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Abstract
The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the 
environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to 
the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived 
from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production 
cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential 
and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers 
to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation 
technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of 
macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with 
techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this 
review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions 
that can be served as an important guideline for scientists, policymakers, and industrial players.
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1 Introduction

In recent years, skyrocketing global energy demands 
and limited availability of fossil fuels due to urbaniza-
tion and progressively growing of the world’s population 
have escalated renewable energy development. At the 
same time, due to the COVID-19 pandemic, increment 
of plastic waste generation is observed as a human pro-
pensity towards wearing personal protective equipment 
(PPE) such as face masks and hand gloves. Besides, the 
pandemic also slowly shifted human lives to depend on 
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online platforms to get their meals, goods, and groceries 
delivered. Globally to date, nearly 140-fold of increment 
of plastic waste had been generated as compared to that 
produced in 2010 and reached approximately 8.3 billion 
tons of plastic waste in 2020 [1]. As a result, the interest 
in developing innovative biorefinery approaches for the 
production of bioenergies and biopolymers from renew-
able resources has intensified. The biorefinery concept 
offers a scheme to facilitate the circular bioeconomy 
that closes the loop of organic or fresh resources, miner-
als, carbon, and water. It can be defined as a green and 
sustainable bioprocess that utilizes the optimum energy 
potential of organic resources to produce bioenergy and 
bioproducts through the bioconversion process [2]. From 
the point of view of circular bioeconomy, the ideas focus 
on conserving the long-term usage of biomass resources, 
minimizing contamination on both environment and end-
product, and guaranteeing food security while produc-
ing jobs for mankind [3]. To this extent, the macroalgae 
feedstocks tallying with these ideas strengthen the bio-
economy [4].

As a consequence, literature related to macroalgal biore-
finery showed an increasing trend with expanding research 
outputs [5, 6]. Macroalgae can be processed towards a vari-
ety of rare sugars (glucose, galactose, mannose, and rham-
nose) depending on the macroalgae strain, which can then 
be converted into a wide range of bioproducts by fermen-
tation, including biofuels, biochemicals, biomaterials, and 
biofertilizer [4]. Among the renewable energies, bioethanol 
is considered a clean biofuel due to its renewability prop-
erties and biodegradability [7]. The global production of 
bioethanol continues to increase at an average of 5% annu-
ally from 2010 to 2019, but production fell worldwide in 
2020 due to the pandemic and reached 98.65 billion tons 
(Fig. 1) [8]. Several nations such as the United States (US), 
China, India, Turkey, and Brazil have taken the initiative to 
develop bioethanol production as a commercial fuel [9–11]. 
Apart from being utilized as a fuel additive, bioethanol can 
also be converted into various derivatives such as acetic acid 
and ethylene, which can be further applied as raw material 
to produce a variety of green solvents and polymers [12].

In order to achieve sustainable bioeconomic growth, the 
production of high value-added bioproducts coupled with 
renewable energies generation in an integrated biorefinery 
should be prioritized. Apart from bioethanol, biochemical 
products, especially lactic acid (LA) or 2-hydroxypropi-
onic acid, can also be generated from macroalgae bio-
mass through biotechnological route by using lactic acid 
bacteria (LAB) to metabolize rare sugars. A large scale 
of the world’s commercial LA production is currently 
derived from food-grade sources [13]. On the other hand, 
large-scale synthesis of LA from edible bioresources may 
conflict with food and feed availability. Thus, non-edible 

macroalgae biomass is a better option for biochemical 
products synthesis due to their high compositional diver-
sity. Moreover, LA is an essential building block for 
polylactic acid (PLA), a biodegradable and biocompat-
ible aliphatic polyester with various applications. It can 
be found in the forms of D- and L-enantiomeric, where 
D( −)-LA and L( +)-LA are outlined as dextro-lactic acid 
and levo-lactic acid, respectively [14]. In fact, the applica-
tions of PLA in different fields have grown enormously in 
recent years, especially when produced from pure isomers 
(L( +)- or D( −)-lactic acid) and reached nearly 1.6 bil-
lion tons of global production capacity in 2020 [15]. Its 
applications range from packaging, fibers to foams and 
biomedical applications such as implants, sutures, bone 
fixation, scaffold in tissue engineering, and controlled drug 
delivery [9].

Moreover, the renewability and biodegradability 
properties of PLA have driven it to become one of the 
biopolymers that can be utilized as bioplastic. The main 
advantage of PLA as bioplastic is that the plastic can be 
degraded in a short time by the action of enzymes and 
microorganisms such as bacteria and fungi. The microbial 
degradation of bioplastic occurs with the changes in the 
chemical structure of the exposed material and normally 
requires a certain period, which ranges between 11 months 
and a few years. The degradation period of bioplastic 
mainly depends on the mechanical (crystallinity and 
melting temperature) and chemical (molecular weight 
distribution and chemical structure) properties of PLA and 
environment conditions (temperature, pH) [16]. Other than 
biodegradability, the production of plastic by using PLA 
can save approximately two-thirds of energy consumption 
compared to the production of petrochemical-based plastic. 
Furthermore, bioplastic derived from PLA will not increase 
the net emission of carbon dioxide into the atmosphere 
since PLA originates from cellulosic and macroalgae 
biomass. The macroalgae will absorb the carbon dioxide 
released during degradation [17].

Both bioproducts can be produced through two critical 
stages of macroalgae biorefinery, including hydrolysis of 
polysaccharides and fermentation of rare sugars extracted 
from macroalgae biomass. Thus, it is widely regarded 
as a superior approach for the sustainable valorization 
of biomass to meet the future multi-fold demand of 
commodities [18]. The fermentation process, which 
metabolize rare sugar to bioproducts, has taken place after 
the disruption of the cell wall which also can be defined 
as the hydrolysis process. Tan and Lee [19] reported 
that bioethanol fermentation could be done by selecting 
Saccharomyces cerevisiae to ferment the rare sugars from 
hydrolysates. The robust characteristics of S. cerevisiae 
that enable it to be used under a wide range of pH have 
promoted it to become the most commonly employed yeast 
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in bioethanol production [20]. According to Alexandri 
et al. [21], Bacillus coagulans is favorable in the anaerobic 
conversion of rare sugars from hydrolysates to LA. Various 
configurations of hydrolysis and fermentation have been 
employed in bioethanol and biobased product generation. 
The configuration for both processes can be categorized 
into separate hydrolysis and fermentation, simultaneous 
saccharification and fermentation, and high cell density 
culture [22, 23].

This paper was systematically designed to critically 
review the prospects of biorefineries in transforming 
biomass into value-added products as a strategy for 
sustainability. Even though extensive reviews on 
biomass utilization had been published in the past 
few years, the current study focused on the latest 
trends and state-of-the-art technological development 
in this area. In addition, the advantages of different 
integration scenarios for bioethanol and LA production 
were also compared extensively. On the basis of the 
different integration scenarios, some recommendations 
were pointed out for future research directions on the 
seamless integration of third-generation bioethanol 
and LA production from macroalgae-based feedstocks. 
Therefore, this review provides essential technical 
information on the contemporary status and future 
trends of macroalgae biomass utilization to realize the 
pursuit of a green and sustainable economy.

2  Limitations and challenges of first 
and second generations of microbial 
bioethanol and lactic acid production

Bioethanol is one of the liquid alcohol–based biofuels, while 
LA is one of the acid- and alcohol-based biochemicals which 
can be produced by anaerobic conversion of carbohydrates 
extracted from various types of feedstocks such as food 
waste, woody biomass, agricultural residual, and edible 
crops using microorganisms and bacteria [24, 25]. In recent 
years, L-LA with high enantiomeric purity is displaying 
great potential for various applications in different indus-
tries (e.g. polymer, food, and pharmaceutical industries) as 
food packaging material, preservative, and flavoring agent 
[26]. In this section, several restrictions and drawbacks of 
existing bioethanol and LA production were discussed com-
prehensively, such as issues of using food carbohydrates as 
feedstocks for bioproducts synthesis, sensitivity to inhibitory 
compounds during pretreatment of lignocellulosic biomass, 
indirect utilization of polymeric sugars (cellulose in all 
macroalgae and xylan in green macroalgae), and impacts on 
bioproducts productivity due to the end-product inhibition 
(Table 1). Being the most demanded biofuel and biopoly-
mer for resolving the energy and environmental issues, 
bioethanol and LA production have passed through several 
technological advancements to increase global productivity 
due to the technical and economic challenges with respect 

Fig. 1  Global production 
capacities of bioethanol and 
bioplastic 2010–2020. Adjusted 
from [8, 15]
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to first-generation feedstocks (edible crops, corn husk) and 
second-generation feedstocks (woody biomass, agricultural 
residual) in bioethanol and LA production [27].

2.1  1G microbial bioethanol and lactic acid 
production

The feedstocks for first-generation (1G) bioethanol and LA 
are generally classified into food-based, starch-based (corn, 
barley, grain sorghum, wheat, and oats), and sugar-based 
crops (sugar beet, sugarcane juice, and sweet sorghum) [28, 
34, 35]. The 1G bioethanol and LA can be produced from 
direct fermentation of hexose sugars or polysaccharides con-
verted into rare sugars without pretreatment [36]. 1G bioeth-
anol processing technologies in the US, Brazil, Turkey, and 
several countries in Europe have been commercialized for 
over two decades [29]. However, several studies reported 
that 1G bioethanol encounters economic issues such as fluc-
tuating prices for commercial bioethanol production and 
inconsistent feed supply, which caused global food security 
as bioethanol is derived from food crops [34]. Renewable 
Fuels Association [37] had reported that maize was primar-
ily used for 1G bioethanol and LA production in the US, 
which raised the conflict between bioethanol production and 
food consumption. The usage of edible food as feedstock 
poses a considerable ethical dilemma and strongly polarized 
debate, generally referred to as the “food vs. biofuel.” The 
supply of edible food as feedstock can also become a poten-
tial limiting factor due to the potential increased demand.

2.2  2G microbial bioethanol and lactic acid 
production

Second-generation (2G) biorefinery, also known as lignocel-
lulosic biorefinery, is introduced to replace the 1G biorefin-
ery approach for both bioethanol and LA production as its 
feedstocks are based on non-food raw materials that do not 
compete with the food supplies. One of the most common 
raw materials for 2G biorefinery is lignocellulosic biomass 
(LCB), which can be classified into woody biomass, agri-
cultural residues (rice straw, grasses, and corncobs), forest 
residual, and energy crops [30–32]. Lignocellulosic waste 
contains three major chemical compositions: cellulose, 
hemicellulose, and lignin which can be processed into biofu-
els, biochemicals, and reinforcement agents for biopolymer, 
respectively [32]. The chemical compositions of different 
biomass can vary greatly from each other. However, sev-
eral works of literature have reported that lignin is strongly 
bounded with cellulose-hemicellulose complex via hydro-
gen and covalent bonds, which render the structures to be 
highly stable and recalcitrant for depolymerization [38–40]. 
Thereby, delignification process is introduced with the usage 
of chemicals to remove the lignin complex and ensure the 

optimum yield of rare sugars can be attained [41]. Moreover, 
LCB requires a large scale of land for cultivations, which 
caused the issue of land-use competition [29]. Recently, 
European Parliament had raised a vote to phase out the usage 
of oil palm–based bioethanol as transport fuels from 2030 
due to the European Union (EU) aimed to make the EU cli-
mate neutral by 2050. Owing to the cultivation of oil palm 
offers the highest indirect greenhouse gas (GHG) emissions, 
which is caused by the drainage of peatlands and deforesta-
tion [37]. Thus, lignocellulosic-derived bioethanol and LA 
are commercially limited due to the high production cost 
and environmentally unfavorable biorefinery processes [42].

