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Abstract Macroautophagy/autophagy is a conserved catabolic recycling pathway in which cytoplasmic components are se-
questered, degraded, and recycled to survive various stress conditions. Autophagy dysregulation has been observed
and linked with the development and progression of several pathologies, including cardiovascular diseases, the lead-
ing cause of death in the developed world. In this review, we aim to provide a broad understanding of the different
molecular factors that govern autophagy regulation and how these mechanisms are involved in the development of
specific cardiovascular pathologies, including ischemic and reperfusion injury, myocardial infarction, cardiac hyper-
trophy, cardiac remodelling, and heart failure.
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1. Introduction

Autophagy is an evolutionarily conserved catabolic recycling pathway in
which different cellular components ranging from protein aggregates to
entire organelles are targeted for degradation to promote cell survival
under different types of stress.1 Autophagy induction has been observed
under a diverse range of physiological and pathological conditions, in-
cluding hypoxia,2 endoplasmic reticulum (ER) stress,3,4 oxidative stress
and particularly nutrient starvation. All these stimuli are also involved in
cardiovascular development, metabolism and disease; thus, autophagy
regulation is a relevant subject for cardiovascular pathology.

2. Macroautophagy, microautophagy,
and chaperone-mediated autophagy

Autophagy is mainly divided into three main branches, macroautophagy,
microautophagy, and chaperone-mediated autophagy (CMA), each of
which has been described in detail elsewhere.5,6 Whereas some studies
have shown the importance of microautophagy and CMA in the heart,7

the main volume of research points to macroautophagy as the main
autophagic branch regulating both the physiological and pathological
mechanisms involved with the cardiovascular system. Thus, for the re-
mainder of this review, macroautophagy will be referred to as autophagy.
In brief, during macroautophagy, cytoplasmic components targeted for

degradation are enclosed by a rapidly expanding cup-shaped membrane
called the phagophore. Expansion and maturation of the phagophore
lead to the sequestration of the cargo inside double-membrane vesicles
(autophagosomes) that ultimately fuse with the vacuole (in yeast and
plants) or lysosome (in metazoans). Once fused together, the seques-
tered cargo is degraded by resident vacuolar/lysosomal hydrolases, gen-
erating macromolecules that can be then transported back into the
cytosol to be recycled by the cell (Figure 1).1

3. Autophagy induction

Autophagy activation is a tightly regulated process that depends on the
transcriptional,8 post-transcriptional,8,9 and post-translational8 regula-
tion of several autophagy-related (ATG) genes and their corresponding
proteins. In nutrient-rich conditions, autophagy is usually kept at low lev-
els; however, during nutrient starvation, autophagy activity is highly upre-
gulated.8 Thus, autophagy regulation by nutrient availability depends on
several crucial cellular energy sensors such as MTORC1, AKT/PKB,
AMPK, and PRKA/PKA.

Activation of the ULK Ser/Thr kinase complex is one of the early
events required for autophagy induction. The ULK complex is formed by
the catalytic subunits ULK1/2,10,11 the regulatory scaffold protein
ATG13,12,13 RB1CC1/FIP200,14 and the stabilizing protein ATG101.15

As part of the initiation step of the autophagy pathway, the ULK complex
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phosphorylates downstream ATG proteins leading to their activation
and recruitment. Activation of the ULK complex during nutrient starva-
tion conditions leads to ULK1 auto-phosphorylation13,14 at Thr18016

and Ser104717 which stabilizes its catalytic activity and in turn leads to
the phosphorylation of several targets including BECN1 at Ser1418 and
Ser30,19 ATG14 at Ser29,20 AMBRA1 at Ser465 and Ser635,19

ATG16L1 at Ser278,21 RB1CC122 at Ser943, Ser986 and Ser1323,19

ATG1322 at Ser31823 and Ser389,19 and ATG101 at Ser11 and Ser203.19

In nutrient-rich conditions, the ULK complex activity is inhibited by
MTORC1-dependent phosphorylation of both ULK1 at Ser75724 and
ATG13 at multiple sites.10,12,22 MTORC1 is a major sensor of the amino
acid availability inside the cell, being activated by high amino acid levels
through binding to an RRAG GTPase dimer25 and the small GTPase
RHEB.26 Thus, MTORC1 is a major autophagy suppressor integrating nu-
trient and energy signalling into autophagy regulation. Furthermore,
MTORC1 signalling has also been implicated in the transcriptional regu-
lation of autophagy. During nutrient-rich conditions, MTORC1 phos-
phorylates the transcription factor TFEB at Ser211,27 preventing its
nuclear translocation and the transcription of several lysosomal28 and
ATG genes, including UVRAG, WIPI, MAP1LC3B, SQSTM1, VPS11, VPS18,
and ATG9B.29

Closely related to MTORC1 signalling, the AKT/PKB pathway
responds to growth factors to inhibit autophagy.30 Activation of INSR
(insulin receptor) and IGF1R (insulin like growth factor 1 receptor) trig-
gers the activation of AKT, which in turn phosphorylates the GTPase ac-
tivating protein TSC2 at Ser393 and Thr1462, preventing RHEB
inhibition and leading to autophagy suppression by MTORC1.31

Furthermore, AKT directly activates MTORC1 by phosphorylation at
Ser2448.32 AKT activation depends on the formation of phosphatidylino-
sitol(3,4,5)trisphosphate (PtdInsP3) in the plasma membrane; the phos-
phoinositide phosphatase PTEN is thus able to induce autophagy by

dephosphorylating PtdInsP3 and downregulating AKT signalling.33

Autophagy is also directly inhibited by AKT, which can directly phos-
phorylate BECN1 at Ser295 and possibly Ser234, as well as ULK1 at
Ser774.16,34 Similar to MTORC1, AKT can also regulate autophagy at
the transcriptional level by phosphorylating the FOXO family of tran-
scription factors, specifically FOXO1 and FOXO3, preventing their
translocation to the nucleus and inhibiting the transcription of multiple
autophagy genes such as ATG4, ATG12, BECN1, BNIP3, LC3, PIK3C3/
VPS34, ULK1, and ULK2.35–37

Whereas MTORC1 prevents autophagy activation, AMPK has been
linked with autophagy induction.24 AMPK is a heterotrimeric Ser/Thr ki-
nase complex that can sense the energy status of the cell by binding
AMP and ADP.38,39 A decrease in the ATP:AMP ratio inside the cell
results in more AMP binding to AMPK, which in turn leads to the phos-
phorylation of PRKAA/AMPK a-subunit at Thr172 by STK11/LBK1,
resulting in AMPK activation.40–42 Once activated, AMPK seeks to re-
store energy homeostasis inside the cell by upregulating catabolic path-
ways that can generate ATP and downregulating anabolic processes that
consume energy. In this regard, AMPK plays both a direct and indirect
role in autophagy regulation. Upon activation, AMPK can directly induce
autophagy by phosphorylating ULK1 at Ser55524,43 and BECN1 at Ser93
and Ser96.44 Additionally, AMPK can also indirectly activate autophagy
by preventing MTORC1-dependent inhibition of ULK1.26,45,46

