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Abstract

Population-wide in vitro studies for characterization of cardiotoxicity hazard, risk, and population 

variability show that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) 

are a powerful and high-throughput testing platform for drugs and environmental chemicals 

alike. However, studies in multiple donor-derived hiPSC-CMs, across large libraries of chemicals 

tested in concentration-response are technically complex, and study design optimization is needed 

to determine sufficient and fit-for-purpose population size considerations. Therefore, we tested 

a hypothesis that a computational down-sampling analysis based on the data from hiPSC-CM 

screening of 136 diverse compounds in a population of 43 non-diseased donors, including multiple 

replicates of the “standard” donor hiPSC-CMs, will inform optimal study designs depending on 

the decision context (hazard, risk and/or inter-individual variability in cardiotoxicity). Through 

50 independent random subsamples of 5, 10, or 20 donors, we estimated accuracy and precision 

for quantifying potency, inter-individual variability, and QT prolongation risk; the results were 

compared to the full 43-donor cohort. We found that for potency and clinical risk of QT 

prolongation, a cohort of 5 randomly-selected unique donors provides accurate and precise 

estimates. Larger cohort sizes afforded marginal improvements, and 5 replicates of a single donor 

performed worse. For estimating inter-individual variability, cohorts of at least 20 donors are 

needed, with smaller populations on average showing bias towards underestimation in population 

variance. Collectively, this study shows that a variable-size hiPSC-CM-based population-wide in 
vitro model can be used in a number of decision scenarios for identifying cardiotoxic hazards of 

drugs and environmental chemicals in the population context.
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1. Introduction

Human induced pluripotent stem cells (hiPSC) represent a unique and powerful platform in 

testing of drug and chemical safety as they can be used for characterization of hazard, risk 

and inter-individual variability (Burnett et al., 2021). Even from adult donors, a number 

of self-renewing cell types can be derived, bypassing the ethical issues of the use of 

embryonic stem cells (Huang et al., 2019). Among different types of hiPSC-derived cells, 

cardiomyocytes in particular have a high degree of utility for in vitro drug and chemical 

safety studies; these cells are among the most well-developed, characterized, and have been 

used in a number of decision contexts (Pang, 2020). Many studies have established hiPSC-

derived cardiomyocytes (hiPSC-CMs) as a reproducible and qualitatively and quantitively 

human-relevant model for cardiotoxicity testing (Burridge et al., 2016; Grimm et al., 2018; 

Kilpinen et al., 2017).

The ability to derive hiPSC-CMs from different individuals, and the ability to reproduce 

in vivo phenotypes in cell culture (Mercola et al., 2013), has led to a number of studies 

that used them to characterize inter-individual differences in sensitivity to drug-induced 

cardiotoxicity (Burridge et al., 2016). A population-based hiPSC-CM model has been 

applied to much success for deriving chemical-specific estimates of hazard, population 

variability, and risk; as a platform for personalized drug safety evaluation; and as a “clinical-

trial-in-a-dish” in drug development (Blanchette et al., 2020; Blanchette et al., 2019; Burnett 

et al., 2019; Laverty et al., 2011; Stillitano et al., 2017). Moreover, there is evidence 

that population-wide hiPSC-CM models afford greater precision for cardiotoxicity testing 

as compared to studies of a single donor (Blanchette et al., 2019; Blinova et al., 2017), 

even though the need for additional research and better characterization of in vitro to in 
vivo extrapolations has been expressed (Blinova et al., 2019; Vargas, 2019). However, the 

accuracy of assessments of cardiotoxicity hazard and risk in a genetically-diverse population 

may also depend on the size and diversity of the donor pool utilized by each study (Fermini 

et al., 2018). To date, most studies that used multiple hiPSC-CMs have been limited by 

the availability of cells from multiple donors. As a consequence, study designs have been 

largely driven by the cell/donor availability rather than considerations of statistical power 

or estimates of precision that would have been “fit for purpose” in each study. There is 

no previous published work which established a benchmark for a balance between the 

number of hiPSC-CM donors needed to be accurately estimate cardiotoxicity hazard, risk, 

and population variability in a drug and/or chemical safety evaluation context, and practical 

feasibility in terms of cost, complexity, and availability of cells.