3  Exploitation of macroalgae as a potential 
feedstock for 3G bioethanol and lactic 
acid production: a sustainable approach

The development of a sustainable feedstock is needed to 
overcome the limitations encountered by 1G and 2G bioetha-
nol and LA production. In view of this, algal biomass is a 
promising alternative feedstock as the third-generation (3G) 
energy and polymer resources. Saccharification of macroal-
gal polysaccharides to fermentable sugar and LA production 
is still yet to be studied. In this context, clarification on the 
algal biorefineries concept is paramount to attract the atten-
tion of researchers on the perspectives of algal-based bioeth-
anol and LA production. Macroalgae have shown significant 
potential as feedstocks for bioethanol and LA production. 
Macroalgae, also known as seaweed, are photosynthetic 
and multicellular eukaryotic organisms present abundantly 
in oceans [4]. Red algae (Rhodophyta), green algae (Chlo-
rophyta), and brown algae (Phaeophyta) are the main types 
of macroalgae that derive their colors based on chlorophyll 
and natural pigment synthesis. The carbohydrate-rich strain 
of macroalgae has driven it to become the most sustainable 
resource for the production of high rare sugar yield [43]. The 
world production of macroalgae had increased dramatically 
at an average increment rate of 10% annually over the past 
10 years (2008–2017) and reached 31.05 million tons, which 
is worth over US$11.3 billion [44]. From Fig. 2, the cultiva-
tion of red and brown macroalgae has increased in the last 
10 years. In recent years, the drastic growth in macroalgae 
production is mostly owing to increased demand for mac-
roalgae applications in agricultural and biofuel production. 
Gajaria et al. [45] reported that green macroalgae were suit-
able to be applied as a sustainable source of bioactive com-
pounds for biofertilizer production. Moreover, the red and 
brown species of macroalgae are mainly cultivated for the 
application of renewable energy production and wastewater 
treatment processes [19, 22, 46].

Several laboratories work on the utilization of macroalgae 
for the generation of bioethanol and LA that had been reported 
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in the literature, and the chemical compositions for selected 
macroalgae are shown in Table 2. These studies revealed 
that carbohydrates in the form of glucose polysaccharides 
such as cellulose could be found in macroalgae, laminarin 
can be found in brown algae, cellulose and starch can be 
found in both red and green algae, and other polysaccharides 
such as mannitol and alginate were contained in brown 
algae, agar, and carrageenan in red macroalgae and ulvan in 
green macroalgae [47–49]. Hence, macroalgae are generally 
considered sustainable sources for fermentable sugar. It also 
addresses the sustainability concerns related to food supplies 
and land cultivation suffered by the edible crops and LCBs 
[50, 51]. Unlike terrestrial plants, macroalgae possess many 
excellent properties such as abundance in supply, ability to 
grow in seawater (not competing with agricultural land for 
cultivation), and low lignin content [52]. Enormous quantities 
of macroalgae can be found in the oceans, so the rigidity 
conferred by lignin is pointless to the macroalgae. This 
highlights a major benefit of biorefinery processing because 
the delignification of the biomass is no longer required. This 
will further simplify the carbohydrates extraction and the 
saccharification process. Moreover, the detoxification or 
neutralization process, which is usually needed to remove the 
inhibitory compounds (5-HMF, furfural acid, and irreversible 
salts) produced during the delignification process of LCBs, 
can be eliminated leads to lower production cost [4]. Thus, 
macroalgae biomass is a cost-effective feedstock for 3G 
bioethanol and LA production [53].

The macroalgae bioethanol and LA production processes 
include milling, pretreatment, hydrolysis (saccharification), 
fermentation, and distillation [54]. An overview of all stages 
for macroalgae-based bioethanol and LA generation is sum-
marized in Fig. 3. Hydrolysis is essential to disintegrate and 
hydrolyze the cell wall of macroalgae to release the car-
bohydrates such as cellulose and other rare sugars for fer-
mentative microorganisms [55]. The carbohydrates in the 
cell wall of macroalgae can be hydrolyzed easily to form 
monosaccharides via hydrolysis due to the low lignin con-
tent in macroalgae. However, in the work by Kostas et al. 
[49], it was highlighted that hydrolysis of pretreated brown 
macroalgae Laminaria digitata would yield a higher amount 
of rare sugars, which is approximately 93.80% as compared 
to hydrolysis of untreated biomass under the same loading. 
This was due to the pretreatment on macroalgae increasing 
the reaction surface area of carbohydrates in macroalgae and 
thus maximizing the fermentable sugar yield [56]. The fer-
mentation process is followed after the disruption of the cell 
wall to produce fermentable sugar. The alcoholic fermenta-
tion is carried out using yeast under anaerobic conditions 
along with the hydrolysate [20]. Like 2G LA, 3G LA can be 
derived from the residual medium, which contains xylose 
and galactose hydrolyzed from macroalgae using LAB. In 
contrast, to glucose, which is a priority consumed by yeast 
strain for bioethanol production, conversion of xylose and 
galactose is slower due to the slower reaction kinetics [18, 
20].

Fig. 2  World production of 
farmed macroalgae from 
2008 to 2017. Adjusted from 
Adjusted from [44]
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4  Utilization of macroalgae biomass

Marine macroalgae are composed of different constituents 
(phycocolloids and celluloses), which could be fractionated 
into different constituents for refining separately or pro-
cessed as whole biomass [4].

4.1  Extraction of phycocolloids from macroalgae 
biomass

Macroalgae is considered the natural resource of hydrocol-
loids which consist of various types of phycocolloid such 
as alginate, agar, carrageenan, fucoidan, and ulvan [60]. 
These phycocolloids are heterogeneous polysaccharides 
other than cellulose derived from macroalgae composed of 
sugars with unique chemical structures and commercially 
valued [61]. For instance, carrageenan extracted from 
red macroalgae consists of ester sulfate D-galactose and 
3,6-anhydro-D-galactose (D-AHG). Herein, D-galactose 
is one of the abundantly used sugars in the carbohydrate-
based biorefinery, while D-AHG has practical application 

for skin whitening and cell generation [62–64]. Mean-
while, sugars like 3,6-anhydro-L-galactose (L-AHG), 
L-rhamnose, L-fucose, and glucuronic acid can be found 
in agar from red macroalgae, ulvan from green macroalgae, 
fucoidan, and alginate from brown macroalgae, respec-
tively [47–49]. Among the phycocolloids, agar, alginate, 
and carrageenan have been used widely as thickener and 
emulsifiers in food and textile industries to improve the 
viscosity of the aqueous solutions and the texture in foods 
[65]. Besides, the monomer sugars from phycocolloids 
could be used to generate bioethanol and LA through 
microbial fermentation [64].

Owing to the variety of macroalgae phycocolloids and 
their unique monomer sugars, which possess commercial 
significance for a wide range of applications, the extraction 
technology for macroalgae phycocolloids has been scarcely 
explored and upgraded over the years for enhancing the 
extraction yields. Various solvents, including distilled water, 
acidic or alkaline solution in stand-alone or in combinations 
employed for conventional and innovative phycocolloids 
extraction, are presented in Table 3. These studies revealed 

Table 2  Summary of polysaccharides in different macroalgae and major monosaccharides via hydrolysis

Macroalgae group Macroalgae Polysaccharides Major monosaccharides Reference

Rhotophyta Gracilaria sp. Cellulose Glucose [22]
Agar Galactose

Kappaphycus alvarezii Cellulose Glucose [47]
Carrageenan D-galactose
Agar Galactose

Gelidiopsis variabilis Cellulose Glucose [57]
Agar Galactose

Chondrus crispus Cellulose Glucose [58]
Chlorophyta Enteromorpha intestinalis Cellulose Glucose [59]

Xylan Xylose
Mannose D-glucuronic acid

L-rhamnose
Ulva lactuca Ulvan Glucose [48]

Xylose
L-rhamnose
Glucuronic acid
Iduronic acid

Cellulose Glucose
Phaeophyta Laminaria digitata Alginate Mannuronic acid [49]

Guluronic acid
Fucoidan Frucose

D-xylose
D-galactose
D-mannose
Glucuronic acid

Cellulose Glucose
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that specific approaches had been employed to extract the 
targeted phycocolloids from the cell wall of the specific mac-
roalgae strain as the phycocolloid composition of macroal-
gae varies depending on the species. From the studies, the 
application of distilled water and alkaline in agar extraction 
is strain-dependent. For instance, an alkali extraction method 
is required for both Pyropia spp. and Gracilaria spp. to form 
L-AHG, which is responsible for producing a high-strength 
gel by eliminating the sulfate groups in agar, whereas this 
extraction method is not required for Gelidium spp. [66–68]. 
In contrast, both acidic and alkali extraction methods are 
required for alginate extraction. Acid such as hydrochloric 
acid (HCl) is mainly applied in alginate extraction for solubi-
lizing the calcium alginate fraction in the brown macroalgae 
to alginic acid. To produce a more commercially valued phy-
cocolloid, sodium carbonate  (Na2CO3) is employed to trans-
form the alginic acid to sodium alginate, a sodium salt that 
has a variety of applications, including hydrogels for cell 
immobilization and dental impression materials [69, 70]. 
In the case of carrageenan extraction, the alkali extraction 
method is not prioritized, but chelating agents such as cal-
cium hydroxide (Ca(OH)2) and potassium hydroxide (KOH) 
can be utilized to improve the carrageenan-gel strength [71, 
72].

Moreover, the extraction method is temperature-
dependent based on the targeted phycocolloids. For 
agar extraction, operation temperatures above 80 °C are 
required for complete solubilization of agar from red 
macroalgae [66–68]. Besides, carrageenan is a group of 
water-soluble anionic sulfated polysaccharides soluble 
either in cold or hot water but depending on the genus of 
red macroalgae [73]. Das et al. [71] revealed that the car-
rageenan from Kappaphycus alvarezii can be solubilized 
in a 0.5% Ca(OH)2 solution at room temperature with-
out being heated. On the other hand, ulvan from green 
macroalgae is only soluble in hot water with operation 
temperatures above 90 °C [74]. However, pH is the main 
solubilizing parameter for alginate extraction, and thus, 
the pH should be maintained above the pKa value of algi-
nate (pKa > 3.65) [75]. From Table 3, hot water extrac-
tion (HWE) followed by filtration, centrifugation, and 
purification are the conventional phycocolloid extraction 
techniques employed by many researchers [62, 68, 71]. 
However, from the industrial point of view, the conven-
tional extraction technique is constrained by requiring a 
high extraction temperature, longer extraction time that 
will cause severe depolymerization of phycocolloid chain, 
and effluents generated by this technique caused water pol-
lution problems due to the usage of toxic chemicals [76, 
77].

To improve the drawbacks of conventional extraction 
technology, innovative and eco-friendly extraction protocols 
are increasingly developed, including microwave-assisted 
extraction (MAE), ultrasound-assisted extraction (UAE), 
enzyme-assisted extraction (EAE), and subcritical water 
extraction (SWE) [78]. MAE technology is based on the 
application of electromagnetic radiation at frequencies and 
wavelength ranges between 0.3–300 GHz and 0.001–1 m, 
respectively, to transfer energy for rapid internal heating on 
the sample matrix and macroalgae cell wall disruption [79]. 
MAE has been applied successfully to extract carrageenan 
from Hypnea musciformis under 150 °C with an operation 
duration of 10 min [80]. MAE demonstrated to achieve 
higher carrageenan yields which are approximately 16.6% 
compared to the conventional alkali extraction method 
(85 °C, 3.5 h) that achieved approximately 3.74% yield per 
gram of biomass with a reduction of reaction time and vol-
ume of KOH used [80]. Ulvans from Ulva pertusa was also 
extracted by Le et al. [81] using MAE obtaining 41.91% 
yield at a microwave power of 600 W for 43.63 min.

