263748.t001
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4.2 Experiment details

In the experiments, SLNO-S contains the skip-layer network and improved loss function.

Additionally, SLNO method includes SLNO-S and CS optimization method. The Caffe [29]

framework is applied to implement our proposed method. The VGG-16 model is used as the

backbone of the faster R-CNN. The convolutional parameters are initialized through the

VGG-16 model which weights are pre-trained on ImageNet. In order to make certain of the

experiment results stability, each experiment is repeated for 3 times and the results are

averaged.

For all experiments, the results are illustrated through the mean average precisions (mAP).

By default, the shorter side of all training and test images are resized to a length of 600 pixels.

The hyper-parameters are set following [5]. The network is fine-tuned with a learning rate of

0.002 for 40k iterations and then the learning rate is reduced to 0.0001 for another 20k itera-

tions. Two images from the source domain and the target domain are feed into the network

every iteration. Momentum and weight decay are used in our experiments, which are set as

0.0005 and 0.9. Without specific notation, the parameters of the CS are set as in the Table 2.

4.3. The analysis of overall model improvements

To evaluate the overall performance of our proposed method, foggy weather adaptation exper-

iments and cross camera adaptation experiments are made. The results and analysis are as

follows:

4.3.1 Foggy weather adaptation. In a real scenario, weather changes frequently. The

change of weather has a great impact on the data collected by the sensor. Therefore, the auton-

omous driving system should perform object detection effectively in different weather condi-

tions. In this section, our proposed methods are tested from clear weather environments to

foggy environments. Cityscapes and Foggy Cityscapes datasets are used as the source domain

and the target domain, respectively.

As shown in Table 3, the mAP of SLNO-S method is 14.1% higher than the baseline Faster

R-CNN method. SLNO-S contains the information from lower feature maps based on our

multi-level feature fusion method, which enhances the feature’s comprehensive to do domain

shift. In addition, both image-level and instance-level information is considered by our pro-

posed multi-layer domain adaptation method. Thereupon, the capability of aligning the distri-

butions from source to target domain is strengthened by the SLNO-S method. Moreover, the

parameter of the loss function is optimized by CS in our SLNO method. As a result, the mAP

of SLNO is 14.3% higher than the baseline Faster R-CNN model with λ = 0.17. Especially,

SLNO gets the best mAP than other compared methods. The mAP of SLNO is 0.2% higher

than SLNO-S, which shows that the CS method selects best parameter λ for the training phase.

Additionally, we can see that the best mAP of the truck is generated on DD-MRL and the

best mAP of the train is produced by MTOR with Resnet-50 backbone. However, the greatest

mAP across other categories is achieved by our proposed methods. In other words, the

improvements of SLNO is practical on foggy weather adaption.

Table 2. The parameters of the CS.

Parameter Description Value

N The number of nests 10

Pa the probability of the host finding cuckoo eggs 0.5

α the step factor 1

NMax Max iterations 100

https://doi.org/10.1371/journal.pone.0263748.t002
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4.3.2 Cross camera adaptation. We are considering that the types of camera for different

datasets are different. In order to further verify the effectiveness of our proposed methods.

Comparative experiments are carried out through the data collected under different camera

types to verify the adaptability of our proposed methods between two real datasets. In this sec-

tion, Cityscapes and KITTI are used as the source domain and target domain respectively.

Because the classification standard of categories between Cityscapes and KITTI is different,

then we redistribute ‘Car’ and ‘Van’ as ‘Car’, ‘Person’ and ‘Person sitting’ as ‘Person’. Addi-

tionally, ‘Tram’ is converted to ‘Train’, ‘Cyclist’ is converted to ‘Rider’ in the KITTI dataset.

As shown in Table 4, the mAPs of SLNO-S and SLNO methods are 6.9% and 7.2% higher than

the baseline Faster R-CNN respectively. Additionally, the mAPs of SLNO-S and SLNO methods

are also higher than the DA Model. The results indicate that the improvements of our proposed

methods are effective. Particularly, we find the proposed mAPs of SLNO-S and SLNO method are

2.6% and 2.1% lower for the Faster R-CNN for car category respectively. This is because the

domain shift between the source and target domain datasets in car category is very small. Addi-

tionally, the two domain datasets are both from real world with different camera configurations.

Thereupon, the test results of our proposed methods are affected by the overfitting problem. How-

ever, the mAPs of our methods are the best in other categories. In other words, our methods

achieve superior performance on different datasets with different camera types.

4.4. Synthetic data adaptation

With the development of computational vision, synthetic data is widely used in experiments.