Therefore, we tested a hypothesis that a computational down-sampling analysis based on 

the data from hiPSC-CM screening of 136 diverse compounds in a population of 43 non-

diseased donors (Burnett et al., 2019), including multiple replicates of the “standard” donor 

(Grimm et al., 2018), will inform optimal in vitro cardiotoxicity study designs depending 
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on the decision context (hazard, risk and/or inter-individual variability in cardiotoxicity). We 

have taken advantage of a previously reported drug and chemical testing data on hiPSC-CMs 

from a population of non-diseased individuals (Burnett et al., 2019) or multiple replicates of 

one “standard” donor-derived hiPSC-CM (Grimm et al., 2018), and a hierarchical Bayesian 

concentration-response data analysis workflow adopted from Blanchette et al. (2020). We 

generated random subsamples under four different study designs: 5 replicates of a single 

(“standard”) donor, 5 random donors, 10 random donors, and 20 random donors. For each 

subsample, we analyzed both functional and viability phenotype concentration-response data 

on 136 chemicals, and quantified potency in the form of a point of departure (POD) and 

population variability in the form of toxicodynamic variability factor (TDVF) (Blanchette et 

al., 2020). The results were compared in terms of accuracy and precision to those derived 

from the full donor cohort of 43 individuals. We further assessed the accuracy of the model 

using subsamples through examining the concordance of in vitro estimates of hazard to in 
vivo clinical data on QT prolongation.

2. Methods

2.1 In vitro experimental data and chemical treatments

The detailed description of the methods utilized to generate the in vitro experimental data 

is discussed in detail elsewhere (Blanchette et al., 2020; Burnett et al., 2019; Grimm et al., 

2018). Data from a total of 136 compounds, comprising of a wide range of environmental 

compounds, pharmaceuticals, and drugs included in the CiPA initiative were included in this 

analysis [Supplemental Table S1 and (Burnett et al., 2019)]. These chemicals were chosen 

in consultation with various U.S. government agencies (Environmental Protection Agency, 

National Institute of Environmental Health Sciences, Food and Drug Administration), and 

reflect balancing multiple criteria, including known positives and negatives, the availability 

of reverse toxicokinetic data for in vitro to in vivo extrapolation, and previous testing in 

hiPSC-CM cell lines to evaluate reproducibility. De-identified hiPSC-CM cell lines from 

a diverse set of 43 individuals (Supplemental Table S2) with no known cardiovascular 

disease or familial history of cardiovascular disease [see details on donor demographics 

in (Burnett et al., 2019)] were obtained from Fujifilm Cellular Dynamics (Madison, WI). 

The hiPSC-CMs were exposed to compounds in concentration-response with inter- and 

intra-plate controls in a 90-minute treatment and subsequently assessed in a Ca2+ flux assay 

and high content imaging to evaluate functional performance and viability. Ca2+ flux data 

was processed in R (version 4.0.2) to extract relevant data on relevant phenotypes using 

previously reported data processing methods (Blanchette et al., 2019).

2.2 Computational workflow

2.2.1 Full cohort subsampling and Bayesian concentration-response 
modeling—A graphical representation of the computational workflow is presented in 

Figure 1. A total of 50 unique permutations of the 42 (out of 43 total) donors were generated 

such that each iteration of subsampling draws nindiv = 5, 10, or 20 individuals from a 

predetermined random permutation. The “standard” hiPSC-CM donor (individual #1434) 

was excluded from the downsampling pipeline due to the high number of replicates (8) in 

relation to other donors (1–2) and was instead analyzed in a separate experiment within 
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this study as described below. For each of the 50 sub-sampling iterations, in vitro data for 

five phenotypes (functional phenotypes: positive and negative chronotropy, QT prolongation; 

viability phenotypes: asystole, and cytotoxicity) were used to derive PODs as detailed in 

Blanchette et al. (2020). The PODs for these five phenotypes were based on the EC05 

(positive and negative chronotropy, QT prolongation), the EC95 (asystole), and the EC10 

(cytotoxicity), as was rationalized previously (Blanchette et al., 2020).