On the other hand, UAE technology is based on the 
application of sound frequencies ranging between 0.2 and 
10 MHz to treat the samples by applying agitation, pres-
sure, shear force, compression-rarefaction, and radial 
formation on the sample matrix to enhance the cell wall 
disruption [82]. Martínez-Sanz et al. [68] concluded that 
UAE with non-alkali treatment (400 W, 24 kHz) and conven-
tional HWE method achieved similar agar yields (10–12%) 
extracted from Gelidium sesquipedale; however, UAE suc-
cessfully reduced the extraction time by fourfold. Alginates 
from Sargassum muticum were also extracted by Flórez-
Fernández et al. [83] using UAE (150 W, 40 Hz, 30 min), 
obtaining 15% yield with a low mannuronic/guluronic ratio 
of 0.64 that resulted in a soft gel with high viscosity. Algi-
nate gels with high guluronic acid content are essential in 
food and cosmetic industries, which are widely used as 
resistant gels in food and cosmetic products [84]. Besides 
achieving a higher yield of carrageenans from Hypnea mus-
ciformis, Rafiquzzaman et al. [72] also reported that the 
UAE method possesses specificity to extract pure kappa-
carrageenan and eliminate the desulfation on the extracted 
carrageenan, which can enhance the properties of carrageen-
ans. This is mainly due to carrageenans containing higher 
than 25% of sulfate groups being reported to have strong 
antiviral effects on both problematic enveloped and non-
enveloped viruses such as hepatitis A, dengue virus, and 
human immunodeficiency virus [85].

As an emerging and innovative extraction technology, 
EAE was also explored to obtain phycocolloids from vari-
ous macroalgae biomass. EAE technology is based on the 
application of enzymes secreted from microorganisms to dis-
rupt the macroalgae cell wall for releasing the polysaccha-
rides [86]. The use of EAE involving cellulase was explored 

Fig. 3  Flow chart of macroalgal bioethanol and lactic acid production 
process
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by Chen et al. [87] to enhance the ulvan extraction from 
Ulva pertusa Kjellm. The yield of ulvans extracted through 
EAE was comparable to conventional HWE and UAE meth-
ods, in which the yields were 25.3%, 17.8%, and 20.6%, 
respectively [87]. Compared to the conventional extraction 
method that involved the use of calcium chelating agents 
to break the glycosidic bonding between the ulvan and cell 
wall matrix, EAE is considered as a simplified method that 
does not require the usage of chelating agents and dialysis 
process due to enzyme-assisted disruption of the macroal-
gae cell wall [88]. Borazjani et al. [89] extracted alginates 
from Sargassum angustifolium by EAE, using alcalase and 
cellulase. The use of both enzymes showed no significant 
differences in the alginates yield compared to the conven-
tional HWE method, but the protein and polyphenol con-
tents in the extracted alginates were significantly reduced 
coupled with enhanced purities. Furthermore, SWE is the 
advanced extraction method of HWE with the use of pres-
surized hot water for the isolation of phycocolloids from 
macroalgae [90]. Alboofetileh et al. [91] concluded that 
SWE (150 °C, 7.5 bar) successfully increased the fucoidan 
yields from Nizamuddinia zanardinii by approximately 
fivefold compared to the conventional HWE method, where 
the fucoidan yields were 25.98% and 5.2%, respectively. 
Besides, high temperatures observed in SWE facilitated 
reducing the extraction time by 12.4-fold compared to HWE 
[91]. It can be concluded that a considerable reduction in 
extraction times and increment in extraction yields can be 
achieved with minimal impact on the quality of phycocol-
loids extracted. Thus, the innovative extraction methods are 
considered the facile greener alternative to the conventional 
extraction methods for separating cellulose from macroalgal 
phycocolloids prior to being utilized for macroalgae-based 
bioethanol and LA production.

4.2  Synthetic pathway for rare sugars 
from macroalgae biomass

Besides being fractionated into different constituents and 
refined separately to high value-added bioproducts, macroal-
gae can be processed as whole biomass. The extraction of 
rare sugars such as glucose, galactose, and mannose from 
macroalgae has been explored extensively. Various hydrol-
ysis techniques and rare sugar yields for bioethanol and 
LA production from macroalgae are described in Table 4. 
However, the extraction methods are technically similar to 
that for producing common sugars (glucose) from 1G- and 
2G-based polysaccharides [96]. The main process is disrupt-
ing the cell wall and breaking the glycosidic bonds between 
polysaccharides to release rare sugars as the crystallinity 
of cellulose has provided greater stability and rigidity to 
the macroalgae cell wall. Hence, these structures have to 
be modified either by using chemo-catalytic, biocatalytic, RT
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thermal-catalytic, or innovative hydrolysis processes [97]. 
Before being processed using the chemical or biological 
hydrolysis method, macroalgae biomass is subjected to 
physical pretreatment to reduce the cellulose crystallinity in 
the cell wall matrix [98]. The mechanical comminution tech-
nique, which consists of the chipping and milling process, 
has been widely used to pretreat and reduce the biomass size 
to 10–25 nm. This will increase the reaction surface area of 
biomass to other hydrolysis reagents and reduced the crystal-
linity of cellulose [99].

4.2.1  Chemo‑catalytic hydrolysis approach

Recently, several studies have been conducted to develop 
chemo-catalytic hydrolysis approaches for the selective pro-
duction of rare sugars from macroalgae. This process is prin-
cipally based on the solvolysis in water to release rare sugars 
from their polymeric chains by using acid reagents as the 
catalyst, namely acid hydrolysis [120]. For acid hydrolysis, 
protic acid such as HCl and sulfuric acid  (H2SO4) is mostly 
utilized because these catalysts are more effective in break-
ing the glycosidic bonding between polysaccharides with the 
intake of water molecules through nucleophilic substitution 
reaction [121]. Similar to other biomass, the hydrolytic effi-
ciency of macroalgae through acidolysis is mainly dependent 
on the acid type used, the acid concentration used, biomass 
loading, hydrolysis duration, as well as reaction temperature 
(Table 4). El Harchi et al. [103] performed acidolysis of Ulva 
rigida under the condition of 121 °C for 1 h with a 1:10 of 
solid-to-liquid (S/L) ratio and enhanced the total rare sugar 
(rhamnose and glucose) yield in hydrolysate up to 60.20% 
when substituting the acid type from HCl to  H2SO4 at the 
same concentration. Mild acid like dilute  H2SO4 is prefer-
able over HCl for acidolysis due to  H2SO4 contains extra  H+ 
ions, creating a more acidic environment that offers strength 
to hydrolyze and disrupt the acid-sensitive 1,3-glycosidic 
bonds, resulting in the generation of monosaccharides from 
polysaccharides with higher hydrolytic efficiency [115]. 
Hence, the  H2SO4 concentration is a considerable parameter 
that requires to be optimized to enhance the rare sugar yield. 
Hessami et al. [105] conducted the acidolysis of Gelidium 
elegans using various concentrations of  H2SO4 and verified 
that the total rare sugar (galactose and glucose) yield could 
be significantly enhanced from 5 to 39.42% by increasing 
the  H2SO4 concentration from 0.5 to 2.5% (w/v). Similar 
research reported that the higher efficiency of acidolysis 
(70.95%) can be achieved from Gracilaria manilaensis by 
2.5% diluted  H2SO4 than that by 0.5% with a total rare sugar 
yield of 42.34% [104].

Notably, unfavorable acid hydrolysis conditions could 
lead to the formation of undesirable by-products such as 
acetic acid, formic acid, 5-hydroxymethylfurfural (HMF), 
and levulinic acid [121]. The by-products can prevent the 

fermentation of rare sugars by damaging the DNA and 
hindering RNA and protein synthesis of fermentative 
microorganisms [122]. These inhibitors are formed 
from the carbonization or degradation of rare sugars 
caused by the high reaction temperature, long retention 
times, and high acid concentration [123]. Ra et al. [102] 
demonstrated that 34.85 g/L of rare sugar can be released 
during acidolysis of K. alvarezii using an extremely high 
temperature of 140 °C with 360 mM  H2SO4 for 10 min, 
which resulting in a hydrolytic yield of 60.50%. However, 
Ra et al. [102] reported that increasing the temperature up 
to 200 °C would give rise to the loss of rare sugars from 
K. alvarezii to 7.20 g/L due to conversion of glucose and 
galactose to undesirable by-products. In addition, a long 
hydrolysis duration will increase the interaction between 
the acid and rare sugars, bringing about a low hydrolytic 
efficiency and total rare sugar concentration [101, 102, 
105]. The degradation of rare sugars is the side reaction 
of acid hydrolysis, which is unable to suppress or avoid 
completely. Consequently, a neutralization or detoxification 
process is necessary to be carried out to minimize the 
detrimental impacts of by-products on the fermentation 
performance of the microorganisms [124]. Ra et al. [125] 
found that 6 g/L of 5-HMF was removed completely from 
acid-modified Gelidium amansii hydrolysates by using 
3% (w/v) activated carbon in a shaking water bath at 
100 rpm and 50 °C for 5 min, but activated carbon also 
removed approximately 5 g/L of total rare sugars present 
in the hydrolysate. Similar research reported that the 
higher HMF removal efficiency (41.6%) can be achieved 
from acid-modified Eucheuma spinosum hydrolysates by 
filtering through 2.5% (w/v) activated carbon powder in 
shaking water bath at 100 rpm and 50 °C for 2 min [126]. 
Alternatively, a bacterial strain, called Burkholderia 
cepacia H-2, has been found capable of degrading 
furfural and 5-HMF in acid-modified Chaetomorpha linum 
hydrolysates to furfuryl alcohol and 2,5-furan-dicarboxylic 
acid, respectively [127]. These organic acids were found 
to have no detrimental effect on rare sugars fermentation 
when accumulated in the fermentation medium [128].

Acid hydrolysis is preferred for rare sugar extraction in 
terms of high hydrolytic efficiency and mass transfer rate. 
Nevertheless, the sustainable use of liquid acid catalysts is 
constrained by the difficulty of catalyst recovery [129]. As 
an alternative for conventional liquid acid catalyst, solid 
acid catalyst (SAC) is preferred for dilute acid hydrolysis 
as it can be easily separated from reaction medium for 
recycling use, non-corrosive, and environmentally benign 
[130]. To ensure high hydrolytic efficiency, the SAC should 
have a high number of Brønsted acid sites, a high surface 
area, and good thermal stability [131]. Amberlyst™-15 and 
Dowex™ Dr-G8 resins were the most popular SAC in the 
organic synthesis process, mainly due to high thermal (up 
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to 280 °C) and chemical stability [120]. Amberlyst™-15 
resin is a strongly acidic catalyst that can selectively 
convert cellulose and other phycocolloids to rare sugars. 
About 51.90% of total rare sugar yield corresponding to 
61 g/L of rare sugars was attained from milled G. verrucosa 
under acid hydrolysis reaction of 140 °C for 2.5 h with 
15% (w/v) Amberlyst™-15 [100]. Besides possessing a 
microporous pore structure that allows the access of liquid 
or gaseous reactants to the H + ion sites, Dowex™ Dr-G8 
resin also bearing with sulfonic acid sites could offer 
strength for simultaneous production of rare sugars from 
biomass and removal of by-products in the hydrolysates 
[132]. The use of Dowex™ Dr-G8 as SAC has been applied 
successfully to extract galactose from 16% (w/v) Eucheuma 
cottonii under the condition of 120  °C with 6% (w/v) 
catalyst loading for 1 h [19]. Dowex™ Dr-G8 achieved 
a higher galactose yield, which is approximately 43.20%, 
and no 5-HMF content in hydrolysate compared to the 
conventional dilute sulfuric acidolysis (120 °C, 2.5 h) that 
only achieved 34.60% of galactose yield with a reduction 
of reaction time [19].

