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Abstract

Ultrasounds are often used in cancer treatment protocols, e.g. to collect tumor tissues in the right location using
ultrasound-guided biopsy, to image the region of the tumor using more affordable and easier to use apparatus than
MRI and CT, or to ablate tumor tissues using HIFU. The efficacy of these methods can be further improved by combin-
ing them with various nano-systems, thus enabling: (i) a better resolution of ultrasound imaging, allowing for exam-
ple the visualization of angiogenic blood vessels, (ii) the specific tumor targeting of anti-tumor chemotherapeutic
drugs or gases attached to or encapsulated in nano-systems and released in a controlled manner in the tumor under
ultrasound application, (iii) tumor treatment at tumor site using more moderate heating temperatures than with
HIFU. Furthermore, some nano-systems display adjustable sizes, i.e. nanobubbles can grow into micro-bubbles. Such
dual size is advantageous since it enables gathering within the same unit the targeting properties of nano bubbles
via EPR effect and the enhanced ultrasound contrasting properties of micro bubbles. Interestingly, the way in which
nano-systems act against a tumor could in principle also be adjusted by accurately selecting the nano-system among
a large choice and by tuning the values of the ultrasound parameters, which can lead, due to their mechanical nature,
to specific effects such as cavitation that are usually not observed with purely electromagnetic waves and can poten-
tially help destroying the tumor. This review highlights the clinical potential of these combined treatments that can
improve the benefit/risk ratio of current cancer treatments.
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Introduction

Cancer mortality rate increases with population aging
or exposure to risk factors such as alcohol, tobacco con-
sumption, obesity, or the presence of a pandemic like
COVID-19, which limits access to patient care, [1]. These
trends tend to be particularly pronounced in the least
medicalized countries and for advanced or difficult to
treat cancers, [2]. While nanotechnology often appears
as an all-encompassing and abstract term, it may in fact
have the potential to significantly lower this rate, e.g. by
making cancer treatments less expensive and thus acces-
sible for people living in countries without social security,
by making certain heavy operations such as general anes-
thesia unnecessary, or by improving the benefit to risk
ratio of cancer treatments, [3]. Among the different types
of nanotechnologies that could be considered for such
purpose, the combination of nano-systems with ultra-
sounds is especially appealing. Indeed, it gathers a series
of advantages. First, it might allow localized cancer treat-
ment at tumor site by enabling therapeutic nano-systems
to specifically target tumors via passive, magnetic, or
active targeting, [4]. Second, it can also improve the sen-
sitivity of tumor detection by enabling either high reso-
lution ultrasound imaging, e.g. nano/micro bubbles can
help visualizing blood vessels irrigating the tumors, [5],
or the combination of standard US detection methods
with other imaging methods such as PA, MR], or CT, [6].
Ultrasounds can in some cases help to achieve such tar-
geting by permeabilizing certain barriers such as those
of the brain or skin through which nano-systems should
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diffuse before reaching the tumor, [7, 8]. They can also
serve as a source of excitation to activate nano-systems
in the tumor in several manner, e.g. through cellular
internalization of nano-systems in tumor cells, [9], or via
thermal or immune activation, [10], or controlled drug
release, [11]. This review highlights the advantages of
these combined cancer treatments compared with more
commonly used un-paired therapeutic or diagnostic
ultrasounds.

Ultrasound parameters used for cancer therapy

Ultrasounds are mechanical waves that oscillate periodi-
cally at a frequency f, which is larger than that of audible
sounds, i.e. f>20 kHz. These waves are usually produced
by a transducer, which converts an electric signal in a
mechanical displacement. Compared with other types of
radiations such as lasers, ultrasounds present the advan-
tage of penetrating more deeply in tissues, leading to
their non-invasive use in humans. One can distinguish
high intensity focused ultrasounds (HIFU), operating at
high intensities i, i.e. i~0.1-10 kW/cm?, [12], from low
intensity ultrasounds (LIU), which are often less focused
than HIFU, and generate ultrasounds of lower intensity,
i.e. i<1-5 W/cm?, [13]. On the one hand, HIFU enables
to specifically target a tumor region and to rapidly reach
the temperature of thermal ablation of typically 80 °C in
this region, resulting in coagulative tumor cell death, [14].
While HIFU is relatively well suited to treat small tumors,
it faces some difficulties for the treatment of large or
hyper-vascularized tumor volumes, for which numerous
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heating spots may be requested for efficient treat-
ment, necessitating a long treatment time and the use
of numerous MRI images to locate the various emplace-
ments of the tumor region that need to be heated, [15],
possibly using volumetric heating techniques, [16]. On
the other hand, LIU may treat with one application a
larger portion of the tumor volume than HIFU but may
not enable reaching the temperature of thermal ablation,
[17]. For safety reasons, ultrasound imaging should be
carried out at intensities kept below ~0.05—-0.50 W/cm?
to avoid heating tissues, [18]. The basis of this recom-
mendation relies on the analysis of specific cases such as
fetus imaging, which obviously requires the utmost safety
considerations. While designing ultrasound imaging
apparatus for tumor tissue, it is not certain that the same
rules would apply. With regard to ultrasound frequencies
f, they can be divided between relatively high frequencies
of typically 3-60 MHz used in medical diagnosis, [19,
20], medium frequency of 0.7-3.0 MHz serving in thera-
peutic medicine, [21], and low frequency of 20-200 kHz,
which can improve drug delivery efficacy at relatively
large penetration depth, [22]. To reach a desired out-
come, the ultrasound frequency and intensity should be
adjusted skillfully, e.g. to increase US penetration depth,
US frequency may be reduced, while to enhance US heat-
ing, US intensity may be increased, where US frequencies
and intensities remain within a range of acceptable values
in the medical field. In addition to frequency and inten-
sity, other ultrasound parameters such as ultrasound
pressure (MPa), mechanical index, pulse length, pulse
repetition frequency, duty cycle, total ultrasound applica-
tion time, have been adjusted to yield specific ultrasound
properties in an organism, [23].

