Table 3. Detection results for SLNO-S and SLNO on the Foggy Cityscapes test set (from Cityscapes to Foggy Cityscapes).
Approach | Backbone | mAP | person | rider | car | truck | bus | train | mcycle | bicycle |
---|---|---|---|---|---|---|---|---|---|---|
Faster R-CNN(baseline) | VGG-16 | 22.0 | 24.4 | 30.5 | 32.6 | 10.8 | 25.4 | 9.1 | 15.2 | 28.3 |
DA-Faster [9] | VGG-16 | 27.6 | 25.0 | 31.0 | 40.5 | 22.1 | 35.3 | 20.2 | 20.0 | 27.1 |
SW-Faster [10] | VGG-16 | 34.8 | 32.3 | 42.2 | 47.3 | 23.7 | 41.3 | 27.8 | 28.3 | 35.4 |
SC-DA(Type3) [10] | VGG-16 | 33.8 | 33.5 | 38.0 | 48.5 | 26.5 | 39.0 | 23.3 | 28 | 33.6 |
DT Model [13] | VGG-16 | 31.5 | 25.4 | 39.3 | 42.4 | 24.9 | 40.4 | 23.1 | 25.9 | 30.4 |
DD-MRL [23] | VGG-16 | 34.6 | 30.8 | 40.5 | 44.3 | 27.2 | 38.4 | 34.5 | 28.4 | 32.2 |
MTOR [20] | Resnet-50 | 35.1 | 30.6 | 41.4 | 44.0 | 21.9 | 38.6 | 40.6 | 28.3 | 35.6 |
SLNO-S (ours) | VGG-16 | 36.1 | 33.1 | 43.8 | 49.2 | 24.8 | 42.2 | 28.9 | 29.7 | 36.8 |
SLNO (λ = 0.17)(ours) | VGG-16 | 36.3 | 33.4 | 44.1 | 49.3 | 24.9 | 42.3 | 29.3 | 30.1 | 37.1 |