In order to verify the effectiveness of the proposed method with the mutilple image-level

improvements, the mutilple instance-level improvements and multiple consistency regulariza-

tion respectively, the synthetic data adaptation datasets are carried out in our experiment to

test the comparing methods. Specifically, SIM10K is used as the source domain data, which

consists of 10,000 images with annotation boundaries. At the same time, Cityscapes is used as

the target domain data.

Table 3. Detection results for SLNO-S and SLNO on the Foggy Cityscapes test set (from Cityscapes to Foggy Cityscapes). The best AP of each object category is bold-

faced (%).

Approach Backbone mAP person rider car truck bus train mcycle bicycle

Faster R-CNN(baseline) VGG-16 22.0 24.4 30.5 32.6 10.8 25.4 9.1 15.2 28.3

DA-Faster [9] VGG-16 27.6 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1

SW-Faster [10] VGG-16 34.8 32.3 42.2 47.3 23.7 41.3 27.8 28.3 35.4

SC-DA(Type3) [10] VGG-16 33.8 33.5 38.0 48.5 26.5 39.0 23.3 28 33.6

DT Model [13] VGG-16 31.5 25.4 39.3 42.4 24.9 40.4 23.1 25.9 30.4

DD-MRL [23] VGG-16 34.6 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2

MTOR [20] Resnet-50 35.1 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6

SLNO-S (ours) VGG-16 36.1 33.1 43.8 49.2 24.8 42.2 28.9 29.7 36.8

SLNO (λ = 0.17)(ours) VGG-16 36.3 33.4 44.1 49.3 24.9 42.3 29.3 30.1 37.1

https://doi.org/10.1371/journal.pone.0263748.t003

Table 4. Results on KITTI, using models trained on Cityscapes (from Cityscapes to KITTI) (%).

Method Person Rider Car Truck Train Mean AP

Faster R-CNN(baseline) 47.87 22.0 75.2 12.4 12.6 34.0

DA Model [9] 40.9 16.1 70.3 23.6 21.2 34.4

SLNO-S(ours) 52.9 24.2 72.6 29.2 25.5 40.9

SLNO(λ = 0.17)(ours) 53.1 24.3 73.1 29.5 25.9 41.2

https://doi.org/10.1371/journal.pone.0263748.t004
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The results are summarized in Table 5. Because only the cars are annotated in SIM10K,

thus only the average precision of the cars on the validation set of Cityscapes are illustrated.

Particularly, the mAP of our proposed SLNO-S4 is +8.4% higher than the baseline model. This

proves the improvements of the proposed SLNO-S are effective. In addition, the mAP of

SLNO-S1 with multiple image-level improvements is 1.9% higher than original DA Model.

Specially, the mAP of SLNO-S2 with multiple instance-level improvements is 2.2% higher

than original DA Model. In other words, our proposed multiple image-level adaptation and

multiple instance-level adaptation improvements can decrease the domain shift on each level

effectively. Moreover, 42.4 mAP is obtained by SLNO-S3 with above two improvements. This

result shows the necessary of making domain shift in both level. Based on the above two

improvements, the SLNO-S4 model achieves an 42.7 mAP with additional multiple consis-

tency regularization. Furthermore, our SLNO method achieves the best mAP comparing to

other methods. The reason is that the parameter of loss function is optimized by CS methods.

From the results, we can see that all our improvements promote the performance of SLNO-S

and SLNO.

4.5. Optimization process of parameter λ
CS method is introduced to optimize λ in the training phase. The hyperparameters for CS

method are shown in Table 2. The SLNO model has trained 600 iterations and the λ is opti-

mized once. The best λ is obtained based on increasing iterations of the CS method. The

change of λ is illustrated in Fig 7.

From the Foggy Weather Adaptation, Synthetic Data Adaptation and Cross Camera Adap-

tation experiments, we can see that 0.17 and 0.15 are assigned to λ through CS optimization

method respectively. Mainly, the parameter λ with the optimized value can promote the per-

formance of SLNO. Therefore, the capability of SLNO is enhanced by using the optimized λ.

In other words, the fixed value for λ is not the optimal value. Thereupon, the best solution for

λ can be found by CS method. From Fig 7, we can see that the value of λ is small at the begin-

ning of training. The reason is that the loss from domain adaptation should be restrained at

the beginning. Furthermore, the λ converges to 0.17 when CS iterations equal to 95 in the

foggy weather adaptation and cross camera adaptation experiments. Additionally, the λ con-

verges to 0.17 when CS iterations equal to 95 in the foggy weather adaptation and cross camera

adaptation experiments. However, the λ converges to 0.15 when CS iterations equal to 85 in

the synthetic data adaptation experiment. The results indicate that the λ can converge to the

different best values for different domain shifts.

Table 5. Results on Cityscapes, using models trained on SIM10K (from SIM10K to Cityscapes) (%).