Different types of nano-systems used for cancer treatment
in the presence of ultrasounds
To improve the efficacy of therapeutic or diagnostic
ultrasound, nano-systems acting as sonosensitizer or
contrast agents were introduced. Concerning sonosen-
sitizers, they are often described as ROS enhancer, a
view inspired from the definition of photosensitizers,
which produce ROS under laser light irradiation. Since
nano-systems exposed to ultrasounds may trigger other
mechanisms such as cavitation, heating, or mechani-
cal displacements, I consider here that nano-systems
are sonosensitizers when they enhance various types of
sono-induced mechanisms, not only ROS production.
Figure 1 shows a schematic representation of the differ-
ent nano-systems (NS) considered for cancer treatment
in the presence of ultrasound applications. It highlights
the conception of NS, which are fabricated starting
from a nano-metric backbone associated with different
functional elements, which improve their therapeutic,
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imaging, or targeting efficacy. Furthermore, Table 1 sum-
marizes the properties of these materials such as their
composition, their average size, their use as diagnos-
tic and/or therapy tools. In general, the backbone con-
sists of the following entities: (i) nano-bubbles, [24-26],
or nano-droplets, [27-31, 52], i.e. hollow nanometric
spheres filled with gases or liquids, whose external sur-
face is stabilized by polymers such as PMMA, PLGA,
[30], or lipids or phospholipids, [32-40, 130], (ii) silica
NP with different levels of porosity or meso-porosity,
[40—44, 130], (iii) inorganic NP in the form of nanocrys-
tals or porous structures such as gold NP, [45, 46], iron
oxide NP, [45, 47-49], TiO, NP, [50], Au-TiO, NP, [51],
MnOx NP, [52], bismuth NP, [53], ZnO NP, [54], (iv) nat-
ural NP such as those composed of heme-based pigment
biliverdin, [55], or albumin, [36-38], (v) certain biologi-
cal structures such as exosomes, [56], membrane vesicles,
[57], protein vesicles of bacterial origin, [58, 59], polym-
ersome, [60-62], self-assembled peptides, [63], which
are either isolated from their original biological environ-
ment or copied from living material through chemical
synthesis. In some interesting cases, nano-systems are
associated with superstructures either to ensure their
stability or sufficient concentration, e.g. for MnWOx
NP attached to graphene sheets, [64], or to combine
therapeutic and imaging functionalities together, e.g.
for therapeutic magnetic NP attached to the surface of
echogenic microbubbles, [47]. In general, functional ele-
ments are added to the backbone by being either bound
to its external surface or incorporated inside its inner
core, at concentrations that are theoretically larger than
those, which would be obtained in macroscopic drugs
with smaller surface/volume ratio. Such association often
aims at preventing these functional elements from being
degraded by the organism or lost before they reach the
tumor. The first type of functional elements, which yields
improved therapeutic efficacy, is made of: (i) chemother-
apeutic drugs such as DOX, [36-38, 65, 66], Cis-platin,
[34, 35], or Docetaxel, [36—38], whose association with
nano-systems should result in an enhanced drug con-
centration in the tumor and a synergy between chemo-
therapeutic and ultrasound anti-tumor effects, (i) two
types of gases, those which have a direct toxicity towards
the tumor such as carbon monoxide (CO), nitric oxide
(NO), hydrogen sulfide (H,S), hydrogen (H,), sulfur diox-
ide (SO,), carbon dioxide (CO,) and oxygen (O,) that
yields tumor oxygenation and enables chemotherapeu-
tic drug to overcome resistance observed under hypoxic
tumor environment, [67], (iii) ROS enhancer such as
protoporphyrin, [68—71], TAPP, [72], which are able to
generate ROS under ultrasound application. The second
category of functional elements, which confers to nano-
systems their ultrasound contrasting ability, consists of
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Construction of an ultrasound theragnostic contrast agent starting from a nanometric naked backbone and adding
different functionalities for therapeutic, imaging, and targeting purposes
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Fig. 1 A schematic diagram representing the various types of nano-systems (NS) that have been used for cancer treatment/diagnosis. NS are
presented in a hierarchical order, starting from a backbone consisting of nano-bubbles/nano-droplets, mesoporous nano-complexes, nanocrystals,
biological nanostructures, to which one or several functional element(s) is/are added. Such functional elements provide the backbone with a
therapeutic, imaging, or targeting activity. In some cases, another radiation than ultrasound can be used, such as laser for PDT/PTT treatment or PA
imaging, or a magnetic field to yield magnetic targeting when the backbone is made of metallic elements. A unique feature of these nano-systems,
which is not often encountered in nano-systems not excited by ultrasounds, lies in their gaseous content, which can either be used for cancer
treatment, e.g. through O, release to fight against tumor hypoxia, or for tumor imaging, e.g. by using microbubbles with a different acoustic
impedance from that of the tissular environment

a nanomaterial with a different acoustic impedance than
that of its surrounding tumor tissue, hence enabling the
acoustic wave to be reflected at nanomaterial surface
and then to travel back to be detected. In most cases, it
is made of gases such as sulfur hexafluoride (SF;) or per-
fluorocarbon (PFC) contained in nano bubbles often able
to expand into more echogenic microbubbles under cer-
tain conditions, [73]. Finally, the backbone can also be
associated with an agent that favors its accumulation in
the tumor. This agent can be a targeting moiety recogniz-
ing a tumor cell receptor such as anti-HER2 antibodies,
[32], rabies virus glycoprotein peptides targeting neuro-
blastoma cells, anti-EGFR antibodies, [48, 49], folic acid,
[6], cyclic arginine-glycine-aspartic pentapeptide, [71],
antibody targeting epiregulin, [74]. It can also consist in a
compound such as macrophage membrane, [75], or PEG,
[48, 49], enabling nano-systems to avoid being captured
by the immune system. In some cases, the backbone itself
has certain functionalities, as it is the case for TiO, NP