Interestingly, ULK1-dependent phosphorylation of all three subunits of
AMPK has been proposed as a negative feedback loop to terminate
autophagy induction.47,48 Recently, a kinase substrate screen discovered
that the cyclin-dependent kinase CCNY–CDK16 complex is a novel
AMPK phosphorylation target involved in AMPK-mediated autophagy
induction.49

PRKA/PKA is a cyclic AMP-dependent Ser/Thr protein kinase that
phosphorylates LC3, preventing its recruitment to phagophores and
inhibiting autophagy.50 PRKA/PKA has also been implicated in regulating
vascular network formation in endothelial cells by phosphorylating
ATG16L1. PRKA/PKA-dependent phosphorylation of ATG16L1 leads
to its degradation, reducing autophagy, a mechanism that could be in-
volved in regulating the stabilization of nascent vascular endothelium.51

Whereas nutrient depletion constitutes the main stimulus for autoph-
agy induction in some organisms, other types of cellular stress are also
involved in autophagy regulation. These additional types of stress, rele-
vant components of the autophagy machinery, and mechanism include
the following: (i) hypoxia involving HIF1A, BNIP3, and BNIP3L, which
can lead to BCL2-BECN1 dissociation;52,53 MTORC1 inhibition, resulting
in BECN1, and ATG14 phosphorylation.54 (ii) ER stress can induce
autophagy through several mechanisms involving ERN1/IRE1a and
MAPK/JNK driving BCL2-BECN1 dissociation;55–57 EIF2AK3/PERK and
EIF2A/eIF2a leading to ATF4-dependent translational activation of ATG
genes;58–64 ATL3, CCPG1, RETREG1, RTN3, SEC62, and TEX264 re-
ceptor-dependent reticulophagy.65,66 (iii) Oxidative stress leading to in-
activation of MTORC1 and AKT, along with AMPK-dependent
autophagy activation.67–69

4. Membrane nucleation

Generation and assembly of the phagophore require membrane nucle-
ation by the class III phosphatidylinositol 3-kinase (PtdIns3K). This lipid
kinase protein complex catalyzes the formation of phosphatidylinositol-
3-phosphate (PtdIns3P), which serves as a recruitment factor for
PtdIns3P-binding proteins such as those of the WIPI/WDR45 family.70

Figure 1 During macroautophagy different cytoplasmic components
are enclosed by the expanding phagophore. Maturation of the
phagophore results in the sequestration of the cargo inside double-
membrane autophagosomes. Fusion between autophagosomes and
lysosomes results in the formation of an autolysosome, where the se-
questered cargo is degraded by lysosomal hydrolases. Macromolecules
obtained from cargo degradation are transported back into the cytosol
to be reutilized.

Autophagy and heart disease 935
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The PtdIns3K complex is formed by several core proteins, including the
catalytic subunit PIK3C3/VPS34, the regulatory subunit PIK3R4/VPS15
and BECN1.71 Whereas these three proteins constitute the core of the
PtdIns3K complex, depending on the other interacting partners, at least
three other PtdIns3K subcomplexes involved in autophagy have been
described.72,73 The PtdIns3K complex I is formed by the three core pro-
teins, in addition to the BECN1-binding proteins ATG14 and AMBRA1,
and the ATG14-binding protein NRBF2.74–76 This complex positively
regulates autophagy by promoting recruitment of the PtdIns3K complex
to the phagophore and inducing the generation of PtsIns3P. In this re-
gard, ATG14 is directly associated with the ability of the PtdIns3K com-
plex I to translocate to the phagophore;74 AMBRA1 improves BECN1
and PIK3C3 interaction and catalytic activity;76 and NRBF2 modulates
PIK3C3 activity by promoting complex I assembly.75 The PtdIns3K com-
plex II is formed by the above-mentioned PtdIns3K core proteins in addi-
tion to UVRAG.77 Although both ATG14 and UVRAG stabilize and
directly interact with BECN1, their binding is mutually exclusive, generat-
ing two protein complexes with different autophagic functions73 (Figure
2). Furthermore, UVRAG binding partners RUBCN/RUBICON and
SH3GLB1/Bif-1 further differentiate the PtdIns3K complex II into two
subpopulations with different functions. Whereas the PtdIns3K complex
in which UVRAG binds SH3GLB1 stimulates autophagy by promoting
the autophagosome maturation step in which autophagosomes and lyso-
somes fuse,78,79 UVRAG binding to RUBCN inhibits autophagy.73

UVRAG can be negatively regulated by MTORC1-mediated phosphory-
lation, which increases UVRAG and RUBCN interaction.80

5. Autophagosome membrane
source

The membrane source from which the phagophore and subsequently
the autophagosome are formed have long been a source of debate.

Different studies have indicated that the initial phagophore membrane
could originate from the ER,81 trans-Golgi,82 mitochondria,83 endo-
somes,84 or the plasma membrane.85 ATG9A is the only essential trans-
membrane core autophagy protein, and it plays a key role in phagophore
expansion,82 in a process regulated by the adaptor complexes AP1,
AP2,86,87 and AP4.88 In turn, AP1/2 binding is regulated by the phosphor-
ylation of the ATG9A N terminus by SRC during nutrient-rich condi-
tions, and ULK1 during stress.86 Recently, the ATG9A structure has
been solved, providing insight into its ability to bend and bind highly
curved membranes, consistent with its role as a membrane trans-
porter.89 Furthermore, the ATG9A structure also revealed a possible
lipid scramblase activity, which could control autophagosome size.90 The
ATG9A C terminus is responsible for binding ATG2A,89 which works as
a funnel, tethering the ER membrane to the growing phagophore and
mediating lipid transfer from the ER.91,92

In addition to ATG9A-containing vesicles, the ER-Golgi intermediate
compartment (ERGIC) has also been proposed as another possible
membrane source for phagophore formation.93 During nutrient-rich
conditions coat protein complex II (COPII) vesicles travel from the ER
to the Golgi as part of the secretory pathway. However, when nutrients
are depleted and the secretory pathway is inhibited, COPII vesicles are
repurposed for phagophore formation. During this process, the
PtdIns3K complex I is recruited to the ERGIC, leading to the budding of
specialized COPII vesicles that serve as a platform for LC3 lipidation, an
essential step in phagophore expansion and later autophagosome matu-
ration.93,94 This process is regulated by ULK1, which during nutrient star-
vation phosphorylates the COPII essential protein subunit SEC23B,
preventing its proteasomal degradation and leading to SEC23B accumu-
lation and the generation of autophagic COPII vesicles from the
ERGIC.95

Consistent with the idea that the ER is a major membrane source
for autophagosome formation, different microscopy and 3D tomogra-
phy studies have highlighted the connection between ER cisternae and
pha-gophore-autophagosome membranes.96,97 A PtdIns3P-enriched ER-
subdomain (the omegasome) is linked to autophagosome biogenesis,
providing a dynamic platform for recruiting several ATG proteins.98