The sub-sampled data set from each iteration and each value of nindiv was used in 

conjunction with Bayesian hierarchical random-effects Hill modeling following previously 

described methods (Blanchette et al., 2020; Chiu et al., 2017) to fit concentration-response 

curves for each of the 5 phenotypes and 136 compounds. Briefly, for phenotypes that 

indicate the increase in a phenotypic response (positive chronotropy, QT prolongation), an 

“upward” Hill model was used that was reparametrized at the donor level as:

y = y0 1 +

x
x0

n

1 + x
x0

n 1
Emax

+ ϵ

Here, the calculated response is represented by the variable y, the nominal concentration is 

represented by x, and y0, x0, Emax, and n are model parameters representing the baseline 

value, the concentration at half the maximal response, the maximum fractional change from 

baseline, and the Hill coefficient. The “downward” version of the Hill model (negative 

chronotropy) was reparametrized as:

y = y0 1 −

x
x0

n

1 + x
x0

n 1
Emax

+ ϵ .

To avoid outsized parameter values, the model hyperparameters for the natural-log 

transformed population mean of Emax (mEmax) and n (mn) were restricted to be >−3 and 

between −2 and 2, respectively. For the remaining two phenotypes, asystole and cytotoxicity, 

a modified version of the downward Hill model was utilized which did not contain the Emax 

parameter under the assumption the maximal response will be at 0:

y = y0 1 −

x
x0

n

1 + x
x0

n + ϵ

The restriction of the mn hyperparameter used in the “downward” model was similarly used 

in this “zero” model.

For all models, the parameters and hyperparameters were natural-log transformed to ensure 

the values remain positive and the error ϵ was assumed to follow a scaled Student’s t 
distribution with scale parameter σ and five degrees of freedom in order to be robust for 
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detection of the outliers (Chiu et al., 2017). Additionally, the hyperparameters, reflecting 

the population mean and standard deviation of each model parameter, were normal and 

half-normal, respectively, under the assumption that individuals in the population were 

distributed normally. See Supplemental Table S3 for details on model parameter prior 

distributions.

Posterior distribution sampling was conducted using the Markov Chain Monte-Carlo 

(MCMC) algorithm as described previously in Blanchette et al. (2020). Briefly, simulations 

for each compound consisted of 4 chains with a minimum of 4,000 iterations and a 

maximum of 36,000 iterations, the first half of which being “warm-up” iterations which 

are subsequently discarded. Tuning parameters for the “upward” and “downward” models 

were adjusted from their default values to improve modeling efficiency and reduce the 

occurrence of divergent transitions. Inter- and intra-chain variability were assessed for each 

parameter to determine if convergence has been reached, indicated by the potential scale 

reduction factor R̂ ≤ 1.2 (Gelman & Rubin, 1992). If convergence could not be reached 

for a given compound at the minimum number of iterations, the concentration-response 

was remodeled with an increasing number of iterations until the maximum was reached. If 

convergence could not be reached for a given compound and phenotype, it was not used in 

further data analysis. For each chain, 250 random samples were saved for further analysis, 

a total of 1,000 samples. These 1,000 posterior samples for each compound and phenotype 

were ultimately combined with those of each of the other 50 subsampling iterations for 

subsequent data analysis. To further improve wall-clock time required for the extensive 

amount of modeling conducted in this study, each of the 50 iterations of subsampling for 

each compound was conducted in parallel utilizing the foreach package (version 1.5.1) in 

R. Bayesian concentrationresponse analysis within the subsampling pipeline and subsequent 

posterior sampling was carried out using an R (version 4.0.3) module on the Texas A&M 

High Performance Research Computing Core integrated with Stan using the rstan package 

(version 2.12.2).