Method img ins CTX L mimg mins mcons Car AP

Faster R-CNN(baseline) 34.3

DA Model [9] ✓ ✓ 39.4

SW-DA [10] ✓ ✓ ✓ 40.1

SW-DA(γ = 3) [10] ✓ ✓ 42.3

SC-DA(Type3) [11] 43.0

SLNO-S1(ours) ✓ ✓ ✓ 41.3

SLNO-S2(ours) ✓ ✓ ✓ 41.6

SLNO-S3(ours) ✓ ✓ ✓ ✓ 42.4

SLNO-S4(ours) ✓ ✓ ✓ ✓ ✓ 42.7

SLNO(λ = 0.15)(ours) ✓ ✓ ✓ ✓ ✓ 43.0

https://doi.org/10.1371/journal.pone.0263748.t005
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Because synthetic data adaptation experiment has only one category, the λ in the synthetic

data adaptation experiment converges earlier than that in the foggy weather adaptation and

cross camera adaptation experiments. Therefore, the simple domain shift can promote the

convergence of λ.

4.6. The analysis of modified loss function performance

We make the synthetic data adaptation experiments to evaluate the performance of modified

loss function. The results and analysis are as follows:

As shown in Table 6, Lmulti-img, Lmulti-ins, Lmulti-cst denotes the multiple image-level

adaptation loss function, multiple instance-level adaptation loss function, multiple consistency

regularizer, respectively. Model with ✓ means the loss function is applied. In general,

SLNO-S9 is the model including all modified loss function. The mAP of SLNO-S9 is +8.4%

Fig 7. Optimization process of parameter λ.

https://doi.org/10.1371/journal.pone.0263748.g007

Table 6. Results with different loss function on Cityscapes, using models trained on SIM10K (%).

Method Lmulti-img Lmulti-ins Lmulti-cst Car AP

Faster R-CNN(baseline) 34.3

DA Model [9] 39.4

SLNO-S5(ours) 41.5

SLNO-S6(ours) ✓ 41.8

SLNO-S7(ours) ✓ 42.2

SLNO-S8(ours) ✓ ✓ 42.6

SLNO-S9(ours) ✓ ✓ ✓ 42.7

SLNO(λ = 0.15)(ours) ✓ ✓ ✓ 43.0

https://doi.org/10.1371/journal.pone.0263748.t006
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higher than the baseline model, +3.3% higher than the DA mode and +1.2% higher than

SLNO-S5. This shows that the modified loss function works effectively. In details, SLNO-S5 is

the model without modified loss function. The mAP of SLNO-S5 is +2.1% higher than the DA

model. Because the multiple feature fusion component and multiple layer domain adaptive

still works at this situation. Additionally, SLNO-S6 and SLNO-S7 is the model with the modi-

fied multiple image-level and instance-level adaptation loss function, respectively. The mAP of

SLNO-S6 is 0.3% higher than the SLNO-S5, while the mAP of SLNO-S7 is 0.7% higher than

the SLNO-S5. The result shows that both the modified multiple image-level and instance-level

adaptation loss function are effective. And the modified multiple instance-level adaptation loss

function is more effective than the modified multiple image-level adaptation loss function.

Moreover, The SLNO-S8 is the model with both the modified multiple image-level and

instance-level adaptation loss function at same time. The mAP of SLNO-S8 is +1.1% higher

than SLNO-S5. This shows that using the modified loss function at same time could get more

effective performance than using them alone. Additionally, SLNO is the model which the

parameter of the loss function is optimized by CS. The mAP of SLNO get the best result at 43%

with λ = 0.15. The mAP of SLNO is 0.3% higher than SLNO-S9. This shows that the CS

method could selects more optimal trade-off parameter for the training phase than the set

based on experience.

5. Conclusion

In this paper, our proposed Skip-Layer Network with Optimization method is introduced to

domain adaptive object detection. A stable and efficient object detector can be trained by our

proposed approach. The performance of the detector could be improved by align different

domain distributions between source and target domain. Three improvement are proposed in

this manuscript. Firstly, Multi-level feature fusion is designed to enhance the features from

lower-level feature maps. Fused features are benefit for classification. Secondly, multi-layer

domain adaptation is proposed to align the domain shift in image-level and instance-level by

skip layer. The loss functions are modified to fit the multiple structures. Thirdly, CS method is

applied to optimize trade-off parameters in the training phase and makes the performance bet-

ter. Our approach is validated on three domain shift scenarios, which named foggy weather

adaptation, cross camera adaptation and synthetic data adaptation. The results of all experi-

ments show that our proposed methods outperform baseline Faster R-CNN and DA models

significantly. the In other words, the improvements in SLNO could promote the performance

of cross-domain object detection.
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