Omegasome formation is dependent on PtdIns3K complex I ER localiza-
tion, mediated by ATG14;99 subsequent PtdIns3P generation recruits
ZFYVE1/DFCP198 and WIPI/WDR45 family proteins.70 WIPI2B is re-
quired for LC3 lipidation.70 This process is regulated by WIPI2 recruit-
ment and direct binding to ATG16L1, which together with ATG12 and
ATG5 forms the ATG12–ATG5-ATG16L1 complex, required for effi-
cient LC3 lipidation and phagophore expansion.100 Other WIPI family
members have also been implicated in autophagy regulation. WDR45/
WIPI4 forms a complex with ATG2A, allowing the latter to tether
PtdIns3P-containing vesicles to non-Ptdns3P-containing mem-
branes.101,102 Also, the ULK1 complex associates with omegasomes in
their early stages in a PtdIns3P-dependent manner.103

Multiple studies have indicated that autophagosomes can form at mi-
tochondria-associated ER membranes (MAM), specific sites where the
ER and mitochondria are in close proximity to one another.83,104 During
starvation conditions, ATG14 is recruited to the MAM by the ER-resi-
dent SNARE protein STX17, which is required for complete autophago-
some formation.104 Furthermore, disrupting ER-mitochondria contacts
by depleting the tethering proteins MFN2 or PACS1 impairs ATG14 re-
cruitment and starvation-induced autophagy.83,104 ATG2A also localizes
to the MAM by binding the outer mitochondria membrane protein com-
plex formed by TOMM70–TOMM40, which in turn is required for pha-
gophore expansion and autophagic flux.105 Interestingly, the omegasome

Figure 2 The proposed structure of the PtdIns3K complex I (top)
and PtdIns3K complex II (bottom). Note that not all PtdIns3K complex
I and complex II factors, including RUBCN and SH3GLB1, are shown.
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marker ZFYVE1 is also enriched in the MAM during starvation condi-
tions, suggesting a unified system in which omegasomes and ER-mito-
chondria contacts are adjacent to each other.104

Taken together, an overall model has started to emerge in which the
ER and ER-associated membranes serve as the main platform and mem-
brane source for phagophore formation. Membranes from other organ-
elles are very likely to contribute to autophagosome formation by
generating membrane contact sites with the ER. Electron microscopy
and electron tomography studies have shown phagophores making con-
tact sites with membranes from late endosomes, Golgi, and mitochon-
dria, sometimes even simultaneously.106 Therefore, it is reasonable to
think of the ER as an expanding membranous system across the cell,
interconnecting with different organelles that supply the phagophore
with their membranes (Figure 3).

6. Expansion of the phagophore
membrane

Two interconnected ubiquitin-like conjugation systems are involved in
expanding the phagophore membrane, the ATG12–ATG5-ATG16L1
complex and the lipidation of the LC3/GABARAP family (Figure 4). The
mechanism involved in the conjugation of LC3/GABARAP to phosphati-
dylethanolamine (PE), involving the action of the ATG12–ATG5-

ATG16L1 complex as an E3 ligase has been described in great detail else-
where.107–109 Binding between ATG16L1 and WIPI2 may control the
targeting of the ATG12–ATG5-ATG16L1 complex and in turn the site
of LC3/GABARAP lipidation.100 ATG16L1 is also able to interact with
the ULK1 complex subunit RB1CC1/FIP200, which plays a role in the re-
cruitment of the ATG12–ATG5-ATG16L1 complex to the phago-
phore.110 Recently, ATG16L1 has been proposed to bind directly to
membranes;111 thus, it seems that the localization of ATG12–ATG5-
ATG16L1 depends on multiple factors, including protein and lipid
interactions.

Beyond their role in the expansion and maturation of autophago-
somes, when covalently bound to PE, the LC3/GABARAP family serve
as interaction platforms for a diverse range of different proteins, physi-
cally linking them to the phagophore membrane. Among these LC3/
GABARAP-binding proteins are various autophagy receptors that play
an important role in selective autophagy, tethering the cargo targeted
for degradation to the growing phagophore. These receptors include
SQSTM1/p62, OPTN, TOLLIP, and NBR1, which participate in the auto-
phagic degradation of various types of ubiquitinated cargo; BNIP3L and
FUNDC1 which have been linked to mitophagy;112 RETREG1, CCPG1,
SEC62, RTN3, and TEX264, which have been connected to reticuloph-
agy;65 and CALCOCO2 that has been reported to induce the selective
autophagic degradation of intracellular pathogens.113 Binding between
these receptor proteins and LC3/GABARAP is generally mediated by
the LC3-interacting region (LIR), a distinct amino acid sequence closely
resembling Trp-X-X-Leu/Ile.109,114 A specific type of LIR termed
GABARAP-interacting motif has been described, which resembles the
sequence Trp/Phe-Val/Ile-X-V and shows a higher binding affinity for the

Figure 3 Translocation of the ULK complex to the ER leads to the
phosphorylation and activation of the PtdIns3K complex I, which gener-
ates PtdIns3P-rich ER subdomains known as omegasomes. ZFYVE1,
WDR45/WIPI4, and WIPI2B are recruited to omegasomes by binding
PtdIns3P. WIPI4 binds ATG2A, which tethers the ER to the growing
phagophore and transports lipids from one side to the other. ATG9A
binds ATG2A, and the former moves lipids from one side of the mem-
brane leaflet to the other, expanding the phagophore. WIPI2B recruits
the ATG12–ATG5-ATG16L1 complex, inducing the lipidation of LC3
at the phagophore. Different sources provide membranes for phago-
phore expansion.

Figure 4 The ubiquitin-like proteins ATG12 and the LC3/GABARAP
family go through activation by ATG7 and conjugation by ATG10 and
ATG3, respectively. Covalent binding between ATG12–ATG5 leads to
forming a dimeric ATG12–ATG5-ATG16L1 complex, which is
recruited to the phagophore by WIPI2B, promoting the ligation of LC3
to PE. LC3-II/LC3–PE can be deconjugated by ATG4, the same protein
involved in LC3 initial processing. GTAMAV, C-terminal amino acid res-
idues; PE, phosphatidylethanolamine.
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GABARAP subfamily.115 Besides the autophagy receptor proteins, sev-
eral other core components of the autophagy machinery such as ULK1,
ATG13, RB1CC1,116 BECN1, ATG14,117 ATG4,118 and ATG7119 have
been proposed to possess LIR sequences that allow them to interact
with LC3/GABARAP and be recruited to the phagophore. Even though
most of the research involving LC3/GABARAP and their interacting
partners has been focused on the interface between the LIR and its cor-
responding docking site on the various LC3/GABARAP proteins, a re-
cent publication has reported a novel alternative binding site in this
family that binds ubiquitin-interacting motifs, opening the door for the
discovery of new LC3/GABARAP-interacting partners and mechanisms
of autophagy regulation.120