generating ROS under ultrasound application, for mag-
netic NP guided towards the tumor with a magnet, or
for backbones with composition, geometry or size ena-
bling their passive diffusion towards the tumor via the
EPR effect, [76]. To facilitate the pharmaceutical fabrica-
tion of these nano-systems in a reproducible manner, it
may be easier to use a simple backbone which is devoid
of a large number of additional functional elements than
more complex structures. Some of the nano-systems pre-
sented in the literature display several building blocks.
For example, NS made of PLGA NC (block 1) coated with
a thin Silica layer (block 2) encapsulating perfluorocar-
bon (block 3), antitumor Ruthenium complex (block 4),
and superparamagnetic Fe;O, NP (block 5) consist of 5
distinct blocks, [44]. In a pharmaceutical production
process, it would be necessary to demonstrate that each
block is fabricated and assembled in sufficient quantity
and reproducibly, without forgetting that a high purity
level, a long-term stability, an endotoxin-free and sterility
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Fig. 2 A summary of the various mechanisms following which nano-systems can become active for tumor targeting, imaging, and treatment

of the product should also be achieved. Such hard task
may be fulfilled by reducing the number of blocks, [77].

Diffusion of nano-systems through physiological barriers
favored by ultrasound application

To reach a tumor, nano-systems should cross certain
physiological barriers, such as those that limit penetra-
tion through tissue or cell uptake, or induce variable cir-
culation/perfusion, extravasation, [78]. These barriers
protect the organism against invasion by external agents.
The application of ultrasounds has first been shown to
favor the diffusion of nano-systems through the skin, in
particular the stratum corneum, [9]. This mechanism is
particularly efficient using low frequency ultrasounds of
typically 20 kHz that penetrate deeply through the skin.
Its efficacy was reported to rely on a combination of cavi-
tation [79, 80], thermal [81, 82], radiation force, convec-
tion [83], and lipid extraction [84] effects resulting from
ultrasound application. Thus, nano-systems consisting
of liposomes comprising siRNAs have been delivered to
skin tumors through mouse epidermal and dermal lay-
ers under the application of 20 kHz ultrasounds. The
treatment led to a reduction of melanoma tumors grown
under the skin of the treated mice, [85]. The blood brain
barrier (BBB) can also be temporarily disrupted by low
frequency focused ultrasounds, resulting in efficient
nano-system diffusion in the brain with a high preci-
sion, i.e. with a resolution below 1 mm, a phenomenon
attributed to physical disturbances created by MB and to
temperature increases, both effects yielding BBB permea-
bilization, potentially synergically, [86]. Hence, liposomes
encapsulating DOX were shown to efficiently cross the
BBB, leading to DOX delivery in the brain, [87].

Mechanisms involved in anti-tumor activity

The various mechanisms of action responsible for the
anti-tumor activity triggered by nano-systems exposed to
ultrasounds are summarized in Fig. 2.

Heating
Heating can be beneficial in tumor treatment, e.g.
through tumor ablation, increased blood vessel/tissue
permeability, triggered drug release, [88]. Nano-systems
(NS) could favor an ultrasound anti-tumor heat treat-
ment in two ways. First, metal-based NS can increase
the amount of heat produced by ultrasounds, [89]. Such
mechanism may be attributed to the presence of nano-
systems in the tumor, which enhances ultrasound atten-
uation at high ultrasound intensity and frequency, [90].
Thus, when Au, NGO or IONP NP were injected to
tumors or Au NP were mixed in water and these mixed
systems were exposed to ultrasounds, it yielded a more
pronounced temperature increase by 15 to 40% for NP
contained in tissue than for NP-free tissue, [45], and to
a higher heating rate of 1.6 °C/min for Au NP dispersed
in water than for free water, i.e. 0.4 °C/min, [45]. Such
results were obtained for specific values of NP concen-
trations, i.e. 0.2 pg of NP per mm? of tissue, ultrasound
intensity, i.e. i=1-2 W/cm?, and ultrasound frequency,
i.e. f=1 MHz, [90]. To the author knowledge, the range
of values of the various parameters, i.e. NP size, compo-
sition, concentration as well as ultrasound intensity, and
frequency, which should yield an optimal enhancement
of the thermal efficacy in the presence of NS, have not yet
been reported.

Second, NS can consist of temperature sensitive phos-
pholipid or polymer membranes able to switch from a
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stable configuration at physiological temperature, where
they maintain drug encapsulation, to an unstable state
at a higher temperature resulting from ultrasound appli-
cation, which leads to membrane destruction and drug
release. The transition occurs at the so-called transition
temperature, which is typically within the range of mild
hyperthermia (40—43 °C). Thermosensitive liposomes can
be composed of phosphatidylcholines, [91], PEGylated
phospholipids associated to DPPC/DSPC, [92], porous
lisolipids membranes, [93]. They can trigger anti-tumor
activity through a combination of temperature triggered
anti-cancer drug release /activation and mild hyperther-
mia, [91]. A drawback that has slowed down the devel-
opment of these liposome lies in their relative instability,
which can lead to their destruction before they reach the
tumor, [94], and methods to overcome this lack of stabil-
ity have been developed using DPPGn lipids that are not
leaky at normal body temperature, [95].