2.2.2 “Standard” donor subsampling—A similar workflow for Bayesian 

concentration-response modeling and posterior distribution sampling was carried out for the 

subsampling of the sample replicates from the “standard” donor. A total of 50 subsampling 

iterations of 5 (out of 8) replicates each were conducted per endpoint and chemical in 

utilizing a fixed effects version of the Bayesian concentration-response model, assuming no 

random effects (all replicates are treated as from the same individual).

2.3 Hazard assessment

2.3.1 Coverage of chemical space—In order to determine whether this study’s 

conclusions regarding the number of donors needed in a population-based hiPSC-CM model 

may apply to testing of over chemicals (i.e. the “applicability domain”), an assessment of 

the coverage of chemical space was conducted similar to that reported in Chiu et al. (2017). 

Specifically, the 136 compounds used in this study were compared to those (n = 32,464) 

of the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) prediction 

data set (Mansouri et al., 2016) that has been extensively quality-controlled for use in 

QSAR modeling. Over 200 molecular descriptors were calculated for compounds in both 
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data sets utilizing the open-source Chemistry Development Kit (CDK) package “rcdk”, as 

implemented in R and were compared to one another in a principal components analysis. 

The toxicologically relevant physical-chemical properties octanol:water partition coefficient 

(logP), molecular weight (MW), and topological polar surface area (TPSA) were singled out 

for further comparison between the two chemical sets.

2.3.2 Comparison of subsample-derived potency estimates—For each 

phenotype, compound, and study design (subsamples using 5 standard donor replicates 

or using random donor subpopulations with different nindiv), the population median POD 

estimate was derived from the uncertainty distribution that was the result of the combination 

of all 50 iterations of subsampling, as well as from each iteration for comparison against 

those of the full cohort. The log10-transformed central estimate of the POD from the 

combined uncertainty distribution for each compound and endpoint was compared with 

that from the full cohort to calculate a deviation ΔPOD:

ΔPOD = log10 PODsub − log10 PODfull .

These values served as a measurement of concordance between the subsampled 

measurement and the data from the full cohort. Accuracy and precision were determined 

for each endpoint for each study design through deriving the median ΔPOD (negative = 

underestimation, positive = overestimation; closer to 0 = more accurate) as the median error 

value, and deriving the median absolute deviation (MAD; closer to 0 = more precise).

2.3.3 Comparison of subsample-derived population variability estimates—A 

similar workflow was utilized in the assessment of each value of nindiv in its accuracy 

and precision in estimating population variability. As before, for each phenotype, a 

toxicodynamic variability factor at 5% (TDVF05) was calculated as the ratio of the POD 

for the median individual to the POD for the most sensitive 5th percentile individual. For 

each phenotype and compound, the log10-transformed median estimate of the TDVF05 for 

study design was compared against that derived from the full cohort to generate a deviation 

ΔTDVF05:

ΔTDV F05 = log10 TDV F05, sub − log10 TDV F05, full .

Accuracy and precision measurements were derived similarly to ΔPOD using the median 

and MAD.

2.3.4 Clinical translation—To evaluate accuracy and precision of the subsamples in 

their capability to make clinical decisions, the common metrics used in Blanchette et al. 