7. Lysosomal fusion and cargo
degradation

In the last stages of autophagy, complete autophagosomes must fuse
with lysosomes to release their cargo for degradation. This process
requires a spatial approach between the two organelles that allow for
membrane tethering and fusion to occur. Mature autophagosome traf-
ficking is mediated by microtubules that serve as tracks, allowing the
transport of complete autophagosomes to the perinuclear region, where
lysosomes are usually located during starvation.121,122 Once autophago-
somes and lysosomes are sufficiently close, tethering and fusion are trig-
gered by multiple factors, including RAB7 and the HOPS complex,123,124

STX17, SNAP29, VAMP7, and VAMP8.125–127 Specificity of the lyso-
some-autophagosome fusion process is provided by several different
adaptor proteins; for example, the RAB7 effector protein PLEKHM1 di-
rectly interacts with the HOPS complex and LC3/GABARAP through an
LIR, providing a bridge between autophagosomes and the different
members of the tethering complex.128 Once fusion is completed, the in-
ner autophagosomal membrane is degraded inside the newly formed
autolysosome, where lipases and acid hydrolases including cathepsins
CTSB, CTSD, and CTSL degrade the cargo, generating essential mole-
cules such as amino acids that can be transported back to the cytosol to
be recycled by the cell. Recent studies have identified the lysosomal
multi-spanning transmembrane protein SLC38A9 as a central amino acid
transporter responsible for recycling amino acids from the lysosomal lu-
men to the cytosol.129–131 SLC38A9 senses Arg, which plays a modulat-
ing role in the lysosomal efflux of Gln and Leu and other essential amino
acids to the cytosol.132,133 SLC38A9-dependent amino acid efflux is
sensed by MTORC1,129–133 which is activated, generating a negative
feedback loop that finally inhibits autophagy.

8. Cardiac autophagy

Autophagy has a vital role in the normal and diseased heart.134–136

Basally, cardiomyocytes display beneficial autophagy to degrade mis-
folded proteins and damaged organelles.134,137 Moreover, autophagy is
required for normal cardiac development.138 Knockdown or knockout
of essential autophagy genes, including Atg5, results in defects in cardiac
morphogenesis, notably in valve development and chamber septation.139

However, this process is altered during metabolic stresses (e.g. diabetes,
lipotoxicity), ischemia/reperfusion (I/R) injury, myocardial infarction (MI),
cardiac hypertrophy, cardiac remodelling, and heart failure (HF).134–136

Because our previous review covered cardiovascular autophagy up to

2014,134 we focus mainly on the new findings described since 2015. The
main discoveries in the cardiovascular area are described in Table 1.

9. Mitochondrial dysfunction and
mitophagy

Because of constant beating, the heart is an organ that requires a contin-
uous high supply of ATP. The heart produces and utilizes�6 kg ATP per
day.190 Therefore, mitochondrial metabolism and function are essential
for cardiac homeostasis.191 Mitophagy, the selective autophagic degrada-
tion of mitochondria, is an important mediator of mitochondrial quality
control in cardiac myocytes. Removing dysfunctional mitochondria
through mitophagy is essential for maintaining cardiomyocyte energetic
and metabolic requirements.191 In developing hearts, the MFN2–
PINK1–PRKN pathway, which poly-ubiquitinates damaged mitochondria
to promote mitophagy, changes the cardiac metabolism by redirecting
the mitochondrial substrate preference to fatty acids.157 Through this
mechanism, foetal cardiomyocyte mitochondria are removed by PRKN-
mediated mitophagy and replaced by mature adult mitochondria.157

Cardiac mitophagy is also observed during cardiac ischemia by a com-
plex consisting of ULK1, RAB9, RIPK1, and DNM1L.192 Downregulation
of mitophagy mediates the development of mitochondrial dysfunction
and HF.162 In this model, an isoform shift from PRKAA2/AMPKa2 to
PRKAA1/AMPKa1 is observed in mouse hearts and in heart samples
from HF patients.193 BAG3, a co-chaperone of HSPA/HSP70, is also
recruited to depolarized mitochondria, together with PRKN to promote
mitophagy,194 in part by regulating translation of LC3B.195 Suppression
of BAG3 in cardiac myocytes reduces autophagy flux and mitophagy.194

Conversely, administration in the heart of BAG3 using an adeno-associ-
ated virus improves left ventricular ejection fraction (LVEF) after MI.196

Restoration of PRKAA2 activates the PINK1–PRKN–SQSTM1 pathway
that increases cardiac mitophagy associated with the improvement in mi-
tochondrial function, removal of damaged mitochondria, decrease in re-
active oxygen species (ROS) production, and cardiomyocyte
apoptosis.193

Single-nucleotide polymorphisms in the PRKN are linked to blood
pressure in Nigerian and Korean families, suggesting an association be-
tween mitophagy and hypertension.197 Moreover, spermidine supple-
mentation in the diet of salt-sensitive rats enhances cardiac mitophagy
and delays the development of hypertensive heart disease.198 Also, in a
unilateral renovascular hypertension pig model, valsartan, a well-known
antihypertensive drug, reduces left ventricular hypertrophy and
increases mitophagy and mitochondrial biogenesis.198 These data suggest
that the increase of mitochondrial turnover decreases hypertensive-de-
pendent cardiac remodelling.

10. Ischemia/reperfusion

Myocardial ischemia is one of the main causes of sudden cardiac
death worldwide, and activation of autophagy protects cardiomyocytes
from I/R injury.134 During ischemia, autophagy is triggered as a pro-
survival mechanism in response to nutrient and oxygen deprivation.199

However, during reperfusion, autophagy has beneficial or detrimental
effects depending on the experimental model and whether it involves
a BECN1- or an AMPK-MTOR-dependent activation of auto-
phagy.144,199,200 More recent findings indicate that induction of autoph-
agy by simultaneous administration of PT1, a specific activator of AMPK,

938 D. Gatica et al.



..............................................................................................................................................................................................................................