4.2.2  Biocatalytic hydrolysis approach

Besides acid hydrolysis, the biocatalytic approach is an 
alternative method to hydrolyze macroalgae biomass. This 
process involves the utilization of enzymes or the direct 
addition of biological microorganisms (fungi or bacteria) 
to facilitate the cleavage of glycosidic bonds between the 
complex macroalgal polysaccharides into rare monomeric 
sugars generally known as enzymatic hydrolysis [133]. In 
addition, enzymatic hydrolysis is considered an effective 
disruption method due to its relatively low temperatures 
and the formation of minimum inhibitory compounds 
as compared to the chemo-catalytic hydrolysis method 
[2]. Similar to terrestrial plants, cellulose is the major 
component in the macroalgae biomass, but the macroalgae 
cell wall is composed of cellulose Iα which is different 
from cellulose Iβ in the plant cell wall. Cellulose Iα is the 
triclinic crystalline form of cellulose consisting of weaker 
hydrogen bonds with one cellobiose residue per unit cell, 
resulting in easy access to cellulolytic enzymes during 
enzyme hydrolysis [33]. The commonest enzyme utilized 
in the saccharification of macroalgae is cellulase [117, 
134]. Cellulase is a mixture of different enzymes which 
consists of endocellulase, exocellulase, and β-glucosidase 
that function synergistically to convert cellulose into 
β-glucose without being consumed in the reaction [2]. 
Endocellulase is also known as endoglucanase, which 
is used to disrupt the cellulose chains and reduce the 
crystallinity of cellulose to improve hydrolysis efficiency. 
Exocellulase or cellobiohydrolase is used to break down 
the straight microfibrils cellulose ends for releasing the 

cellobiose molecules. Meanwhile, β-glucosidase or 
cellobiase is used to hydrolyze the glycosidic linkage of 
each soluble cellobiose molecule to release two molecules 
of β-glucose as final products [135].

The mechanism of cellulolytic enzymes on celluloses 
consists of three main stages: (1) adsorption of cellulase 
on the surface of the cellulose, (2) conversion of cellulose 
to β-glucose by hydrolysis, and (3) desorption of cellulase 
[33]. Cellulases are naturally secreted either by cellulolytic 
bacterial species of Cellulomonas, Clostridium, Bacillus, 
Erwinia, and Streptomyces or by fungal species of Asper-
gillus, Fusarium, Humicola, Trichoderma, and Penicillium 
[136, 137]. The use of cellulase derived from Aspergillus 
niger was explored by Jmel et al. [107] to enhance the glu-
cose extraction from Enteromorpha sp. They revealed that 
enzymatic hydrolysis using cellulase from A. niger alone 
was sufficient to complete the saccharification of Enteromor-
pha sp. with glucose yields of 70.48%, primarily due to the 
only glucan was present in the macroalgae [107]. Moreover, 
Xue et al. [138] reported that the cellulase isolated from 
A. niger is composed of acidic and thermostable endoglu-
canase, which shows higher catalytic efficiency on cellu-
lose hydrolysis compared to alkali-tolerant endoglucanase. 
This is mainly due to the acidic endoglucanase was able to 
enhance the cleavage of acid-sensitive 1,3-glycosidic bonds 
between the cellulosic polysaccharides and offers strength to 
hydrolyze polysaccharides across a wide range of pH condi-
tions (pH 3–6) [139].

Unlike 1G and 2G feedstocks, polysaccharides of mac-
roalgae are different in terms of macroalgae and sugar mono-
mers species; a multiple-enzyme complex or also known 
as enzyme cocktail is thus needed to enhance the extrac-
tion of the rare sugars [140]. The use of enzyme cocktail 
(CellicCtec2 and alginate lyase) has been applied success-
fully for the complete hydrolysis of Saccharina latissimi 
[106]. The optimal total rare sugar (glucose and mannitol) 
yield of 48.65%, which corresponds to 74 g/L of sugars, 
was attained after inoculation with CellicCtec2 (37 °C, 3 h) 
and alginate lyase (50 °C, 17 h) to hydrolyze the cellulose 
and alginate, respectively. This study also revealed that 
the character of the enzyme was dependent on its species 
and could only perform well under their optimum condi-
tions [106]. Besides using an enzyme cocktail for complete 
hydrolysis of various polysaccharides in the same biomass, 
an enzyme cocktail could be utilized for optimizing the 
extraction yield of the specific polysaccharide in the bio-
mass. Rodrigues et al. [108] conducted the hydrolysis of K. 
alvarezii using cellulase alone and verified that the yield of 
rare sugars could be significantly enhanced from 31 to 37% 
by applying β-glucosidase as a supplement enzyme under 
the same hydrolysis duration and enzyme loading. This is 
mainly due to the addition of β-glucosidase could facilitate 
the cleavage of the glycosidic bonds between the cellobiose 
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molecules and resolve the product inhibition setback caused 
by the single-enzyme process [141]. Although high rare 
sugar yield can be obtained, this process is constrained by 
the hydrolysis duration, which requires long residences times 
ranging between 1 and 4 days [106, 107]. Hence, the use of 
enzymatic hydrolysis usually implies with chemo-catalytic 
and thermo-catalytic hydrolysis approach to enhance the rare 
sugar productivity [133].

4.2.3  Thermo‑catalytic hydrolysis approach

The thermo-catalytic hydrolysis approach, commonly 
known as hydrothermal hydrolysis, is principally based on 
the nucleophilic substitution in water or steam to release 
rare sugars from complex macroalgae polysaccharides 
at elevated levels of temperature and pressure in a closed 
system by changing their physiochemical properties [142]. 
Hydrothermal hydrolysis has been considered an environ-
mentally friendly and cost-effective hydrolysis approach 
as this process possess several benefits on the macroalgal 
biorefinery route, including (1) the process does not require 
the addition of chemicals or catalysts as water is the only 
reagent, (2) limited corrosion problems on equipment, and 
(3) economical and simple operation [143]. Subcritical 
water (autohydrolysis) and steam explosion techniques can 
be considered hydrothermal hydrolysis, depending on the 
conditions of temperature and pressure employed [144]. In 
autohydrolysis processing, macroalgal biomass is exposed to 
water in the liquid state at high temperatures (150–380 °C) 
and pressure (5–28 MPa) to hydrolyze polysaccharides into 
a variety of rare monomeric sugars [145]. Autohydrolysis for 
rare sugar extraction was conducted by del Río et al. [109] 
with S. muticum in a pressurized batch reactor evaluating 
the effect of temperature and resistance time. A maximum 
rare sugar yield of 34.89% was achieved with a 1:7 S/L ratio 
at 180 °C and a residence time of 25 min. They revealed 
that temperature was the key factor for maximum rare sugar 
yield, followed by residence time [109]. Similar results were 
also found in the study of Gomes-Dias et al. [110] that the 
higher total rare sugar yield of 38.34% could be released 
from red macroalgae G. sesquipedale via autohydrolysis at 
the reaction temperature of 170 °C than that at 127.60 °C 
and 212.40 °C for 40 min. Moreover, Gomes-Dias et al. 
[110] concluded that increasing the reaction temperature up 
to 212.40 °C would give rise to the formation of 5-HMF 
from 1.04 to 3.23% in the G. sesquipedale hydrolysates. 
Wang et al. [146] reported that water at high temperatures 
will weaken the hydrogen bonds in the water molecules, 
resulting in the autoionization of water molecules into acidic 
hydronium ions  (H3O+), which act as a catalyst to cleave the 
glycosidic bonds of macroalgal polysaccharides.

In contrast, the steam explosion hydrolysis technique has 
been widely employed as a lignocellulosic saccharification 

process. Nevertheless, it is still not highly explored as a 
thermal-catalytic hydrolysis approach for macroalgae as 
the macroalgae biomass is less recalcitrant due to the lack 
of lignin content [147]. The steam explosion technique uti-
lizes high pressures of steam (1–50 bar) to treat the bio-
mass followed by sudden depressurized so that the biomass 
will undergo explosive decompression. This quick pressure 
reduction comprises an initial temperature of 160 to 270 °C 
for a few seconds or minutes in saturated steam before expo-
sure to atmospheric pressure [148]. Diffusion of the satu-
rated steam into the macroalgal cell wall matrix leads to the 
dispersion of fibers and cleavage of the glycosidic bonds 
[149]. Compared to LCBs, the operating temperature and 
pressure for steam exploding of macroalgal biomass will be 
lower due to macroalgae possess high moisture content that 
facilitates a quick rise of pressure and temperature within the 
cells, allowing cell wall rupturing [144]. This aspect makes 
the steam explosion hydrolysis approach a simpler extrac-
tion method for macroalgal biomass. Rare sugar extraction 
from Ulva intestinalis by steam explosion obtaining yields 
of 51.70% under 121 °C and 1.75 bar for 15 min with no 
comparable values for control samples was reported [111].

4.2.4  Advanced hydrolysis approach

Despite the widespread usage of conventional hydrolysis 
protocols at the industrial level, there is a growing interest 
in incorporating innovative hydrolysis protocols to enhance 
rare sugar extraction. The aim of developing innovative 
hydrolysis processes is to improve the hydrolytic efficiency 
of the conventional hydrolysis protocols by increasing the 
sugar recovery from the biomass while decreasing the 
energy consumption and hydrolysis duration of macroal-
gal processing [78]. The most potential emerging hydroly-
sis protocols described in the literature involve the use of 
microwave irradiation, combined acids and enzymes, and 
combined hydrothermal process and enzymes [113, 114, 
150]. The use of microwave irradiation is regarded to be 
a promising pretreatment process for macroalgae biomass 
as it utilized microwave-generated thermal and non-thermal 
effects in moisture and aqueous environment [151]. The 
thermal effect generated by microwave refers to the part of 
the process that generates heat for internal heating, which 
is dependent on the direct energy absorption by polar mol-
ecules or organic polymers [152]. On the other hand, the 
non-thermal effect refers to the effect caused by the dipole 
rotation of polar molecules and ionic conduction of dis-
solved ions [79]. The dipole rotation can be described as the 
realignment of polar molecules with the poles of the rapidly 
oscillating electromagnetic field of the microwave, result-
ing in the cleavage of the hydrogen bonds and glycosidic 
bonds between transmembrane domains of the cell [153]. 
Based on the abovementioned heating process, microwave 
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heating offers several advantages over the conventional heat-
ing methods (autoclaving or water-bathing): (1) enhance the 
heat transfer between the biomass and solvent by applying 
volumetric and rapid internal heating; (2) the reaction tem-
perature can be well controlled and stopped immediately; 
and (3) provide shorter reaction duration and can heat the 
biomass evenly in the whole reaction process, which ena-
bled this method to be often utilized in combination with 
acids, enzymes, and thermal-catalytic hydrolysis approach 
to increase hydrolytic efficiency [150].

Acid hydrolysis was performed by Teh et al. [115] in an 
improved microwave oven (800 W) to evaluate the influence 
of temperature and acid concentration on the sugar recov-
ery and by-product formation from Eucheuma denticulatum. 
The authors concluded that the red macroalgae E. denticu-
latum had been hydrolyzed effectively to achieve the sugar 
recovery rate of 74.84%, which corresponds to 51.47 g/L of 
sugars accompanied by a low by-product 5-HMF of 0.20 g/L 
with the involvement of microwave-assisted sulfuric acid 
(0.1 M) hydrolysis for 10 min [115]. Cao et al. [118] fur-
ther applied higher microwave power (1900 W) to assist 
the acidolysis of red macroalgae Gracilaria lemaneiformis 
under the optimized condition of 180 °C with aided of 0.2 M 
 H2SO4, and the maximum yield of rare sugars reached up to 
73.30% using only 20 min of reaction time which is sixfold 
lesser than the conventional heating method. Boulho et al. 
[154] concluded that the superficial heat transfer environ-
ment offered by microwave heating to the biomass not only 
improved the sugar recovery rate from the biomass but also 
limited the formation of 5-HMF. Unlike microwave heat-
ing, conventional heating uses conduction and convection 
heat transfer, in which the heat energies are transferred from 
the surface to the center of biomass by conduction [155]. 
Thereby, the heating time of this process is longer than 
microwave heating for the solvent and biomass to achieve 
the targeted temperature [156]. As a result, it will lead to a 
reduction of the rare sugars and an increment of the 5-HMF 
due to the degradation of monosaccharides during the heat-
ing process [157].