Cavitation

The most frequently described mechanical effect that
can generate anti-tumor activity under ultrasound appli-
cation is cavitation. For the sake of clarity, it is common
to separate it from the thermal effect described above.
However, cavitation and thermal mechanisms are related
to each other, i.e. cavitation can create a temperature
increase while a temperature variation can affect cavi-
tation. NS may act as nuclei of cavitation bubbles and
therefore potentially enhance the level of cavitation
resulting from ultrasound application, [9]. In general, two
types of cavitation can be distinguished, i.e. stable and
inertial ones. In stable cavitation, gas pockets are formed,
which oscillate periodically in size through so-called
acoustic compression and decompression cycles, which
generate fluid streaming and mechanical stresses, which
have been reported to be able to destroy cancer cells, [9].
By contrast, inertial cavitation is an unstable phenome-
non, in which bubbles generated by ultrasounds expand
and collapse, potentially leading to high temperatures
(>5000 K), pressures (>800 atm), and ROS production,
[9]. Nano-systems associated with cavitation phenomena
have been reported to be either nano-bubbles or micro-
bubbles, with some systems transiting between these two
states. In general, two types of micro/nano bubbles can
be distinguished, those endogenous whose formation
results from ultrasound application, and those exogenous
that are administered on purpose in the organism. The
existence and nature of cavitation therefore does not only
depend on the type of nano-system, but also on ultra-
sound parameters such as ultrasound frequency, pres-
sure, intensity, pulse sequence, or duration of application.
Thus, the behavior of micro/nano bubbles was reported
to depend on negative acoustic pressure, which can
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trigger nano/micro bubbles growth or expansion. While a
relatively low negative acoustic pressure associated with
mechanical indexes MI of typically 0.1<MI<0.3 could
favor stable cavitation, a higher negative acoustic pres-
sure associated with MI larger than typically 0.3-0.6
may more easily result in nano/micro bubble disrup-
tion and unstable cavitation, [96]. In fact, the formula,
which provides an expression of MI as the ratio between
the negative acoustic pressure and the square root of the
ultrasound frequency, [5], does not seem to take into
account other parameters that can influence MI val-
ues, such as: (i) the medium through which ultrasounds
travel, i.e. for the same acoustic parameters, the mechani-
cal index was shown to differ in water and blood, [97], or
(ii) the acoustic wave pulsation length, [98]. Furthermore,
it was also reported to use a high ultrasound frequency
to reduce MI and avoid unstable cavitation, [98]. As an
example, polymeric NP containing porphyrins, which
were exposed to ultrasounds of frequencies maintained
below 20 MHz and high-pressure of amplitude up to
120 MPa were shown to induce cavitation on an in-vitro
neuroblastoma model, [99]. Ultrasound MI is often var-
ied to obtain the desired treatment mechanism. The
effects of cavitation are thus diverse, ranging from the
destruction of cells to the creation of pores in or between
cells, to the enhancement of endocytosis, depending
on the ultrasound setting parameters, [100]. One of the
main challenges with cavitation lies in its highlighting
through the visualization or measurement of the bubbles
that it generates, specifically in an organism, which is a
difficult task, [101]. Some studies have overcome this dif-
ficulty, publishing results on cavitation monitoring, [102].
Furthermore, clinical trials were launched, which used
cavitation as an underlying mechanism, [103].

Sonoluminescence

Sonoluminescence (SL), which results from cavitation,
is characterized by flashes of light emitted by cavitation
bubbles, [104]. It can possibly result in the apparition of
an electron/hole pair and subsequently the generation
of ROS species. For example, when microbubbles were
produced by the application of ultrasounds, nonther-
mal cavitation was reported to occur, possibly result-
ing in sonoluminescent light exciting C-doped TiO,
NP. When these NP decayed back to their ground state,
energy could be transferred to oxygen to generate ROS,
which might then trigger tumor cell death, [105]. How-
ever, such cascade mechanisms should remain hypo-
thetical in the absence of a method enabling to directly
measure or observe them. Sonoluminescence may also
be responsible for the activation of light-sensitive drugs
(LSD) through the light that it triggers. Hence, it cre-
ates a bridge between Photodynamic and Sonodynamic
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therapy, where Sonodynamic therapy displays the advan-
tage of exciting LSD at a larger depth than PDT, since
ultrasounds usually penetrate more deeply than laser
light, [104].

Sonoporation

Although separated from the cavitation section for the
sake of clarity, sonoporation, which may also be desig-
nated as sonopermeation, could be associated with the
formation of pores in cell membranes under ultrasound
exposure and therefore result from cavitation, [106]. It
can favor the diffusion of NS through the cell membrane,
via a mechanism called Sonoporation, [107-109], ena-
bling the capture of NS and their associated functional
elements by tumor cells. This mechanism can be trig-
gered by: (i) intracellular interactions between micro-
bubbles trapped inside cells and cell membranes, (ii)
micro-jetting, (iii) micro-streaming, (iv) shock-waves,
and (iv) diffusion of microbubbles through cells, [9].
Intracellular interactions can be characterized by back-
ward and forward movements of microbubbles, which
apply a mechanical force on cell membrane that is suffi-
ciently strong to permeabilize it. In general, jets, streams,
shockwaves occur under ultrasound application even
in the absence of micro-bubbles, [110]. The addition
of micro-bubbles should result in the location of these
mechanisms around or near these bubbles. Micro-
streaming is associated with the fluid movement around
bubbles, resulting from the energy being transferred
from the ultrasounds to the fluid. In some cases, sonopo-
ration was reported to be a relatively mild effect, due to
non-inertial cavitation, which enhances cell permeabil-
ity and favors NS or drug displacement without signifi-
cantly damaging cells, [111], enabling for example blood
vessel permeabilization, [112-114]. In some other cases,
sonoporation was described as a mechanism inducing
cytotoxicity and the mechanical destruction of cell mem-
brane in the presence of NP, [115, 116], possibly due to
NP interactions with cell membrane, [117, 118]. Further-
more, sonoporation mechanism was reported to occur
for a wide range of different ultrasound frequencies, i.e.
typically comprised between 0.02 and 6 MHz, [119, 120],
and low intensities, i.e. typically below 1 W/cm?, [120],
suggesting that this method can relatively easily be trans-
posed clinically, [121], given the easily achievable ultra-
sound parameters that it requires.