Table 1 Timeline describing principal findings in cardiovascular autophagy

Year Description

Heart 1976 First description of autophagy in cardiomyocytes140

2000 First description of autophagy in hearts associating accumulation of autophagic vacuoles and cardiomyopathy

in LAMP2-deficient mice141

2001 Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy142

2003 Myocytes die by multiple mechanisms in failing human hearts143

2007 Cardiac autophagy is a maladaptive response to haemodynamic stress

2007 Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMPK and BECN1 in medi-

ating autophagy144

2007 The role of autophagy in cardiomyocytes in the basal state and in response to haemodynamic stress145

2008 Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy

2009 Markers of autophagy are downregulated in failing human heart after mechanical unloading146

2010 Deacetylation of FOXO by SIRT1 plays an essential role in mediating starvation-induced autophagy in cardiac

myocytes147

2012 Autophagy proteins LC3B, ATG5, and ATG12 participate in quality control after mitochondrial damage and

influence lifespan148

2012 First description of autophagy in cardiac fibroblast assessing the role of ADRB2/beta(2)-adrenergic receptor

in the regulation of cardiac fibroblast autophagy and collagen degradation149

2012 Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure150

2012 Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury151

2013 Mechanical unloading activates FOXO3 to trigger BNIP3-dependent cardiomyocyte atrophy152

2013 PINK1-phosphorylated MFN2 is a PRKN receptor for culling damaged mitochondria153

2013 Autophagy regulates endothelial cell processing, maturation, and secretion of VWF154

2013 STK4/MST1 inhibits autophagy by promoting the interaction between BECN1 and BCL2155

2014 Autophagy regulates vascular endothelial cell NOS3 and EDN1 expression induced by laminar shear stress in

an ex vivo perfused system156

2015 PRKN-mediated mitophagy directs perinatal cardiac metabolic maturation in mice157

2014 PRKN-independent mitophagy requires DNM1L and maintains the integrity of mammalian heart and brain158

2015 Endogenous DNM1L mediates mitochondrial autophagy and protects the heart against energy stress159

2015 Interdependence of PRKN-mediated mitophagy and mitochondrial fission in adult mouse hearts160

2015 SIRT7 contributes to myocardial tissue repair by maintaining the TGFB signaling pathway161

2016 DNM1L-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mito-

chondrial dysfunction and heart failure162

2016 Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide

signaling163

2016 Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification164

2016 Cardioprotection and lifespan extension by the natural polyamine spermidine165

2017 Endothelial-specific deletion of Atg7 attenuates arterial thrombosis in mice166

2017 Endothelial cell autophagy maintains shear stress-induced nitric oxide generation via glycolysis-dependent

purinergic signaling to endothelial NOS3167

2017 Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow168

2018 Endothelial autophagic flux hampers atherosclerotic lesion development169

2018 BECN1-dependent autophagy protects the heart during sepsis170

2018 TLR4 contributes to a myofibroblast phenotype in cardiac fibroblasts and is associated with autophagy after

myocardial infarction in a mouse model171

2019 Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic

cardiomyopathy172

2020 Downregulation of BECN1 promotes direct cardiac reprogramming173

Blood vessels 1997 First description of autophagy in vascular endothelial cells and cardiac endothelial cells obtained from mouse

hearts after long-term exposure to non-metabolizable sugars174

2001 Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells175

2006 First description of autophagy in VSMC by evaluating the effects of IGF1 and TNF in the regulation of autoph-

agy through MAPK/JNK and AKT pathways in human atherosclerotic vascular smooth cells176

Continued
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and 3HOI-BA-01, a potent inhibitor of MTOR, reduces cardiomyocyte
death triggered by simulated I/R. In vivo administration of PT1 or 3HOI-
BA-01 in a murine I/R injury model stimulates autophagy and reduces in-
farct size.201 Likewise, cardiomyocyte-specific autophagy disruption with
a conditional atg7 knockout leads to myofibrillar disarray and severe
contractile dysfunction and worsens the I/R injury with cardiac hypertro-
phy and severe cardiac fibrosis.202 Autosis, a form of cell death due to
excessive activation of autophagy, is induced in cardiomyocytes exposed
to I/R.203 This autosis is associated with RUBCN upregulation, autopha-
gic flux attenuation, and autophagosome accumulation.203 Furthermore,
inhibition of excessive I/R-induced autophagy by trimetazidine protects
the rat hearts from I/R-induced HF.204

11. Cardiac fibrosis

The differentiation of cardiac fibroblast to myofibroblast is one of the
most important features of fibrosis.205 Autophagy is implicated in cardiac
fibrosis because autophagy inhibition blocks fibroblast-to-myofibroblast
phenoconversion and inhibits myofibroblast cell migration and contrac-
tility.206 Moreover, TGFB1 treatment of human atrial fibroblasts induces
autophagy and enhances the fibrogenic response, suggesting an associa-
tion between the myofibroblast phenotype and autophagy.207 In strepto-
zotocin-induced diabetic rats, alterations in autophagy correlate with
cardiac fibrosis, indicating a potential synergistic role for autophagy in di-
abetic cardiac fibrosis.208 Moreover, in vitro and in vivo studies show that
inhibition of PARP1 partially decreases autophagy, abrogates cardiac fi-
brosis, and significantly improves cardiac function post-MI.209 In a mouse
model of lipopolysaccharide-induced sepsis, cardiac-specific overexpres-
sion of BECN1 promotes autophagy, improves cardiac function, and alle-
viates inflammation and fibrosis.170

12. Diabetic cardiomyopathy

Diabetic cardiomyopathy is a cardiovascular disease characterized by
morphological, functional, and metabolic changes in the heart produced
as a complication of type 2 diabetes mellitus (T2DM).210 Excessive
autophagy is observed in the right atrial appendages collected from dia-
betic and non-diabetic patients.211 Similarly, animal models of T2DM
show increased autophagosomes in the heart that is further increased
upon chloroquine injection. Importantly, in vitro genetic deletion of Becn1
in adult rat cardiomyocytes exposed to high glucose markedly inhibits
autophagy and triggers apoptosis suggesting a pathological role of
autophagy in the T2DM heart.211 Moreover, excessive autophagy in
T2DM induces HF aggravation after MI through defective mitophagy, as-
sociated with excessive inflammasome activation, secretion of IL18, and
cell death.212 Prevention of inflammation by NFKB blockade with pyrroli-
dine dithiocarbamate reduces oxidative stress and improves mitochon-
drial integrity, thus restoring cardiac function in T2DM.213 In hearts from
obese db/db T2DM mice, LC3 lipidation, SQSTM1, and phosphorylated
MTOR levels are increased, but CTSD level is decreased, and very few
lysosomes are detected, despite the abundance of autophagic vacuoles.
In these hearts, AMPK activity and ATP content are decreased. These
findings suggest that in this T2DM model, the autophagic flux is blocked
at the final step.214 In high-fat diet-induced obese mice, a failure to upre-
gulate LC3 lipidation or to clear SQSTM1 in the heart after fasting are
observed, although mRNA for Lc3b and Sqstm1 are appropriately upre-
gulated. These data suggest that hearts of diet-induced obese mice also
exhibit impaired autophagy.215

In hearts from streptozotocin-induced type 1 diabetic mice (T1DM),
diastolic dysfunction is observed,214,216 although autophagic activity is in-
creased, as evidenced by increases in LC3-II and CTSD, and decreased
SQSTM1, and by the abundance of autophagic vacuoles and

..............................................................................................................................................................................................................................