The use of autohydrolysis involving microwave heating 
was studied by Tsubaki et al. [113] to enhance the extraction 
of rare sugars from Monostroma latissimum. They revealed 
that the microwave heating could increase the solubiliza-
tion rate of M. latissimum probably due to the microwaves 
generate homogenous and uniform heating on the biomass, 
which allows penetration of subcritical water into the matrix 
polysaccharides to release the rare sugars, and the maximum 
total rare sugar yield of 53.10% was achieved under 140 °C 
for 10 min [113]. Furthermore, enzymatic hydrolysis could 
be enhanced by microwave irradiation, Charoensiddhi et al. 
[112] evaluated the production of rare sugars from brown 
macroalgae Ecklonia radiata by microwave-assisted enzy-
matic hydrolysis with carbohydrate hydrolytic enzymes: 

Viscozyme, Cellulast, Ultraflo, Alcalase, Neutrase, and 
Flavourzyme. The authors investigated different enzyme 
cocktail configurations in the same volume (100 µL) with 
microwave operating at 200 W. Enzyme cocktail of Ultra-
flo and Flavourzyme showed the highest extraction yield 
(69.50%) under working conditions of 50 °C. In addition, 
it was observed a synergic effect between microwave and 
enzyme cocktail, in which it shortens the time of hydrolyz-
ing by eightfold and doubles the extraction yield when com-
pared to conventional enzymatic hydrolysis [112]. A similar 
conclusion was found in a study by Lee et al. [114] that 
the rare sugar extraction yield from red macroalgae Pyropia 
yezoensis was improved from 5 to 25% with the involve-
ment of microwave-assisted amyloglucosidase hydrolysis. 
This can be clarified by changing direction for the active 
sites on the enzyme due to the rotation and acceleration of 
the polysaccharide molecules done by microwave irradia-
tion. Thus, the opportunity for the substrate bounded with 
the active sites on the enzyme per unit time to release rare 
sugar will increase, leading to the high productivity of rare 
sugars [158].

Besides using microwave irradiation as the heating 
source for the hydrolysis process, the hydrolytic 
efficiency and duration can be enhanced by employing 
an efficient pretreatment method. The establishment of 
the pretreatment method is to facilitate the hydrolytic 
efficiency to increase the sugar recovery rate and 
subsequently increase the productivity of bioethanol 
and LA [159]. Ravanal et al. [116] conducted additional 
enzymatic hydrolysis with enzyme cocktail (alginate 
lyase, oligoalginate lyase, and CellicCTec 2) for 17 h on 
the dilute  H2SO4 pretreated green macroalgae Macrocystis 
pyrifera to increase rare sugars release content yield to 
95.10%. Similar results were also achieved in the study of 
Park et al. [117] that the hydrolysis of red macroalgae G. 
verrucosa via the diluted sulfamic acid  (H2NSO3H) and 
an enzyme cocktail composing of Viscozyme® L, Cellic® 
CTec2, and Cellic® HTec2 for 72 h led to a significantly 
increased production yield of rare sugars from 39.90 to 
69.10%. Other than applied acidolysis as a pretreatment 
step prior to enzymatic hydrolysis, Poespowati et al. [48] 
added cellulase into the autohydrolyzed green macroalgae 
Ulva lactuca to achieve a maximal rare sugar yield of 
79.70%. Del Río et al. [109] utilized ultrapure water and a 
mixed enzymatic system composing of Cellic® CTec2 and 
Viscozyme 1.5L to treat the brown macroalgae S. muticum, 
which resulted in the increment of total rare sugar yield 
from 34.89 to 94.40% by comparing with autohydrolysis 
only. The inorganic acids and subcritical water serve as a 
proton donor to break the intra- and inter-chain hydrogen 
bonds of the macroalgal cell wall matrix to release the 
hydrocolloids results in an increase of accessibility to 
enzymes for further degradation [160].
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5  Biotechnological route for bioethanol 
and lactic acid

Fermentation of bioethanol and LA is followed after the 
pretreatment and hydrolysis of the macroalgae biomass. 
The overall process of fermentation can be described as the 
rare sugars that are produced as a result of disruption of the 
cell wall and depolymerization of phycocolloids and cel-
lulose molecules before being subjected to fermentation by 
the relevant microorganisms or bacteria and converted into 
bioethanol and LA [31, 161].

5.1  Recommendations of microorganisms’ strain 
for 3G bioethanol and lactic acid conversion

To optimize the productivity of bioethanol and LA from 
macroalgal biomass through microbial fermentation, the 
strain of fermentative microorganisms implemented is con-
sidered as a crucial parameter for the fermentation process. 
This is due to different microbial strains possess different 
properties and metabolic pathways on the fermentable sugars 
extracted from the biomass. Furthermore, the derivatives of 
bioproduct generated by microbial fermentation are mainly 
dependent on the selected microbial strain [162, 163]. Thus, 
the selection of appropriate strains of microbial is crucial 
after deciding the target bioproduct for production. Several 
reports on the utilization of different fermentative micro-
bial strains for the single production of bioethanol or LA 
are summarized in Table 5. Although there have been many 
bacterium and yeast strains utilized for the production of 

bioethanol from renewable resources, the results shown in 
Table 4 revealed that S. cerevisiae yeast is the dominant 
microbial that has been considered the most critical part 
was contributing to beneficial effects in bioethanol fermen-
tation using reducing sugars as substrate. The eukaryotic 
microorganism S. cerevisiae is chosen over the other bac-
terium and yeast strains for bioethanol fermentation due to 
its offer strength to growth under a wide range of pH, less 
stringent nutritional requirements, and utmost resistance to 
contamination [163, 164]. Moreover, S. cerevisiae is also 
able to metabolize diverse fermentable sugars and possess 
the ability to produce a high titer of bioethanol as it can 
resist the contamination caused by high ethanol concentra-
tions produced in the fermentation broth [164].

The large-scale production of LA is mostly done by 
employing the use of LAB as the bacteria for fermentation 
and the selected bacterium strain can be shown in Table 5. 
Among thousand types of identified LAB strains, B. 
coagulans has become one of the most popular bacteria 
employed in either laboratory- or industrial-scale LA 
production due to its characteristics and mild operating 
conditions. A typical superiority of B. coagulans strain 
for LA fermentation is offered better acid tolerance 
compared to other LAB strains, resistance to heat up to 
50 °C, and less stringent nutritional requirements [21, 
165]. Moreover, B. coagulans strain could improve the 
biorefinery performance and increase fermentable sugar 
digestibility as it is capable to metabolize both C6 and 
C5 sugars by secreting several types of thermostable 
enzymes, including glucokinase, α-galactosidase, 

Table 5  Summary of fermentative microbial strain utilized in the single production of bioethanol or LA

Fermentative bacterium Biomass Fermentable sugar Product Reference

Saccharomyces cerevisiae Baker’s yeast Chaetomorpha linum Glucose Bioethanol [174]
Ambrosiozyma angophorae Laminaria digitata Glucose Laminarin Bioethanol [175]
Ethanologenic Escherichia coli Arundo donax Arabinose Glucose Xylose Bioethanol [176]
Saccharomyces cerevisiae KCTC 1126 Gracilaria verrucosa Galactose Glucose Bioethanol [177]
Candida glabrata Gracilaria fisheri Galactose Glucose Bioethanol [178]
Escherichia coli SL100 Olive tree pruning biomass Galactose Glucose Xylose Bioethanol [179]
Saccharomyces cerevisiae YRH400 Populus deltoides Glucose Xylose Bioethanol [180]
Saccharomyces cerevisiae Ethanol Red® Sargassum muticum Galactose Glucose Mannose Bioethanol [109]
Saccharomyces cerevisiae PE-2 Sargassum spp. Glucose Bioethanol [181]
Bacillus coagulans NBRC 12,714 Corn stover Glucose Xylose L-lactic acid [182]
Lactobacillus plantarum Gracilaria vermiculophylla Galactose Glucose L-lactic acid [183]
Bacillus coagulans DSM No. 2314 Beechwood Glucose Xylose L-lactic acid [184]
Bacillus coagulans LA-15–2 Rice straw Glucose Xylose L-lactic acid [185]
Bacillus coagulans DSM ID 14–300 Sugarcane bagasse hemicellulosic material Arabinose Glucose Xylose L-lactic acid [186]
Lactobacillus delbrueckii CECT 286 Orange peel waste Fructose Galactose Glucose D-lactic acid [187]
Bacillus coagulans ATCC 7050 Eucheuma denticulatum cellulosic residue Glucose L-lactic acid [62]
Lactobacillus rhamnosus ATCC 7469 Brewer’s spent grain Arabinose Galactose Glu-

cose Mannose Xylose
L-lactic acid [188]

Pediococcus acdilactici ZP26 Picea abies Glucose Mannose D-lactic acid [189]
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and xylanase [166]. As a matter of fact, B. coagulans 
strains will metabolize C6 and C5 sugars through the 
homofermentative pathway and pentoses phosphate 
pathway, respectively, to produce LA as the major end 
metabolic product of carbohydrate fermentation [167].

By using the microbial fermentation route for LA 
production, the main concern of this production route is 
the enantiomer of LA produced is mainly dependent on the 
lactate dehydrogenase (LDH) specificity of the fermentative 
strain employed [168]. In this case, B. coagulans strain is 
considered an excellent producer of L-lactic acid (L-LA) 
as it contains L-lactate dehydrogenase (L-LDH) enzyme, 
which promotes the formation of L-LA [169]. As reported 
in the literature, high crystalline PLA can be prepared 
either from an optically pure L-LA isomer or D-lactic 
acid (D-LA) isomer via ring-opening polymerization 
[170, 171]. However, L-LA isomer was chosen over D-LA 
isomer as the monomer of PLA due to poly-L-lactic acid 
(PLLA) possess higher melting temperature (170–200 
◦
C ) and tensile strength (15.5–150 MPa) as compared to 

poly-D-lactic acid (PDLA) [172]. Furthermore, PLLA 
is the material of choice for biomedical applications as 
D-LA is considered a harmful enantiomer of LA on human 
health which can cause neurotoxicity on the human body 
[173]. Thus, given the multiple traits described above, 
B. coagulans strain is a promising candidate for the 
production of LA at the industrial level to meet the high 
demands of PLA as bioplastics.

5.2  Synthetic pathway for 3G bioethanol and lactic 
acid

Bioethanol and LA fermentation can be classified into two 
methods, which include solid-state fermentation and sub-
merged fermentation. The solid-state fermentation method 
is the bioconversion of the carbohydrates from macroalgal 
biomass in its natural state in which the biomass is intro-
duced to the surface of a thin layer of water [190]. Moreover, 
water is also known as an essential solvent for the submerged 
fermentation method, where it is used for creating fermen-
tation mash, which is mixed with the hydrolyzed biomass 
[191]. The solid-state fermentation method is preferred 
over submerged fermentation methods as the solid-state fer-
mentation method is more energy-efficient due to smaller 
fermenter volume and requires no excess water in the fer-
menter, leading to less amount of water needed to be heated 
[192]. Currently, there are numerous solid-state fermenta-
tion approaches employed to convert rare sugars extracted 
from macroalgae into bioproducts (bioethanol and LA). The 
processes are denoted as follows: (1) separate hydrolysis 
and fermentation (SHF); (2) simultaneous saccharification 
and fermentation (SSF); and (3) high cell density culture 
(HCDC) [193–195].