Controlled drug release from nano-systems under ultrasound
application

When they are used without being exposed to a source
of radiation, NS often suffer from a lack of control over
the anti-tumor activity that they trigger. Such drawback
can be overcome by exposing certain NS to ultrasounds
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to achieve drug release/activation on demand. For exam-
ple, it was shown that drugs/bio-active molecules could
be released from polymer-based NS, [122], hydrogels,
[123], microbubbles following ultrasonic excitation, lead-
ing to significant drug accumulation in tumor tissues and
then to tumor growth inhibition, [124]. Such mechanism
displays a number of advantages. It allows repetitive drug
release by applying ultrasounds several times, [123]. It
prevents permanent drug damages by using mild ultra-
sound treatment parameters. It prevents drug release in
the absence of ultrasound application. It leads to a reduc-
tion of detrimental side effects of toxic chemotherapeutic
drugs. It decreases drug leakage in blood circulation. It
yields controlled drug release in the tumor, hence limit-
ing healthy tissue exposure [125-128].

Gases activated against the tumor

Certain gases have been reported to be involved in anti-
tumor activity, [129]. Firstly, they could be inserted inside
nano/micro bubbles, and released in a controlled man-
ner in the tumor under ultrasound application. Secondly,
they could undergo a transformation to become active,
e.g. through in situ conversion of H,O, to O,. In fact, the
tumor micro-environment often displays high levels of
H,0,, which can be converted to O, by catalase enzymes
or inorganic systems mimicking enzyme activity, as
observed for catalase associated to iron oxide nanopar-
ticles that produced O, bubbles in tumors under HIFU
application, [130]. The way in which gases act against the
tumor depends on their nature. When present in tumor,
Oxygen (O,) can help overcoming tumor hypoxia, which
undermines chemotherapy efficacy, nitric oxide (NO) can
yield the production of highly reactive ROS, i.e. perox-
ynitrites (ONOO™), [131-133], hydrogen sulfide (H,S)
can lead to selective ROS activation, [134], sulfur dioxide
(SO,) can help regulating redox balance in tumor, [75,
135], CO, can favor drug release, [136]. The use of NS
to deliver gases enables overcoming the problem asso-
ciated with their low solubility and irritability through
their encapsulation in nano/micro bubbles. Moreover,
when they are associated with nano-systems, gases can
either be selectively released in the tumor microenviron-
ment (TME), [137], or be produced in TME, [138]. Such
gases can also help to visualize and release drugs, [139],
to starve tumor cells through CO generation that blocks
nutrients, e.g. glucose or O,, [140], or to create tumor
embolization using nano-bubbles filled with SF; and
thrombin exposed to ultrasounds, [141].
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Micro to nano or nano to micro size conversion

One of the most appealing features of treatments com-
bining ultrasound and NS comes from the adjustment of
NS sizes that they allow. This is essentially achieved with
nano/micro bubbles/droplets, which can either increase
in size from being nanometric to being micrometric
or inversely decrease in size from being micrometric to
being nanometric, [142]. On the one hand, such mecha-
nism can be due to the mechanical nature of the acous-
tic wave, which enables applying a positive/compressive
and/or negative/expansive pressure on these NS. On the
one hand, it can come from vaporization of nanodro-
plets, i.e. a transition from a liquid to a gaseous state of
the droplet that yields its expansion, [143, 144]. While the
first mechanism is purely acoustic, the second one can
be generated by other radiations than ultrasounds such
as laser, [145, 146]. Such duality in NS sizes enables bub-
bles/droplets to combine a good echogenicity achieved
under micrometric sizes with a faculty to passively diffuse
towards the tumor via EPR effect resulting from their
nanometric dimensions, [147]. For example, a nanodrop-
let made of biodegradable block copolymer of PEG/PLLA
with a low boiling temperature of 29 °C encapsulating
DOX and PFP, displayed the capacity to: (i) vaporize
upon heating to physiologic temperatures and be trans-
formed into a microbubble acting as ultrasound contrast
agent, (ii) extravasate into a mouse tumor following its iv
injection due to its nanometric size during its transport
towards the tumor, (iii) release DOX in the tumor to yield
significant chemotherapeutic efficacy, [148]. At the oppo-
site of this transformation, lies the transition of MB from
micrometric to nanometric sizes. As a first example, MB
consisting of porphyrin-phospholipid shell encapsulat-
ing perfluoropropane gas can transform into smaller
porphyrin NP under ultrasound application, and lead to
high accumulation of porphyrin at tumor site, [149]. As
a second example, MB loaded with siRNA could be con-
verted into NP upon ultrasound exposure, hence lead-
ing to efficient anti-tumor efficacy among tumor-bearing
mice receiving this MB/ultrasound combined treatment,
an effect which was attributed to an improved XIAP
gene silencing and cleaved caspase-3 activation, [150]. In
order for these methods to be fully efficient, ultrasounds
should be applied at the right moment, i.e. after and not
before bubbles/droplets have reached the tumor, and a
too strong or stringent interaction between ultrasounds
and bubbles/droplets should be avoided to prevent their
destruction, [151].

Preclinical studies preceding the use of nano-systems

in the clinic

The clinical use of nano-systems could be foreseen to
improve the imaging and/or therapeutic ultrasound

Page 20 of 30

capability. Such prediction largely relies on preclinical
data, which have been obtained. Figure 3 presents several
schemes, which were drawn based on preclinical results.
They illustrate the ways in which NS could be used to
treat and image a tumor following ultrasound applica-
tion, which parameters may influence ultrasound treat-
ment efficacy, and NS biodistribution potentially yielding
NS elimination following treatment.