Table 1 Continued

Year Description

2011 BECN1 deficiency is associated with increased hypoxia-induced angiogenesis177

2015 Defective autophagy in VSMCs accelerates senescence and promotes neointima formation and

atherogenesis178

2018 Impaired mitochondrial respiration in human carotid plaque atherosclerosis: a potential role for PINK1 in

VSMC energetics179

2019 Altered mitochondrial quality control in ATG7-deficient VSMCs promotes enhanced apoptosis and is linked

to unstable atherosclerotic plaque phenotype180

2019 VSMC plasticity and autophagy in dissecting aortic aneurysms181

2020 Defective autophagy in vascular smooth muscle cells increases passive stiffness of the mouse aortic vessel

wall182

2019 FOXO1 inhibits autophagosome-lysosome fusion leading to endothelial autophagic-apoptosis in diabetes183

2019 Endothelial-specific deficiency of ATG5 attenuates ischemia-related angiogenesis184

2020 Mitophagy contributes to endothelial adaptation to simulated microgravity185

2020 Defective autophagy in vascular smooth muscle cells alters vascular reactivity of the mouse femoral artery186

2020 Endothelial autophagy deficiency induces IL6-dependent endothelial mesenchymal transition and organ

fibrosis187

2020 Laminar flow inhibits the STK3–STK4 (HIPPO)–YAP1 pathway via autophagy and SIRT1-mediated deacetyla-

tion against atherosclerosis188

2020 Ischemia induces autophagy of endothelial cells and stimulates angiogenic effects in a hindlimb ischemia mouse

model189

940 D. Gatica et al.
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lysosomes.214 The increase of blood glucose level in T1DM induces
mitochondrial damage by O-GlcNAcylation of many electron trans-
port chain subunits and other mitochondrial proteins.217 Inhibition of
autophagic flux by chloroquine decreases autolysosomes, cardiomyo-
cyte apoptosis, and cardiac fibrosis, but increases both Lc3 and Sqstm1
expression.218 Surprisingly, mitophagy is inhibited in hearts from
T1DM mice.219 Moreover, there is substantial attenuation of cardiac
damage in mice deficient for BECN1 and ATG16L1 as evidenced by an
improvement in cardiac function along with decreased levels of oxida-
tive stress, interstitial fibrosis, and cardiomyocyte apoptosis. In con-
trast, diabetes-induced cardiac injury is aggravated by BECN1
overexpression.220 In the same way, administration of 1,25-dihydroxy-
vitamin-D3 and resveratrol improves diabetic cardiomyopathy by re-
storing the impaired cardiac autophagy in streptozotocin-induced
diabetic rats.221,222

13. Heart failure

HF is a clinical syndrome due to a structural and/or functional cardiac ab-
normality, which results in a reduction in cardiac output and/or elevated
intracardiac pressure.223 HF affects patients ranging from those with nor-
mal (>_50%) LVEF, known as HF with preserved EF (HFpEF), to those
with reduced (<40%) LVEF, known as HF with reduced EF (HFrEF).223

All these patients display signs of HF with evidence of abnormal cardiac
structure and function.224 Epidemiological studies have shown that the
incidence of HFrEF and HFpEF are almost equally distributed, but the in-
cidence of HFpEF is increasing with time.225 The role of autophagy is
well described in HFrEF;134 however, its role in HFpEF is poorly defined.
Recently, a gene expression analysis performed on heart biopsies
obtained from HFrEF, HFpEF, and control patients revealed that autoph-
agy genes are strikingly downregulated in HFpEF patients.226

Figure 5 Role of autophagy in the development of vascular diseases using in vivo models and VSMC phenotypic change using in vitro models. AGES, ad-
vanced glycation end products; Ang II, angiotensin II; Hhc, hyperhomocysteinemia; PDGF-BB, platelet-derived growth factor-BB; TNF, tumor necrosis fac-
tor; VSMC, vascular smooth muscle cell.
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.Initial findings indicated that basal constitutive cardiac-specific autoph-
agy impairment, obtained by a tamoxifen-induced deletion of Atg5,
shows disorganized sarcomere structure, mitochondrial misalignment
and aggregation in cardiac myocytes, and cardiac hypertrophy, left ven-
tricular dilatation, and contractile dysfunction, indicating the occurrence
of HFrEF.145 HFrEF progression can be prevented by rapamycin.227 In
fact, activation of basal autophagy by rapamycin, improves diastolic func-
tion in old mice beginning at 2–4 weeks and progress throughout 10-
week treatment. Autophagy was transiently induced during the first
week of treatment associated with mitochondrial biogenesis, suggesting
the replacement of damaged mitochondria.228 In a rat model of HFrEF
induced by MI, histological and echocardiographic measurements
showed that rapamycin treatment improves myocardial function and
inhibits cardiac remodelling at 8 weeks post-MI mechanism involving inhi-
bition of the MTORC1 and ER stress pathways.229 In the same model,
the increase of MMP9 (matrix metallopeptidase 9) inhibits cardiomyo-
cyte and cardiac fibroblast autophagy in the peri-infarct site, whereas ab-
lation of MMP9 increases cardiac autophagy.230 Moreover, in a model of
HF induced by pressure overload, nitric oxide and natriuretic peptides
induce cardioprotection by activation of autophagy through a PRKG1–
TSC2–RHEB-dependent inhibition of MTORC1.231 In patients with di-
lated cardiomyopathy, autophagic vacuoles in cardiomyocytes are asso-
ciated with a better HFrEF prognosis, suggesting autophagy could be
involved in the prevention of myocardial deterioration.232 In patients
with idiopathic dilated cardiomyopathy, mechanical unloading with a left

ventricular assist device decreases markers of autophagy BECN1,
ATG12–ATG5, and LC3-II.146 Because the mechanical unloading
decreases the energy demand of the failing heart these results suggest
that autophagy is activated as an adaptive mechanism. Moreover, myo-
cardial CTSD, a major lysosomal protease induced by MI, protects
against cardiac dysfunction and remodelling, which is in part through pro-
moting cardiac myocyte autophagic flux.233

Conversely, autophagy, assessed by anti-LC3-II staining and vacuole
formation, is extensively detected in myocardial samples from patients
with ischemic cardiomyopathy and idiopathic dilated cardiomyopathy,
with the occurrence of necroptosis and oncosis exceeding that of apo-
ptosis.234 In a mouse model of MI, necroptosis is triggered by autophagy
flux dysfunction, and this cell death process contributes to loss of cardio-
myocytes, adverse ventricular remodelling, and HFrEF.235 Moreover,
persistent autophagy triggered by upregulation of TLR3 expression
and signalling induced by MI, promotes HFrEF and lethality.236

Likewise, in a model of pressure overload in mice induced by TAC, left
ventricular wall thickness is increased at 1 week, associated with a de-
crease in autophagy.237 At 9 weeks, this model develops HFrEF charac-
terized by a further increase in left ventricular wall thickness, with the
intensification of cardiomyocyte autophagy and apoptosis.237 In this
model, activation of AMPK by injecting AICAR improves cardiac function
by attenuating autophagy.238 These results suggest that in HFrEF, autoph-
agy can be beneficial or detrimental, depending on the context of
the disease.

..............................................................................................................................................................................................................................