5.2.1  Separate hydrolysis and fermentation (SHF)

SHF process is one of the most common combinations 
of hydrolysis and fermentation methods employed for the 
bioethanol and LA production process [196]. In the SHF 
process, the hydrolysis and the fermentation processes are 
operated separately, in which the carbohydrates of macroal-
gae biomass are first decomposed into monosaccharides via 
the hydrolysis process, and the fermentation of rare sugars 
are carried out later in separate units with different operat-
ing conditions [197]. The production of bioethanol and LA 
by using the SHF method on various types of macroalgae 
are summarized in Table 6. These studies revealed that the 
production of bioethanol and LA from macroalgae biomass 
using the SHF method was operated under batch mode. 
Batch mode is chosen over the continuous and fed-batch 
modes for the bioproducts fermentation process due to it 
offers the highest conversion rate as complete biomass can 
be utilized [198]. Hessami et al. [104] demonstrated that 
18.16 g/L (67.90%) of bioethanol can be achieved during the 
fermentation of acid-modified G. manilaensis hydrolysates 
using 5% (v/v) S. cerevisiae Ethanol Red® directly under 
batch mode at 30 °C for 96 h. Under the same yeast cell 
volume, the fermentation process for the acid-modified G. 
elegans hydrolysates was optimized to achieve a bioethanol 
yield of 63.30%, corresponding to 13.27 g/L of bioethanol 
[105]. Saravanan et al. [22] also utilized S. cerevisiae yeast 
cell for fermentation of other red macroalgae Gracilaria sp. 
hydrolysates, and the maximal bioethanol yield obtained 
after 96 h fermentation at 30 °C was 28.70 g/L, which cor-
responded to a 50.98% of the theoretical yield.

Notably, the bioethanol fermentation from macroalgae 
hydrolysates is limited by the inability of common ethanolo-
genic yeast strains such as S. cerevisiae to metabolize a wide 
range of rare sugars extracted from macroalgae hydrolysis. 
This is mainly due to glucose extracted from the cellulose 
of macroalgae that will cause catabolic repression in the 
uptake of other rare sugars such as galactose, mannose, and 
rhamnose from carrageenan, fucoidan, and ulvan, respec-
tively, which led to these sugars that were not fermented 
by the ethanologenic yeast and resulting in poor bioethanol 
productivity from macroalgae biomass [199]. In this regard, 
evolutionary and genetic engineering approaches for wild-
type strains with the capability of fermenting a wide range 
of rare sugars have been developed to increase the rare 
sugars consumption [178]. El Harchi et al. [103] revealed 
that both rare sugars (glucose and rhamnose) in the acid-
modified U. rigida hydrolysates can be fermented simulta-
neously to achieve a bioethanol yield of 11.92 g/L, which 
corresponded to 0.37 g/g rare sugars by using Pachysolen 
tannophilus. Similarly, the Candida glabrata strain isolated 
from the surface of Gracilaria fisheri has been developed 
with bioconversion yield up to 0.03 g/g rare sugars from 
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acid-modified G. fisheri hydrolysates containing galactose 
and glucose for bioethanol production [178]. Apart from 
being applied successfully for bioethanol production, SHF 
is also being employed for LA production from macroalgal 
biomass. Wu et al. [200] conducted the fermentation of U. 
lactuca (green macroalgae) hydrolysates at 37 °C for 24 h by 
using LAB cells of Lactobacillus plantarum BCRC 10,069 
and enhanced the LA titer in the fermentation broth up to 
7.02 g/L, corresponding to 0.58 g/g rare sugars. In addition, 
Lin et al. [195] used combined LAB cells of L. acidophilus 
BCRC 10,695 and L. plantarum BCRC 12,327 for LA fer-
mentation from red macroalgae Gracilaria sp. hydrolysates. 
The LA yield obtained after 72 h fermentation at 30 °C from 
29.85 g/L of rare sugars was 64.72% or corresponding to a 
conversion yield of 0.19 g/g rare sugars [195].

As per current industrial applications, macroalgae bio-
mass is widely utilized as a feedstock of value-added prod-
ucts (natural minerals, thickeners, and pigments) [201]. 
Additionally, the industrial fractionation of macroalgae for 
value-added products generates organic waste that mainly 
consists of cellulose and some amount of phycocolloids. 
These organic wastes could be a potential feedstock for 
bioethanol and LA production and considered as a green 
pathway for the macroalgae biorefinery [202]. Jeon et al. 
[203] explored the usage of mixed brown macroalgae 
extracted alginate and was fermented using calcium oxide 
(CaO). An optimum LA conversion yield of 12.66% was 
attained after 1 h of fermentation at 200 °C [203]. Besides, 
a study on bioconversion of cellulose from cellulosic resi-
dues of Gracilaria corticata indicated that acid hydrolysis 
followed by fermentation using S. cerevisiae Baker’s yeast 
under optimum conditions (34 °C, 120 h) can produce up 
to 0.02 g/g rare sugars of bioethanol [61]. Jambo et al. [6] 
reported that bioethanol production from enzymatic hydro-
lyzed E.cottonii residues resulted in 0.40 g of bioethanol 
from 1 g of rare sugars extracted, which corresponds to 
9.77 g/L bioethanol. Alfonsín et al. [204] further adopted 
another acid hydrolyzed cellulosic residue of Eucheuma 
spinosum (red macroalgae) to ferment with S. cerevisiae 
Baker’s yeast, and the optimal conditions were set to 30 °C 
and 24 h to attain 11.60 g/g substrate of bioethanol. Thus, 
the industrial waste of macroalgae biomass can be utilized 
as an eco-friendly and cost-effective resource for bioethanol 
and LA production to encounter future energy and biopoly-
mer requirements.

5.2.2  Simultaneous saccharification and fermentation 
(SSF)

SSF is also known as one of the configurations that are 
widely employed for biomass biorefinery processes to 
achieve value-added bioproducts. In the SSF method, the 
hydrolysis and fermentation processes are operated within 

the same unit, where the rare sugars released via sacchari-
fication of carbohydrates molecules by the enzymes can be 
metabolized directly by the yeasts or microorganisms into 
bioethanol and LA [176]. This combination posed several 
advantages over the SHF method, such as high production 
yield, reduced risk of contamination, reduced enzyme load-
ing for depolymerization, and required less energy consump-
tion. Thereby, SSF method is usually preferred over the SHF 
method [205]. The rapid metabolism of reducing sugars to 
bioethanol and LA can neutralize the inhibition effect of 
hydrolytic products on the cellulase activities and reduce the 
usage of enzymes for the depolymerization process of the 
carbohydrates [206]. Table 7 shows the comparative studies 
of different yeast and microorganism strains, fermentation 
conditions, and bioproducts (bioethanol and LA) yield using 
the SSF and SHF method on various types of macroalgae. 
From Table 7, the SSF method is identified to be more effi-
cient than the SHF method in terms of the resulting bioetha-
nol and LA concentration.

A comparative study on SHF and SSF for the bioethanol 
production from red macroalgae G. amansii in the batch fer-
mentation process has been reported. The yield of bioethanol 
was enhanced by 13.65% with SSF as compared to the SHF 
approach. Moreover, the biorefinery process duration was 
decreased dramatically as the entire bioconversion duration 
for using SSF was 13 h (1 h autohydrolysis, 12 h SSF), while 
for the entire SHF process, it was 31 h (1 h autohydrolysis, 
24 h enzymatic hydrolysis, 6 h fermentation) [5]. Another 
study reported the production of LA from acid pretreated 
brown macroalgae S. latissima via SHF and SSF. The frac-
tion of phycocolloids and cellulosic in the pretreated S. 
latissima was hydrolyzed by using the enzyme cocktail. 
The highest LA conversion yield of 0.13 g/g substrate and 
concentration of 13.10 g/L has been achieved via SSF with 
Rhizopus oryzae. This study concluded that LA produc-
tivity and titer can be improved with the SSF approach as 
compared to the SHF approach [23]. Hence, these results 
revealed that not only is SSF more efficient than SHF but it 
also serves as a time-effective process. In addition, Maslova 
et al. [23] investigated the production of LA through SSF 
from acid-treated red macroalgae Gracilaria tenuispititata 
using R. oryzae F-814 and enzyme cocktail (Celluclast 1.5L, 
Viscozyme L, agarase). They revealed that the highest LA 
yield (0.10 g/g substrate), productivity (0.24 g/L h), and titer 
(9.60 g/L) were successfully obtained.

Furthermore, del Río et  al. [109] demonstrated that 
14.10 g/L of bioethanol, which corresponds to 81% conver-
sion yield, can be attained during SSF of hydrothermally 
treated S. muticum (brown macroalgae) using the cocktail 
enzyme (CellicCTec2 and Viscozyme) for saccharification 
of polysaccharides in S. muticum and fermented by S. cer-
evisiae PE2 yeast, and Sharma et al. [207] also applied SSF 
successfully on another microwave-treated green macroalga 
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strain Rhizoclonium sp. to achieve maximum bioethanol 
yield of 0.19 g/g rare sugars (20.51 g/L). More recently, the 
feasibility of bioethanol production from E. cottonii residues 
by S. cerevisiae via the SSF process has been explored. The 
highest titer of bioethanol 11.70 g/L and yield of 92.70% has 
been achieved at the optimum conditions (43 °C, 130 rpm, 
pH 4.8, 3.5 h) [19]. The use of enzymatic-assisted SSF was 
also studied by Hakim et al. [208] to enhance the bioetha-
nol production from hydrothermally treated mixed red 
macroalgae processing solid waste. The highest bioethanol 
conversion yield of 1.07 g/g rare sugars was achieved using 
S. cerevisiae yeast strain and cellulase from Trichoderma 
reesei [208]. Additionally, the prehydrolysis and simulta-
neous saccharification and fermentation (PSSF) approach 
in batch fermentation has been reported for LA production 
from pretreated biomass of E. denticulatum residues with 
microwave-assisted hydrothermal hydrolysis. A maximum 
of 98.60% (14.02 g/L) LA was attained under prehydrolysis 
condition of 50 °C with 0.05 M sodium citrate buffer and 20 
FPU/g biomass cellulolytic enzyme blend for 6 h followed 
by SSF approach at 37 °C for 15 h [62].

5.2.3  High cell density culture (HCDC)

The volumetric productivities of bioethanol and LA are 
mainly relying on the chemical composition of the biomass, 
product inhibition, microbial strain, operating temperature, 
and pH value [209]. However, the more efficient way to 
improve the production efficiency of bioethanol and LA is 
to increase the biocatalyst loading. The initial amount of 
yeast or LAB is the main factor in determining the overall 
conversion efficiency and outcomes during the bioethanol 
and LA production [210]. A rapid and complete fermenta-
tion process of reducing sugars is required for maximizing 
the productivity and profitability of the process. Therefore, 
HCDC is currently employed accompanied by either SHF 
or SSF approach to enhance the productivity and conver-
sion efficiency of value-added bioproducts from macroalgal 
biomass. HCDC can offer higher volumetric productivity of 
fermentation processes by providing a shorter metaboliza-
tion rate than at low cell density culture in the same reactor 
[168]. Moreover, HCDC can be used to reduce the cost of 
cell propagation, as most of the cells are reused, recycled, 
or retained in the reactor. Thus, the unproductive lag phase 
of yeast or LAB cells during the cell growth phases can be 
eliminated since they are being reused during the fermenta-
tion process [211]. As a result, a smaller fermenter volume 
can be used for the anaerobic conversion of rare sugars to 
value-added bioproducts [212].