In vivo tumor imaging
NS could be used for ultrasound tumor imaging. First,
microbubbles, which are commonly used ultrasound
contrast agents, [152], may enable super resolution ultra-
sound microscopy, [153]. For example, MB were sent to
blood vessels irrigating tumors, they could serve as US
contrast agents to image these vessels with a resolution,
which is below the acoustic diffraction limit, [154]. Sec-
ond, various nano-systems can be excited by laser light,
producing their thermal expansion and an acoustic wave,
which is further detected by an ultrasound detector, a
method called photo-acoustic (PA) imaging that can
potentially be applied for the visualization of deep tumor
tissues, [155]. Advantageously, this method can easily be
combined with laser-based tumor treatment techniques
such as PDT and PTT. For example, tumor-bearing mice,
which received intravenously DPP-TPA NP followed by
passive tumor targeting of the NS as highlighted through
PA imaging, displayed the successful destruction of their
tumor via PDT and PTT treatments, [156]. Third, the use
of NS enables combining echography with other imaging
methods such as CT or MR, [157]. Thus, mice bearing
hepatocellular carcinoma (HCC) tumors injected intra-
venously with ND loaded with iodine could be followed
by ultrasound and CT imaging, where the presence of
iodine enabled reaching a CT resolution close to that
of MRI, [27]. This result appears important since CT is
often left besides in the profit of MRI due to its lack of
resolution. However, given CT low cost, easiness to use,
and frequent implantation in hospitals, there may be an
interest to remedy this situation by using such NS.
Whereas MB remain the main types of NS described
for in vivo tumor imaging, recent studies have described
the emergence of new NS usable as US contrast agents
such as silica-based micro/nanoplatforms, [158], gas-sta-
bilizing nanoparticles, [159], re-chargeable nanobubbles
on amine-functionalized ZnO nanocrystals, [54], polyte-
trafluoroethylene nanoparticles, [160], where cavitation
induced by exposing such NS to ultrasounds can possibly
lead to enhanced ultrasound contrast.

In vitro anti-tumor efficacy
Combined NS/US treatments were tested in vitro
on different cell lines to determine the values of the
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A summary of therapeutic/imaging results abtained with theragnostic ultrasound contrast agents
together with the influence of the ultrasound treatment paremeters on these results
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Fig. 3 Schematic diagrams representing: a the therapeutic outcome of tumor treatments obtained on mice administered with nano-systems and
exposed to ultrasounds, b the strength of various parameters (temperature increase, drug release, ROS production) influencing anti-tumor activity
as a function of ultrasound intensity, as reported in some specific cases, ¢ the different imaging modalities that could be implemented during a
cancer treatment with NS exposed to ultrasounds, d NS biodistribution ending by NS elimination, as reported in some specific cases

parameters, i.e. NS concentration, NS incubation time,
ultrasound intensity and frequency yielding optimal
tumor cell destruction, pore formation and endocytosis,
[161]. Thus, tumor cell death was reported to increase
with increasing quantity of NS, for NS concentrations
comprised between 0.004 and 0.4 pg/mL, [34], 0.05 and
8 ug/mL, [6], 0.06 and 12 uM, [162], or 12 and 200 pg/
mL, [52], with longer incubation time, typically var-
ied between 24 and 72 h, [144], with increasing ultra-
sound intensities, typically comprised between 1 and
6 Watt, [56]. An interesting in vitro study reported that
a decrease of ultrasound frequency from 55 to 40 MHz
resulted in an enhancement in the production of ‘OH and
a decrease in cell viability from 20% at 55 MHz to 13%
at 40 MHz, suggesting that the adjustment of the ultra-
sound frequency does not only affect the ultrasound pen-
etration depth, but also the production of ROS. However,
such observations were made at rather high frequencies.
It is not certain that such behaviors would occur at lower
frequencies (<10 MHz), which are more frequently used
in therapy. Furthermore, several studies reported an
enhanced cytotoxicity when cells were exposed to both

laser and ultrasound instead of ultrasound alone, [68—
70], suggesting the existence of a true synergy between
these two types of radiations, which may be attributed to
their different and complementary contributions. Ultra-
sounds may favor mechanical displacements of NS or the
bubbles/gas that they generate while laser might induce
plasmon resonance waves at the NP surface. However,
these mechanisms appear not to be comparatively dis-
cussed in the literature. In vitro cytotoxicity experiments
were also used to highlight certain mechanisms of tumor
cell death induced by these combined NS /US systems,
such as NS internalization, [28, 29, 52], specific tumor
cell targeting, [32], chemotherapeutic drug release, [129],
or cellular apoptosis, [163, 164]. A very interesting study
attempted to correlate the level of cavitation induced by
US application with the damage that it could produce at
cellular level, [165]. Gels mimicking tissues were filled
with NS and exposed to HIFU, yielding MB observed
by phase array scanning probe measurements. Similar
treatments applied to tissues led to tissue ablation with
a sharp increase in the ablated volume and a decrease
in the peak negative pressure necessary to induce tissue
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ablation in the presence of NS. Hence, an indirect cause-
and-effect link between cavitation and tumor tissue abla-
tion was established, [165]. Recently, a nano-scalpel effect
was reported as resulting from acoustic shock waves and
associated mechanical damages applied on adenocarci-
noma or leukemia cancer cells in the presence of various
metal oxide nanoparticles, [166—168].