Table 2 Clinical trials involving autophagy in the cardiovascular system

Name of the study Study type Description Clinical trial identifier

MUcociliary Clearance IN Stroke (MUCINS) Observational Evaluation of autophagy in respiratory tissue (nasal, tra-

cheal, and bronchial)

NCT03884166

Transforming Growth Factor Beta Signalling in the

Development of Muscle Weakness in Pulmonary

Arterial Hypertension

Observational Determination of the contribution of atrophy and

autophagy to muscle wasting in PAH

NCT01847716

Intermittent Pneumatic Compression With and Without

Exercise to Improve Functioning in Peripheral Artery

Disease (INTERCEDE)

Interventional Evaluation among PAD participants whether intermittent

pneumatic compression therapy combined with exer-

cise improves autophagy (LC3, LAMP2, PRKN) at 6-

month follow-up, compared to exercise alone

NCT03871075

Autophagy and Venous Endothelial Function Observational Evaluation of endothelial function in venous samples from

patients with venous insufficiency before and after

treatment with autophagy enhancer spermidine

NCT04138134

Autophagy Maintains Vascular Function Through a

Novel Glycolysis-linked Pathway Regulating eNOS

Interventional Evaluation of BECN1, ATG3, ATG5, ATG7, LAMP1,

LAMP2, and SQSTM1 after rhythmic handgrip exercise

or chronic exercise training

NCT04200560

Autophagy, Oxidative Stress, and Hippo Signalling in

Human Aortic Aneurysm

Observational Comparison between the levels of STK3–STK4 (HIPPO)

signalling and autophagy markers observed in aortic

aneurysms and the levels assessed in the adjacent non-

aneurysmatic aortic portions

NCT03211000

Effects of Trehalose and Polyphenols in Vasculopathic

Patients

Interventional Change of autophagy (LC3) in PAD patients after mixed

supplementation of trehalose and polyphenols

NCT04061070

Effect of Hydroxychloroquine on Atrial Fibrillation

Recurrence

Interventional Recurrence rate of atrial fibrillation after radiofrequency

catheter ablation, anticoagulant therapy, and hydro-

chloroquine treatment (200 mg, bidpo)

NCT03592823

Potential Impact of Neuroimmune and Autophagic

Alterations on the Progression and Severity of Human

Atherosclerotic Process

Observational Characterization of the autophagic process and correla-

tion with neural modulations of the stability/instability

plaque

NCT03922698

PAD, peripheral arterial disease; PAH, pulmonary arterial hypertension.
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..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
14. Cardiac ageing and regeneration

Cardiac ageing is characterized by fibrosis, hypertrophy, dysfunctional
mitochondria, and misfolded protein accumulation, and impaired
autophagy.239 Inhibition of autophagy exacerbates cardiac dysfunction
accompanied by the accumulation of dysfunctional organelles and mis-
folded proteins.240 Reduction of autophagy during ageing correlates with
the hypermethylation of Atg5 and Lc3b gene promoter regions in macro-
phages from aged mice associated with reduced gene expression;241

treatment with Trdmt1/Dnmt2 siRNA or a methyltransferase inhibitor
restores Atg5 and Lc3 expression.241 Interestingly, a homozygous
BECN1F121A knock-in mouse, a mutation that decreases the interaction
of BECN1 with the negative regulator BCL2, has increased basal autoph-
agy in several organs, including the heart.242 These mice show an in-
creased life span with decreased cardiac and renal pathological changes
and spontaneous tumorigenesis.242

Conversely, cardiac regeneration is considered a promising tool to
treat cardiac diseases. Zebrafish, but not adult mammals, are capable of
cardiac tissue regeneration. In an injury model of ventricular apex resec-
tion, a tightly regulated autophagic response is observed during the early
stages of the regeneration process. Inhibition of autophagy by rapamycin
impairs cardiac regeneration.243 These findings clearly show the double-
edged sword effect that autophagy has in cardiac homeostasis.

15. Autophagy in the vascular
system

The vascular tissue is mainly constituted by vascular smooth muscle cells
(VSMCs) and endothelial cells. VSMCs exhibits several phenotypes in re-
sponse to endogenous and environmental factors contributing to the
genesis and progression of vascular diseases.244 Comprehensive over-
views of the role of autophagy in VSMCs were previously and exten-
sively described.134,135

16. VSMC phenotype

Several studies have shown that autophagy controls VSMC differentia-
tion and dedifferentiation. Dedifferentiated VSMCs are characterized by
increased cell migration, proliferation, extracellular matrix protein syn-
thesis, secretion, and decreased contractile protein content.244 This phe-
notype is responsible for vessel formation and reparation. However,
when it is dysregulated, it is responsible for vascular diseases (Figure
5).244 Inhibition of autophagy with 3-methyladenine delays the differenti-
ation of epicardial progenitor cells into coronary VSMCs while its activa-
tion with rapamycin induces an early transient differentiation of
epicardial progenitor cells and enhanced migration.245 Moreover,
GDF11, an inhibitor of cardiac hypertrophy in mice,246 promotes carotid
VSMC differentiation and prevents cell dedifferentiation induced by
autophagosome accumulation triggered by western diet, lysosome func-
tion deficiency, and inflammation.247

Conversely, angiotensin II (Ang II), through an AGTR1–RHOA kinase-
dependent signalling pathway, activates autophagy in VSMCs by a mecha-
nism involving the increase of BECN1, PIK3C3, ATG12–ATG5, ATG4,
and ATG7 protein levels and BECN1 phosphorylation, suggesting activa-
tion of phagophore initiation and expansion.248 Ang II regulates contrac-
tile protein content in VSMCs through an autophagy-dependent
mechanism.248 Inhibition of autophagy by SEPTIN4,249 and cortistatin, a

neuropeptide highly homologous to somatostatin,250 inhibits Ang II-in-
duced VSMC proliferation. Similarly, an AMPK–MTORC1 signalling-de-
pendent induction of autophagy in VSMCs is described for SPARC.
SPARC upregulates LC3-II, BECN1, and ATG5, triggering an autophagy-
dependent VSMC dedifferentiation.251 Regulation of cell migration by
autophagy via the degradation of KAT2A is also described for VSMC.252

Therefore, VSMC dedifferentiation processes, i.e. proliferation, migra-
tion, contractile, and extracellular matrix protein synthesis, are highly
regulated by autophagy.