Jambo et al. [6] performed the fermentation of enzy-
matic hydrolyzed red macroalgae E. cottonii residues at pH 
5.2 and 32 °C for 72 h with a 2% (w/v) E. cottonii residue 
hydrolysates and improved the bioethanol concentration 

in the fermentation broth up to 9.77 g/L when increasing 
the inoculum concentration of S. cerevisiae ATCC 200,062 
from 10 to 12% (v/v). In another study, Sayed et al. [213] 
reported that the usage of 118 mg/L of S. cerevisiae CLIB 95 
was able to fully assimilate both glucose and galactose from 
synthetic Ulva sp. hydrolysates for bioethanol production 
within 144 h of fermentation time. The results showed that 
the ethanol ratio (ethanol observed over ethanol theoretically 
produced) with theoretical bioethanol yield of 68% per dry 
cell biomass could be significantly increased from 92.50 to 
97.70% by raising the inoculum concentration from 58.70 
to 118 mg/L [213]. Lin et al. [195] demonstrated that after 
fermentation by combined 6% (v/v) L. acidophilus BCRC 
10,695 and L. plantarum BCRC 12,327 at 30 °C for 72 h, the 
LA conversion yield of sequential acid and enzyme hydro-
lysates from Gracilaria sp. reached 15.02 g/L, which was 
markedly higher than the LA concentration of 14.57 g/L 
using 1% (v/v) of combined LAB. In addition, Hakim et al. 
[208] further analyzed SSF efficiency of the hydrothermally 
treated mixed red macroalgae processing solid waste using 
various inoculum concentrations of S. cerevisiae at 35 °C for 
72 h and reported that the bioethanol conversion yield was 
enhanced from 0.60 to 1.07 g/g rare sugars with an incre-
ment of 78.33% when 10% (v/v) S. cerevisiae was employed 
compared to only 5% (v/v). These findings revealed that 
HCDC could enhance the productivity of bioethanol and LA 
from macroalgae biomass, indicating a significant oppor-
tunity for large-scale macroalgae-based bioethanol and LA 
production.

6  A perspective on novel cascading 
macroalgae bioethanol and lactic acid 
biorefinery system

The co-production of multiple products in a biorefinery pro-
cess is considered a viable approach to address the dilemma 
of macroalgae bioproducts and improve the economics of 
high value-added products [214]. Process optimization, 
along with the selection of an effective macroalgae strain 
and corresponding biorefinery pathway, is necessary for the 
continuous production of grid quality bioethanol and bio-
chemicals such as LA, succinic acid, and citric acid [215]. 
This is because the strain and the composition of macroalgae 
should be fundamental and essential in defining the targeted 
products and will affect the corresponding preprocessing and 
pretreatment techniques such as extraction, cell wall disrup-
tion, and anaerobic digestion (AD) [7]. Figure 4 summarizes 
the proposed decision-making algorithm for selecting the 
most effective biorefinery pathway from a perspective of 
macroalgae strains. In order to make an effective approach 
for choosing the preferable bioproducts, each possible prod-
uct is ranked according to their equivalent selling prices 
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(ESP) per kilogram is proposed. For instance, bioethanol, 
LA, and succinic acid equivalent selling prices are usually 
ranged between US$0.47–1.59/kg, US$3.00–4.00/kg, and 
US$0.92–0.99/kg, respectively [216–218]. Therefore, each 
alternative could then be rated in terms of profitability on 
the basis of the cost of production of the bioproducts. Other 
than the direct application of whole macroalgae as fertilizer 
and animal feed, all other bioproducts, including biofuels 
such as bioethanol and biobutanol, require additional pro-
cessing and purification of the extracted fractions of mac-
roalgae during the biorefinery stage so that the bioproducts 
can be obtained [219]. The cell wall disruption stage is an 
essential and costly biorefinery stage to facilitate the release 
of all the compounds in the cell wall matrix (carbohydrates, 
proteins, lipids, and ash) for further processing, estimated 
to be US$0.93–1.54/kg dry macroalgae biomass for biofuels 
production and US$0.30–1.98/kg dry macroalgae biomass 
for high value-added products production [195, 220]. The 
cost is greatly affected by the level of purity.

Several potential circular energy systems for biorefiner-
ies have been proposed for three types of macroalgae (Rho-
dophyta, Chlorophyta, and Phaeophyta). For Rhotophyta 
macroalgae–based bioethanol production, K. alvarezii, 

Gracilaria sp., Chondrus crispus, G. sesquipedale, and Por-
phyra sp. are the most common feedstocks [4]. The bioetha-
nol production using red macroalgae as feedstock can use 
either whole algae biomass or algae solid waste. By using 
algae solid waste for bioethanol production, the macroalgae 
should be subjected to carrageenan and agar extraction to 
separate the phycocolloids and solid waste. Carrageenan can 
be used for synthetic pigment production, which is com-
mercially valued as thickener and food colorant in food 
industries and colorants for cosmetics and pharmaceutical 
applications [65]. Similar to LCBs, a feedstock preprocess-
ing technique is required for macroalgae-based bioethanol 
production to increase the reaction surface area of the bio-
mass, as discussed in Section 4. Except for bioethanol, sev-
eral other bioproducts can be produced along with bioetha-
nol, such as LA, succinic acid, fertilizer, antioxidants, and 
polyunsaturated fatty acids (PUFAs). During the extraction 
method, compounds such as proteins, lipids, ashes, and 
carbohydrates will also be liberated. Further purification 
of lipids and ashes can produce chemically and pharma-
ceutically valuable pigments for antioxidants and fertilizer, 
respectively [78]. Hexose sugars produced during hydrolysis 
of cellulose such as glucose and glycerol are mainly utilized 

Fig. 4  Decision-making algorithm for macroalgae application in a biorefinery approach from the perspective of macroalgae composition
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for bioethanol production. At the same time, the galactose 
from agar and carrageenan will be metabolized using LAB 
for LA production. As the carbohydrate content in Phaeo-
phyta macroalgae is as much as in Rhotophyta macroalgae 
[4], therefore, Phaeophyta macroalgae–based bioethanol and 
biochemical production steps are similar to red macroalgae.

Chlorophyta macroalgae contain lesser carbohydrates 
(25–50%) as compared to Rhodophyta and Phaeophyta 
macroalgae (30–60%) [4]. Thus, it is mainly utilized for 
biofertilizer, biomethane, and bioactive compounds produc-
tion [45, 221]. Green macroalgae can be utilized directly for 
biomethane and biofertilizer production without the need 
for energy-intensive and costly cell disruption techniques 
[221]. Conversely, the extraction of valuable compounds 
from green macroalgae, including carbohydrates and ulvans 
in the biorefinery phase, is an attractive alternative. Car-
bohydrates can be utilized for bioethanol and LA produc-
tion, while ulvans are rich in L-rhamnose that has several 
market applications as a synthetic spice, food additive, and 
biochemical reagent [222]. Furthermore, macroalgae-based 
bioproducts can be derived and produced directly from the 
wet macroalgae using hydrothermal treatments and AD, 
which can reduce the production cost [223]. During hydro-
thermal liquefaction, macromolecules in macroalgae such as 
lipids, proteins, and carbohydrates will break down at high 
pressure, which ranged between 5 and 20 MPa, intermedi-
ate-temperature range between 250 and 350 °C, and in the 
presence of a catalyst to partially oxygenate hydrocarbons 
as well as gaseous (biogas), aqueous (biooil), and solid by-
products. The gaseous by-product can be further processed 
to become biomethane, while the aqueous solution is rich in 
sugars that can utilize to produce bioethanol and LA via fer-
mentation. Its solid by-product can also be used to produce 
biofertilizer and biochemical for wastewater treatment [224].

6.1  Techno‑economic evaluation of integrated 3G 
bioethanol and lactic acid production

In general, the market value of bioethanol and LA is directly 
proportional to the type of feedstocks implemented for biore-
finery which embody several aspects including the cost of 
feedstock, cultivation and harvesting techniques, the origin 
of feedstock, transportation cost, equipment cost, and tech-
nologies cost [33]. To establish a sustainable and circular 
bioeconomy for a biotechnological industry, a techno-eco-
nomic assessment (TEA) must be performed to assess the 
economic performance of an industrial process for cost-
effective plant development [225]. The TEA is a crucial 
practice for assessing the biorefinery process and quality of 
production by identifying and managing prospective invest-
ment and finance processes for the future industry [226]. To 
date, TEA of bioethanol and LA production from renewable 
resources has been extensively investigated and reported 

by many researchers to evaluate economic feasibility for 
an industrial scale and design using different strategies by 
varying the biomass strain, solid biomass loading, and soft-
ware programs [14, 29]. However, studies on 3G bioethanol 
and LA production cost from macroalgae are limited in the 
literature.

Barbot et al. [227] revealed that the economic aspects of 
macroalgae biomass to bioethanol and LA could be classi-
fied into two scenarios to evaluate the design of a biorefinery 
plant: (1) harvesting the biomass, which includes recondi-
tioning and transportation to the processing site and (2) pre-
treatment, bioconversion, refinement of end-product, bio-
mass storage, and waste treatment. To improve the economic 
viability, macroalgae biomass is mainly used to extract high 
value-added bioproducts such as LA along with renewable 
energies such as biofuels in an integrated biorefinery. Prin-
cipal, macroalgae cultivation has been growing globally 
as it can grow 20–30 times faster than food crops and pro-
duce up to 30 times more fuel than an equivalent amount of 
other bioethanol resources, making a high yield for ensur-
ing year-round availability [228]. Around 31 million tons of 
macroalgae were produced globally in 2017; the principal 
macroalgae strains are Eucheuma, Gracilaria, and Gelidium 
sp. [44]. Sadhukhan et al. [144] highlighted the capability 
of macroalgae to produce up to 60% of their biomass in the 
form of transportation fuels such as bioethanol. Assuming 
the bioethanol potential of algae biomasses is similar for all 
cultivated, harvested, and processed macroalgae species, 31 
million tons of macroalgae could generate up to 18.6 million 
tons of bioethanol per year which satisfy the policy made by 
the government of the US where the bioethanol produced 
were sufficient to meet at least 5% of demand for transporta-
tion fuels [144, 229].

A comparative study with diverse feedstock was 
conducted to better analyze and discuss the differences 
between the macroalgae biorefinery and lignocellulosic 
biorefinery (Table 8). The reported minimum product selling 
price (MPSP) of lignocellulosic-based bioethanol and LA 
was US$1.70–2.13/kg [230, 231] and US$2.66–3.21/kg 
[232, 233], respectively, which is economically unfeasible 
as compared to macroalgae biorefinery. The pretreatment, 
delignification process in lignocellulosic biorefinery with 
the involvement of chemicals and equipment indicated 
higher production costs as both raw material cost and energy 
consumption increased [233]. Thereby, with the exception 
of pretreatment in macroalgae biorefinery, macroalgae is 
considered as a feasible feedstock for bioethanol and LA 
production. Chong et al. [234] developed a techno-economic 
study of red macroalgae E. cottonii as a cellulosic residue 
into bioethanol production by simulation using Aspen 
Plus V10 software. The sensitivity analysis revealed the 
design is potentially viable. The simulation showed that 
66 million liters of anhydrous bioethanol is obtained by 



Biomass Conversion and Biorefinery 

1 3

132 thousand tons of E. cottonii residue per year with the 
minimum ethanol selling price (MESP) of US$0.54/kg. 
Brigljević et al. [235] reported an industrial biorefinery 
bioethanol plant (40,000 dry metric ton brown macroalgae 
input per year) that modeled using Aspen Plus V10 software 
associated with the fast pyrolysis of S. japonica in a fixed 
bed reactor and combined with a Rankine power cycle using 
the biochar by-product to produce bioelectricity. As a result, 
23.65 million tons of bioethanol can be produced in this 
scenario with MESP of US$0.59/kg, which indicated that 
bioethanol production from brown macroalgae S. japonica is 
feasible. Another comparative analysis of techno-economic 
studied by Nazemi et  al. [236] uses brown macroalgae 
Nizimuddinia zanardini under two different scenarios: 
(1) only-fuel approach in which only bioethanol and 
bioelectricity will be produced and (2) biorefinery approach 
in which co-producing high value-added products along with 
bioethanol and bioelectricity. Results expand the system 
boundary (total capital investment, sum of inside battery 
limits investment, outside battery limits investment, working 
capital, and contingency charges) to determine a complete 
macroalgae biorefinery. In this way, the results suggest that 
the biorefinery approach was economically superior over the 
only-fuel approach with the maximum dry seaweed price of 
US$374/ton and US$-64/ton [236]. This study indicated that 
any macroalgae biomass purchasing price below or equal 
to US$374/ton will result in a profitable process, while in 
the only-fuel scenario, the plant could not be economically 
feasible even by using cost-free macroalgae biomass.

