Skip to main content
. 2022 Mar 17;17(3):e0263748. doi: 10.1371/journal.pone.0263748

Table 3. Detection results for SLNO-S and SLNO on the Foggy Cityscapes test set (from Cityscapes to Foggy Cityscapes).

The best AP of each object category is bold-faced (%).

Approach Backbone mAP person rider car truck bus train mcycle bicycle
Faster R-CNN(baseline) VGG-16 22.0 24.4 30.5 32.6 10.8 25.4 9.1 15.2 28.3
DA-Faster [9] VGG-16 27.6 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1
SW-Faster [10] VGG-16 34.8 32.3 42.2 47.3 23.7 41.3 27.8 28.3 35.4
SC-DA(Type3) [10] VGG-16 33.8 33.5 38.0 48.5 26.5 39.0 23.3 28 33.6
DT Model [13] VGG-16 31.5 25.4 39.3 42.4 24.9 40.4 23.1 25.9 30.4
DD-MRL [23] VGG-16 34.6 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2
MTOR [20] Resnet-50 35.1 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6
SLNO-S (ours) VGG-16 36.1 33.1 43.8 49.2 24.8 42.2 28.9 29.7 36.8
SLNO (λ = 0.17)(ours) VGG-16 36.3 33.4 44.1 49.3 24.9 42.3 29.3 30.1 37.1