17. Endothelial function

The endothelium is a critical regulator of vascular health and function.
Shear stress generated by the blood flow is one of the most important
stimuli that control endothelial function.253 Steady laminar shear stress
(5 or 15 dynes/cm2) induces autophagy in human and rabbit endothelial
cells, associated with the induction of endothelial NOS3/eNOS (nitric
oxide synthase 3) and inhibition of expression of the vasoconstrictor
EDN1/ET-1 (endothelin 1).156 The mechanism involves the deacetyla-
tion of ATG5 and ATG7 in a SIRT1-dependent manner.254 In contrast,
oscillatory or low levels of shear stress reduce autophagy, uncouple
NOS3, and trigger proatherogenic responses.168,254,255 From a transla-
tional point of view, using primary endothelial cells collected from the ra-
dial artery of men, showed that 60 min of rhythmic handgrip exercise
activates autophagy, increases NOS3 phosphorylation, and increases ni-
tric oxide and O�-2 generation.256 In diabetic patients, autophagic flux is
reduced, which impairs NOS3 activation.163 These data suggest that
steady laminar shear stress induces autophagy with a beneficial vasodila-
tory effect, and diabetes disrupts these mechanisms. Moreover, dis-
turbed blood flow promotes atherosclerosis, whereas laminar flow has a
protective action by preventing endothelial apoptosis, senescence, and
inflammation.169 The mechanism involves activation of endothelial
autophagy that triggers SIRT1 expression that inhibits STK3/MST2–
STK4/MST1 (HIPPO)-YAP1 signalling that interrupts atherosclerotic pla-
que formation.188

18. Vascular remodelling

Pathological vascular remodelling is characterized by the narrowing of
the vessel lumen, mobilization of VSMC to the intima layer, exacerbated
extracellular matrix production (fibrosis) and infiltration by immune
cells.257 Dedifferentiated VSMCs have been extensively described in the
development and progression of atherosclerosis, hypertension, resteno-
sis, and neointimal formation.258,259 Various rapamycin analogues (rapa-
logs) have been used in drug-eluting stents for treating arterial
restenosis. Two major rapalogs, everolimus, and biolimus strongly inhibit
neointimal hyperplasia.260 However, everolimus exerts cytotoxicity by
increasing ROS and reducing energy metabolism. In contrast, biolimus
preferentially induces autophagy by activating ULK1. The implantation of
biolimus-eluting stent reduces endothelial loss and inflammation in por-
cine coronary arteries.260

VSMCs with specific genetic atg7 deletion show a reduction in serum-
induced cell growth and cell proliferation rate and an increase in cell
death.261 Furthermore, an atg7 conditional knockout mouse crossed
with Apoe (apolipoprotein E)-deficient mouse shows a reduction in me-
dial cellularity and an increase in TUNEL-positive cells in the descending
aorta. This mouse also shows a reduced survival rate due to aortic
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rupture associated with increased markers of atherosclerosis.261 Using
another VSMC-specific atg7 knockout mouse continuously infused with
Ang II (1.5 mg/kg/day) also exhibits increased mortality associated with
cardiac rupture, MI, end-organ damage, venous distention, pleural effu-
sion, and abdominal aortic dissections.262 Deletion of Atg5 in VSMCs
increases cell death susceptibility, enhances ER stress activation, pro-
motes VSMC inflammation, and increases the incidence of fatal rupture
of aortic aneurysm (Figure 5).181 TFEB is downregulated in aortic aneu-
rysm lesions, and TFEB deficiency increases VSMC apoptosis and pro-
motes abdominal aortic aneurysm formation in mice.263 In contrast,
TFEB activation has the opposite effect.263 Additionally, metformin pre-
serves aortic elastin and collagen and reduces aortic cell apoptosis ab-
dominal aortic aneurysms in patients and rat models. The mechanism
involves the inactivation of the PI3K–AKT–MTORC1 pathway and the
decrease of mRNA and protein levels of LC3B and BECN1.264 Inhibition
of vascular inflammation by using BP-1-102, a novel potent STAT3 inhibi-
tor, decreases abdominal aortic aneurysm by preserving autophagy.265

These data suggest that the fine-tuning of autophagy flux is required to
maintain aorta wall integrity.

19. Atherosclerosis

VSMC dedifferentiation is a key step in the development of atheroscle-
rotic plaque. Therefore, disruption of autophagy has important conse-
quences on atherosclerosis genesis and progression. Besides
macrophages, VSMCs are also an important source of foam cells in ath-
erosclerosis. In a high-fat diet-fed apoe knockout mice model of athero-
sclerosis, activation of the P2RY12 receptor inhibits autophagy in
VSMCs, which decreases cholesterol efflux and promotes VSMC-
derived foam cell formation.266

Atherosclerotic plaque instability predisposes to the occurrence of
cardiovascular events such as MI and stroke. A mouse model of plaque
instability in VSMC-specific atg7 knockout mice crossed with apoe
knockout mice, shows that defective autophagy in VSMCs increases pla-
que instability and the risk of rupture (Figure 5).267 Conversely, enhance-
ment of autophagy in VSMCs or macrophages by using trehalose or by
overexpression of TFEB exerts athero-protective effects, reducing pla-
que formation with a reduction of inflammation.268 Moreover, in the
context of proatherogenic stimuli, the deficiency of autophagy induces
inflammation in coronary artery VSMCs by promoting NLRP3 inflamma-
some formation and activation.269 These data suggest that autophagy is
also a critical process in maintaining immune homeostasis during
atherosclerosis.

20. Pulmonary hypertension

Pulmonary hypertension (PH) is a progressive disease characterized by
excessive proliferation of pulmonary arterial vascular smooth muscle
cells (PASMC).270 More than 70% of familial PH and 20% of idiopathic
PH patients carry heterozygous mutations in BMPR2.271 BMPR2 is de-
graded by autophagy in pulmonary artery endothelial cells and
PASMC.271 Mutations in BMPR2 are sufficient to trigger an increased
autophagic flux.271 Similarly, pulmonary microvascular endothelial cells
from end-stage idiopathic PH patients present an elevated autophagic
flux.271 Along these lines, inhibition of autophagy with chloroquine272 or
paclitaxel273 blocks PASMC proliferation (Figure 5).

21. Autophagy as a pharmacological
target in cardiovascular diseases
and current limitations

Despite several pharmacological agents and regimens that modulate
autophagy, very few clinical trials have evaluated their effects in cardio-
vascular diseases. Of these, only exercise, trehalose, and hydroxychloro-
quine have been evaluated (Table 2). Another important current
limitation in the field is the lack of cell/organ-targeted delivery of exoge-
nous autophagy regulators for cardiac or vascular repair. We are still far
from having an effective autophagy therapy. However, insights obtained
from such works will provide inspiration for future clinical trials to assess
the autophagic response for therapeutic gain. Careful consideration
must be kept in mind because of the dual role of autophagy in cytopro-
tection and cell death.

22. Conclusions

As autophagy remains an important factor in maintaining cardiovascular
homeostasis, further research is required to pinpoint novel pharmaco-
logical targets that will allow us to harness the benefits of controlling
autophagy levels to treat different cardiac pathologies.
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A, Eller K, Carmona-Gutierrez D, Büttner S, Pietrocola F, Knittelfelder O, Schrepfer
E, Rockenfeller P, Simonini C, Rahn A, Horsch M, Moreth K, Beckers J, Fuchs H,
Gailus-Durner V, Neff F, Janik D, Rathkolb B, Rozman J, de Angelis MH, Moustafa T,
Haemmerle G, Mayr M, Willeit P, von Frieling-Salewsky M, Pieske B, Scorrano L,
Pieber T, Pechlaner R, Willeit J, Sigrist SJ, Linke WA, Mühlfeld C, Sadoshima J,
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