Wong et al. [237] conducted a TEA of red macroalgae 
cellulosic residue using 3G biorefinery; the study found that 
obtaining 15,883.3 kg/h of E. cottonii residue was required 
to produce 3856.8 kg/h of bioethanol, 4479.48 kg/h of fer-
tilizer, and 6488.04 kg/h of LA with a MPSP of US$0.80/
kg, US$0.24/kg, and US$2.49/kg, respectively. This TEA 
study reveals that it has commercial potential and economic 
feasibility for industrial-scale development: for instance, 
the developed 3G biorefinery attempts to convert to the 
real economy by involving on-site seed train for on-site 

cultivation of cellulase enzyme, yeast, and LAB for hydroly-
sis and fermentation to reduce the raw material cost. These 
recent researches contribute to standardizing and optimizing 
the 3G bioethanol and LA process to blend as a potential 
alternative to gasoline and petrochemical polymers. Today, 
it can be argued that current commercial macroalgae-based 
production is inefficient, unreliable, and mainly small-
scale [195]. Thus, research and development activities will 
be required for technological advancement to maximize 
the bioethanol and LA productivity from macroalgae and 
improve the harvesting techniques, which would reduce the 
cost of the algal biomass production to a more competitive 
level. Moreover, González-Gloria et al. [238] suggest that 
standardization of the equipment design model is required 
to scale up to pilot or industrial scale to validate reliable 
data and prices for the socio-economic development of cost-
effective and scalable technologies. 

6.2  Environmental impact of the integrated 3G 
bioethanol and lactic acid production

Apart from the techno-economic concerns, it is also impor-
tant to provide an analysis of the environmental impacts of 
the combined processing of 3G bioethanol and LA. The 
production of bioethanol using macroalgae biomass has 
been reported to contribute significantly to the reduction 
of GHGs, which pose problems for climatic stability due 
to its high tolerance to high carbon dioxide  (CO2) concen-
tration and can capture the  CO2 from industrial flue gases 
[4]. Seghetta et al. [239] revealed that the negative environ-
mental impact of 1G and 2G bioethanol and LA produc-
tion was higher as compared to that of 3G, such as land-use 
transition, water utilization during cultivation, and deligni-
fication process of 2G feedstocks. Unlike edible crops and 
LCBs, macroalgae are present abundantly in oceans and can 
be cultivated either off-shore or artificial, which can over-
come the limitations of 1G bioethanol and LA in terms of 
land occupational and competition with food. Moreover, the 
cultivation of macroalgae can improve the water quality in 

Table 8  Comparison of macroalgae biorefinery with lignocellulosic biorefinery on techno-economic aspect

Feedstock Software Unit price of product (US$/kg) Feedstock price 
(US$/kg)

Energy usage 
(MWh/year)

Reference

Bioethanol Lactic acid

Eucheuma cottonii cellulosic residue Aspen Plus V10 0.54 - 0.073 2.61 [234]
Saccharina japonica Aspen Plus V10 0.59 - 0.068 - [235]
Nizimuddinia zanardini Aspen Plus 0.62 - 0.100 1.28 [236]
Eucheuma cottonii cellulosic residue Aspen Plus V10 0.80 2.49 0.056 2.25 [237]
Sugarcane bagasse Aspen Plus V9 - 3.21 0.054 - [232]
Rice straw Aspen Plus 2.13 - 0.014 9.70 [230]
Sugarcane Aspen Plus - 2.66 - 50.75 [233]
Corn stover Aspen Plus V7.4 1.70 - 0.047 2.26 [231]
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their habitat. By incorporating macroalgae together with fish 
farms, macroalgae can oxygenate water using the ammo-
nia excreted by the fish [219]. In terms of climate change, 
Seghetta et al. [239] reported that macroalgae cultivation 
and processing exerted less impact on climate than that of 
the system without macroalgae cultivation. Besides, the 
cultivation of macroalgae as 3G feedstocks for bioethanol 
production can be used to substitute gasoline production 
and utilization, which can resolve approximately 70% of all 
negative impacts contributed by GHG emissions from the 
combustion of fuel gases [240]. Furthermore, the cultivation 
of macroalgae for biobased products generation, such as LA, 
proteins, and pigments in the biorefinery phase also contrib-
utes about 25% positive impacts as all the residue wastes 
from bioethanol production can be fully utilized to produce 
value-added products [239]. However, a substantial expan-
sion in macroalgae cultivation to attain high global demands 
for fuels may subject the marine and coastal environments 
to some risks, such as changes in natural habitats, nutri-
ent content, and water hydrology characteristics of marine 
ecosystems [219]. In order to minimize the negative impact 
of macroalgae cultivations on the marine environment, the 
cultivation can be done via transplantation. By using the 
transplantation approach, the macroalgae are grown indoors, 
then culture in greenhouse tanks, resulting in lower environ-
mental risks compared to off-shore cultivation [241].

From the point of view of biorefinery, considering the 
bioethanol production from brown macroalgae Ecklonia 
maxima, Zhang et al. [242] evaluated a cradle-to-grave life 
cycle assessment (LCA) of three different hydrolysis meth-
ods: (1) microwave heating; (2) HWE; (3) SWE. The process 
included E. maxima cultivation, raw material preparation, 
sugar mill, industrial activities related to auxiliary biochemi-
cals, and processing of E. maxima for bioethanol. HWE and 
SWE demonstrated higher environmental burdens compared 
to microwave heating by producing global warming potential 
(GWP) of 13.53 kg  CO2eq and 25.665 kg  CO2eq per kg of 
dry E. maxima, respectively, mainly due to the requirement 
of a large amount of electricity, natural gas, and catalysts 
to reach the targeted reaction temperature. In conclusion, 
microwave heating proved to be the most environmentally 
friendly hydrolysis approach [242]. In an evaluation of the 
environmental impacts of a biorefinery producing bioethanol 
and bioelectricity from brown macroalgae S. japonica using 
attributional and consequential LCA approach, the authors 
found that the best case was the integration of the production 
chains compared to stand-alone production which results in 
an 86.56% reduction to the net system emission by achiev-
ing 0.043 kg  CO2eq/kg biomass of GWP compared to petro-
chemical processing [235].

Moreover, bioethanol and LA production using 3G feed-
stocks exhibited a lower environmental impact than 2G feed-
stocks due to the lower amount of acid or alkaline required 

for the delignification process of LCBs [243]. The utilization 
of other sugars (galactose, mannose, and rhamnose) in the 
bioethanol and LA production instead of biodigesting it to 
produce biomethane may also minimize the environmental 
effect of the 3G integrated process and improve the techno-
economic feasibility [33]. Mhatre et al. [244] revealed that 
3G integration involving co-fermentation for all the reducing 
sugars and the inclusion of residues for bioethanol and LA 
production has the least environmental impact compared to 
other fermentation methods such as SHF and SSF. How-
ever, the economic analysis suggested that the combined 
processing of 3G bioethanol and LA process with the least 
environmental impact was the most expensive processing 
method [244]. Therefore, further studies should concen-
trate on the trade-off between the technical, economic, and 
environmental feasibility on the production process of 3G 
bioethanol and LA.

6.3  Challenges and future prospectives

Research on bioethanol and biochemical processing from 
macroalgae has been described as one of the sustainable 
and clean processes as a result of the high growth rate and 
yield of macroalgae. However, several challenges still exist 
to restrict 3G bioethanol and biochemical commercializa-
tion, such as biorefinery approaches and existing technol-
ogy for biomass conversion [245]. In addition, most of the 
macroalgal bioethanol production is constrained to only 
laboratory scale; thereby, process feasibility at a continuous 
system is not reliable for large-scale commercial operation 
in the industrial setting [246]. Hence, the hydrolysis and 
fermentation steps have to be more optimized and refined 
for successful scaling up at larger quantities. Furthermore, 
implementation of engineered enzymes or enzyme cocktail, 
which is a mixture of various enzymes in the hydrolysis 
process, will be an alternate route for increasing the fer-
mentable sugar content as it can optimize the hydrolysis 
of biomass [247]. Moreover, macroalgae competitiveness 
can be further increased by maximizing the extraction of 
all available high-value components through cascading 
biorefinery (proteins, lipids, pigments, ashes as fertilizer) 
[4]. Furthermore, macroalgae can also be considered the 
feedstock for fourth-generation (4G) bioethanol and LA, as 
4G bioproducts are mainly generated by genetically modified 
macroalgae and yeast [248]. From an economic perspective, 
it can be deduced that the production cost of 3G bioethanol 
is still higher compared to fossil fuels [249]. The absence 
of an efficient and reliable established technology is known 
as the main challenge in commercializing macroalgae-
based energy and fuels. Moreover, the current incoherent 
technologies have strongly reduced the investor’s interest in 
commercializing bioethanol due to the huge revenue uncer-
tainty [250]. Nevertheless, researchers are still focused on 
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the improvement of algal bioethanol technologies along with 
the increasing investments throughout the world [213]. Most 
of the research in bioethanol and the LA industry focused 
on the optimization of different factors (feedstocks, process 
parameters, biomass loading, and enzyme loading) to obtain 
better reproducible results [6, 51, 251].

In terms of biorefinery, the flexibility of process design 
should be maintained since the feedstock efficiency for 3G 
bioethanol and LA could change depending on the location 
and market. The process design of algal bioethanol and LA 
has to take into account biomass variation in geological dis-
tribution, cultivation techniques, growing and harvesting 
seasons, and cultivation parameters (temperature, pH, nutri-
ents, etc.) on the account that it is a challenging task to copy 
the same scenario elsewhere. Consequently, the implementa-
tion of genetic engineering for the production of transgenic 
macroalgal strains is considered one of the best approaches 
to address the viability of 3G bioethanol and LA [244]. Fur-
thermore, the production of macroalgae-based bioethanol 
and biochemical is also constrained by the shortage of water 
resources for algal cultivation. This is mainly due to bioetha-
nol, and LA production using algae biomass may use large 
amounts of freshwater, which ranged between 40 and 1600 
L per liter of products depending on the macroalgae biomass 
loading. For commercial-scale production, the consumption 
may reach billions of gallons of water, which is enormous 
[59]. Therefore, an integrated design of the water supply 
system is a promising option that can be done to avoid the 
shortage of water resources during the cultivation process. 
Cuevas-Castillo et al. [252] have reported that the recycle 
stream and evaporation control have to be equipped in the 
water system design to reduce the utility cost and the water 
will recirculate within the system to avoid the shortage of 
water resources.

7  Conclusion

Carbohydrate-rich macroalgae biomass has demonstrated 
tremendous potential for the production of bioethanol and 
LA in more sustainable, environmentally, and economically 
friendly manners. The application of biorefinery systems and 
integration processes such as bioethanol, LA, and biofer-
tilizer lead to a cost-effective process. In the near future, 
the outlook of the bioethanol and LA market is continued 
growth to cater the energy and plastic demand coupled with 
the urge to curb the GHG footprint in both sectors. Cur-
rently, the investments in the macroalgae biorefinery are 
focused on using novel substrates and technologies with 
genetic engineering tools to enhance the microorganism 
performance and achieve a better conversion yield of bio-
products. It promises to be the most potential and attractive 
biorefinery model with more innovation in the near future. 

This review presents the basic parameters and state-of-art 
biorefinery processes that should be considered throughout 
the 3G bioethanol and LA production system, the perspec-
tive on novel cascading macroalgae biorefinery systems 
along with techno-economic evaluation, environmental 
impact, and challenges and future prospectives, as well as 
the most recent achievements of macroalgae biorefinery.
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