In vivo anti-tumor efficacy

Anti-tumor activity of different nano-systems has been
assessed on various subcutaneous tumors, i.e. essentially
glioblastoma U87, [24], ovarian SKOV3, [31], breast 4T1/
MDA-MB-231, [34], head and neck SCC7, [51], cervical
HeLa, [44], neuroblastoma N2a, [169], colon CT26, [35],
fibrosarcoma HT-1080, [170], tumors of typical sizes of
15 to 300 mm?, which were injected with 0.1 to 2 mg of
NS and exposed to ultrasounds of various parameters,
10 min to 24 h following NS injection, (Table 1). The val-
ues of the ultrasound frequency and intensity used dur-
ing the treatments vary a lot depending on the study,
i.e. 40 kHz<f<12 MHz and 2 W/cm?<i<257 W/cm?
(Table 1). It seems that low frequency/intensity favor
sonoporation, [171], or drug release, [172], whereas high
frequency/intensity are more likely to be used when a
temperature increase is desired, [173]. Furthermore,
ultrasound frequency and intensity will affect the depth
of ultrasound penetration, as well as other parameters
such as the size, number, type of bubbles, or amplitude of
temperature increase, where these other parameters also
depend on each other and on the medium through which
ultrasounds travel, the distance between the tumor and
transducer surface, the geometry of the transducer deter-
mining ultrasound trajectory, as well as the nature or
composition of nano-systems. The parameters associated
with NS injection and ultrasound application are summa-
rized in Table 1. While most studies employed an intrave-
nous injection, it was shown in one case that anti-tumor
efficacy could be reached at a lower NS dose (by a factor
of 4) using an intratumor instead of an intravenous injec-
tion mode, [52], suggesting that intratumor injection can
potentially yield anti-tumor activity at lower NS injec-
tion dose than intravenous injection. The most described
short-term treatment outcome is growth tumor retar-
dation observed within 15 min to 30 days following the
beginning of the treatment. To the author knowledge,
the absence of tumor regrowth following treatment
was not reported. It may however be achievable under
conditions of optimized treatment parameters. It was
deduced from preclinical studies that anti-tumor activ-
ity was due to controlled drug release in the tumor, [174],
ROS production, [51], release or generation of gases in
the tumor, [60], an increase of tumor temperature, [53],
anti-tumor immune reactions, [75], or a combination of
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several of these mechanisms, [39]. Although some stud-
ies report cavitation measurements on small animals,
[175], the in vivo detection of cavitation can be difficult,
notably due to small gas bubbles that cavitation may cre-
ate in vivo. In some studies, ultrasounds were only used
to image the tumor in the presence of NS, and the treat-
ment was carried out by applying other types of irradia-
tions such as the laser for PDT, [30, 31], or PTT, [31]. To
highlight immune mechanisms, two approaches were
followed. First, CT26 subcutaneous tumors were grown
on two mouse flanks. NS containing immune modulator
MPLA or imiquimod were used as adjuvant and injected
in the primary tumor located on a first mouse flank. This
tumor was then exposed to ultrasound and radiofre-
quency to yield thermal ablation, i.e. tumor temperature
above ~ 60 °C. It induced an immune response character-
ized notably by the activation of dendritic and long-term
immune memory T cells and de-activation of T, cells,
which resulted in a size reduction of the untreated tumor
located on the second flank 80 days following treatment
of the primary tumor, [10]. Second, 4T1 subcutaneous
metastatic tumors received iv a NS able to produce ‘02
and CO in the tumor, which leads to tumor cell apopto-
sis, as well as an immune agent NLG919 that blocks the
indoleamin 2,3-dioxygenase signal pathway. Such com-
bined treatment resulted in T cell activation and T,
inhibition, which prevented the growth of lung metasta-
ses, [75].

Clinical uses of nano/micro-systems exposed to ultrasound
for tumor treatment

One of the most striking features of medical ultrasounds
lies in the large variety of tumor types that they allow
to treat using a broad range of different approaches.
Ultrasound parameters are usually adjusted to reach the
desired effect, e.g. to typical intensity/frequency val-
ues of i~a few mW/cm? and f~1.5-50 MHz for tumor
imaging, [176], i<1 W/cm? and f~0.5-1 MHz for per-
meabilization of BBB, [177], and i~10° to 10* W/cm?
and f~20 kHz to 200 MHz for HIFU tumor destruc-
tion, [178]. Other advantages of ultrasounds come from
the moderate cost and compactness of most equipment
used to generate them compared with CT, MRI, and
radiation therapy apparatus, [179]. Thus, a large num-
ber of ultrasound clinical applications have been devel-
oped in the oncology field, which are at various stages
of development. They include: (i) the improvement of
current tumor detection methods such as mammogra-
phy, [180, 181], to either replace or complement them,
(ii) the imaging of tumors before proceeding to a can-
cer treatment such as surgery, [182], (iii) the visualiza-
tion of recurrent lymph nodes following head and neck
tumor treatment, [183], which paves the way towards the
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use of echography to monitor tumor recurrence, (iv) the
guidance of surgery or cryoablation during breast cancer
operation to ensure that the treatment takes place in the
right location, [176, 184], (v) the disruption of blood—
brain barrier to yield enhanced chemotherapeutic drug
delivery to brain tumor, [177], (vi) the production of heat
within tumors using HIFU, resulting in ablation of pros-
tate, [178], breast, [185], or brain tumors, [186], (vii) the
use of endoscopic ultrasound to guide thermal ablation
during pancreatic cancer treatment, [187], and (viii) the
exposure of microbubbles containing nano-medicines
to enhance the delivery and release of such drugs in the
tumor, [88].