(2019) were similarly used here. Firstly, in vivo predictions of the effective concentration 

(EC) at the 1% clinically relevant change in the QT interval (EC01) from published PK-PD 

studies were compared to those derived from subsamples for each study design for the QT 

prolongation phenotype. As described in Blanchette et al. (2019), the selection of EC01 as 

a benchmark was based on the “clinically significant” change of 5 msec prolongation with 

a baseline QTc of 421.5 msec [mean of NHANES III as previously reported (Benoit et 
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al., 2005)], corresponding to a 1.2% change, which is then rounded to 1%. Secondly, the 

effectiveness of a clinical translation to a TQT study (ICH, 2015) was assessed as it was in 

Blanchette et al. (2019). Specifically, each subsample for each study design was evaluated 

as to whether it satisfied the TQT regulatory threshold of <10 ms at 95% confidence 

at the reported clinical maximum plasma concentration Cmax [values previously used by 

Blanchette et al. (2019), updated based on the database of human clinical studies of TQT 

reported by Wiśniowska et al. (2020)].

3. Results

3.1 Coverage of chemical space

The overlap between the CERAPP compounds (Mansouri et al., 2016) and the 136 

compounds used in this study is visualized in Figure 2 based on chemical descriptors. Using 

the first three principal components (that account for over 45% of the total variance), we 

found substantial overlap between the chemical space coverage of the compounds within 

this study and the CERAPP compounds (Figure 2A). Additionally, when examining three 

toxicologically relevant physical-chemical properties across the compounds of the two sets, 

a similarly high level of overlap was found (Figure 2B). Therefore, the 136 compounds 

utilized in this study are representative of the broader set of drugs and compounds of interest 

to environmental health, making up a sufficiently large and diverse applicability domain.

3.2 Comparison of population subsample-derived potency estimates

The accuracy of the chemical and phenotype-specific population central estimations of 

potency were compared for each study design (subsamples using 5 random standard 

donor replicates and using random donor subpopulations with different nindiv) to those 

derived from the full 43 donor cohort. Figure 3 shows a visual representation of the 

comparison between random subsample dose-response relationships and that for the full 

cohort for five representative compounds representing each phenotype (positive chronotrope: 

pyrene, negative chronotrope: mexiletine hyrdrochloride, QT prolongation: citalopram 

hyrdobromide, asystole: quinidine sulfate, cytotoxicity: propafenone). Concentration-

response curves for the population median using subsamples of unique individuals were 

within the confidence band of that for the full cohort, while those for the standard 

donor were generally outside the confidence band, suggesting that a pooled diverse donor 

population was more accurate or precise than using replicates of a single donor.

Figure 4A shows the resulting cumulative distribution of the compound-specific POD 

population central estimates across all 50 iterations of subsampling and the 90% CI of those 

estimates. Across all endpoints and study designs, the central estimates of the cumulative 

distribution corresponded well with those derived from the full (n=43 donors) cohort, with 

the 90% CI narrowing when replacing standard donor replicates with random unique donors, 

and as the number of individual donors increased. The correspondence between the median 

individual POD predictions from the full cohort and the subsamples were strong regardless 

of endpoint and study design, though the viability phenotypes (asystole and cytotoxicity) 

had an even narrower uncertainty interval as compared to the functional phenotypes (positive 

and negative chronotropy, QT prolongation). The correspondence between the subsampled 
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estimates was further explored in Figure 4B in which the deviation ΔPOD is shown across 

different phenotypes and study designs. The distribution of ΔPOD becomes noticeably 

more centered at 0 (which corresponds to a ratio of PODs of 100=1) when replacing 

standard donor replicates with unique donors, and as the number of unique donors increases. 

Specifically, using hiPSC-CMs from 5 unique donors resulted in lower bias and greater 

precision as compared to a study design utilizing 5 replicates of the standard donor. 

Summary of the accuracy and precision estimates for this analysis is reported in Table 

1. Accuracy was much improved when cells from 5 unique donors were used, with more 

modest improvements seen as n increased further. Precision increased similarly, with greater 

improvements as n increased compared to accuracy improvements.