To improve the imaging resolution of standard echo-
graphs, ultrasound contrast agents (UCA) have been
developed. The commercialized ones consist of 1 to 4 pm
in diameter vesicles, which are stabilized by an exter-
nal layer made of proteins (Optison) or phospholipids
(Definity or Sonovue), filled with a gas acting as a con-
trast agent, which is either C;Fg for Option and Definity
or SF¢ for Sonovue, [188]. Most interestingly, some stud-
ies have shown that such contrast agents could be used
not only to improve ultrasound imaging resolution, but
also the efficacy of anti-cancer drugs, as demonstrated
when gemcitabine was injected in combination with US
treatment, leading to enhanced anti-tumor activity com-
pared with a treatment using gemcitabine alone, [189].
It was also shown in clinical trial NCT02343991 that the
disruption of the BBB in the presence ultrasounds could
be facilitated in the presence of MB, improving the deliv-
ery of DOX to brain tumors. Clinical trial NCT02181075
involving patients with liver tumors showed that admin-
istration to these patients of thermosensitive liposomes
encapsulating DOX (ThermoDOX) followed by ultra-
sound application successfully enhanced the amount of
DOX accumulating in the tumor, [190].

Applicability of Ultrasounds Contrast Agents for treating
various cancers and paths towards clinical trials
Combining ultrasounds with nanomaterials in a cancer
treatment is an approach, which is at a more advanced
stage than it appears. Indeed, different types of thera-
peutic ultrasounds are already used in the clinic such as
HIFU employed to treat liver, [190], thyroid, [191], breast
cancer, [185], or low-intensity ultrasound to permeabi-
lize the BBB, enable the diffusion of anti-cancer drugs
through this barrier, and then let anti-cancer drugs tar-
get brain tumors such as glioblastoma, [191]. In addi-
tion, various nanomaterials are already injected into
humans and used clinically, i.e. mainly iron-based NP
and liposomes, [192]. Finally, the combination of ultra-
sound contrast agents with therapeutic ultrasounds
has been tested, for example by exposing MB to HIFU
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to treat pancreatic tumors, [189], or for enabling drug
release from liposomes in tumors, [193]. Treatments
combining nanomaterials and therapeutic ultrasounds
therefore hold great promise. To make them succeed, one
can rely on regulatory developments, which have already
enabled clinical validation of therapeutic ultrasounds
and/or NM and choose a suitable combination of NM
and ultrasound modality that should achieve a favorable
benefit risk ratio based on preclinical predictions. This
combined approach should improve the benefit/risk ratio
in various ways depending on the type of UCA/US pair
that is chosen, i.e. notably by enabling moderate tumor
heating, specific tumor targeting of the anti-tumor active
principle, and localized treatment at TME location. Such
approach should yield a more efficient and less toxic can-
cer treatment compared with the use of ultrasounds or
NM alone.

Conclusion

Here, the use of various combinations of ultrasounds and
nano-systems for cancer treatment has been reviewed.
Whereas ultrasounds of low intensities are privileged for
imaging to avoid heating effects, i.e. typically a few mW/
cm? more intense ultrasound beams are selected for
tumor treatment, i.e. typically of a few W/cm? for treat-
ment involving moderate heating and up to 1000-5000 W/
cm? for HIFU. While high frequencies are often used to
improve imaging resolution or the level of ultrasound beam
focalization, low frequencies are chosen to achieve high
penetration depth of ultrasounds in tissues. Ultrasounds
alone are already largely used in the clinic, e.g. to carry out
biopsies of tumor tissues using apparatus such as ExactVu,
[194], or for treatments of prostate, [178], or breast tumors,
[195], with HIFU. These methods can be further improved
by using nano-systems, which should enable: (i) a bet-
ter imaging sensitivity, [196], (ii) an enhancement in the
magnitude of the temperature increase, [197], (iii) a better
anti-tumor efficacy through the various anti-tumor mecha-
nisms that nano-systems can trigger such as cavitation or
the delivery in the tumor of a chemotherapeutic drug, spe-
cial gases, heat, or ROS, (Table 1). The diversity of these
mechanisms is not only due to the mechanical nature of
the ultrasound beam but also to the existence of various
types of nano-systems, which behave differently, e.g. nano/
micro bubbles yield ultrasound contrasting imaging prop-
erties while liposomes enable chemotherapeutic drugs to
be either encapsulated within their core or attached at their
surface. With nano-systems, it is also possible to achieve
therapeutic activity locally at tumor site. This can be due to
NS targeting tumors through passive, active, or magnetic
targeting, or to NS crossing certain physiological barriers
such as the BBB by permeabilizing them. It can also come
from NS transiting from a nanometric size, enabling NS to
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passively target tumors, to a micrometric size, employed
for high resolution ultrasound imaging. Finally, it may
arise from anti-tumor compounds being released or acti-
vated from NS under ultrasound activation or from NS
being incorporated in tumor cells by sonoporation. A large
number of pre-clinical studies carried out on tumor bear-
ing mice have validated these approaches, demonstrating
a more pronounced anti-tumor activity using a combined
ultrasound/nano-system treatment than ultrasound or NS
alone. Clinical trials are ongoing, notably with Thermodox,
to further validate the use of such combined therapies in
humans, [198].

A series of NS could be used for ultrasound applica-
tion, deriving from those that are already approved for
human injection, i.e.: (i) Acuitas ALC-0315 liposomes
used as adjuvants in COVID-19 vaccines, [199], (ii) iron
oxide NP, e.g. Venofer, used for the treatment of iron ane-
mia disease, [200], (iii) iron oxide NP, e.g. Nanotherm,
employed for magnetic hypermetherma treatment of
solid tumors, [201], or Ferumoxytol serving to enhance
MRI contrast, [202], (iv) Au NP such as Auroshell for the
treatment of tumors by PTT, [203], (v) Microbubble such
as Definity for enhancing ultrasound contrast, [204]. The
existence of several NP compositions/structures compat-
ible with human injection bodes well for the development
of new ultrasonic contrast agents.
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