3.3 Comparison of population subsample-derived population variability estimates

A similar analysis to determine the correspondence of chemical- and phenotype-specific 

TDVF05 was conducted through the generation of ΔTDVF05 values comparing the 

subsampled estimate to the full cohort estimate and visualized in Figure 5. Here, only study 

designs with multiple unique donors were considered, because replicates of the standard 

donor cannot be used to estimate inter-individual variability. The cumulative distributions 

of the central estimates and 90% CI subsample-derived TDVF05 estimates were compared 

to those of the full-cohort derived estimate in Figure 5A, with the distribution of deviations 

shown in Figure 5B. Across all phenotypes, the improvement in accuracy and precision in 

TDVF05 estimates with the increase in the number of subsampled donors was more apparent 

than for the derivation of potency estimates. The cumulative distributions derived from 

subsamples of 5 and 10 donors were shifted left in comparison to that of the full-cohort, 

indicating that the TDVF05 values were being routinely underestimated with small sample 

sizes. The sample of 20 unique donors, however, resulted in the estimations of the TDVF05 

across all phenotypes that were relatively concordant with those derived using all 43 donors.

Additionally, at lower values of nindiv, especially at nindiv = 5, the functional endpoints 

exhibited greater uncertainty in the median TDVF05 estimate than the viability phenotypes. 

This contrasted with nindiv = 20 in which the distribution was narrower and centered more 

closely at a ΔTDVF05 of 0. The functional phenotypes, especially at nindiv = 5, had a 

greater degree of uncertainty in the TDVF05 estimation than the viability phenotypes. Table 

2 indicates significant accuracy improvements as n increased while precision also increased, 

although more incrementally.

3.4 Evaluation of clinical translation

Figure 6 shows the correspondence of clinical data-derived in vivo EC01 POD values for 

QT prolongation to in vitro model-derived EC01 using common concentration and response 

metrics for 10 compounds with known clinical effects. When using sub-samples of the 

standard donor and three choices for nindiv, our model was able to predict human in vivo 
EC01 with a high degree of accuracy. Pearson and Spearman correlation coefficients, as 

well as mean square error (MSE) values are shown. Correlation was high when utilizing 

replicates of the standard donor, with both values being over 0.8. Correlation was further 

increased when using population subsamples, with correlation coefficients above 0.9 for 

all sample sizes. Precision increased substantially (i.e., MSE decreased) when replacing 5 
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replicates of the standard donor with at least 5 unique donors, and more modestly with 

further increasing nindiv.

We previously demonstrated, using 10 compounds with reported clinical effects on QT and 

3 drugs with no such effects, the ability of a population hiPSC-CM model with nindiv=27 

to accurately predict the probability that a compound-induced change in the QT interval at 

Cmax will exceed 10 ms and correctly identify those compounds that will not exceed this 

threshold at 95% confidence (Blanchette et al., 2019). Here we repeated this analysis with 

the larger donor cohort of n=43, as well as with smaller subsampled cohorts, calculating 

the probability that the QTc was prolonged more than 10 ms at Cmax, P(ΔQTCmax > 10ms). 

Those subsamples with a probability >5% were classified as positive, and those <5% were 

classified as negative predictions. The results of this analysis are shown in Table 3 and 

further visualized in Supplemental Figures S1-2.

When data from 5 replicates of the standard donor or when subsamples of nindiv = 5 random 

individuals were used, we correctly identified all positive compounds, with at least 84% of 

iterations resulting in a correct regulatory classification, and 2 of 3 negative compounds. The 

misclassification was for the “negative” compound lamotrigine (Dixon et al., 2008), for at 

least 76% of iterations identified it as positive instead of negative. At nindiv = 10 and 20, 

the model correctly identified all positive and negative compounds. At these larger values 

of nindiv, lamotrigine was correctly identified to be a negative compound, suggesting that 

although donors may be more sensitive and thus a larger population is needed to correctly 

estimate the population level effects at Cmax.

4. Discussion

In a commentary on Blanchette et al. (2019), Vargas (2019) stated the need to better 

define the population size that shall be used to ensure that estimates derived from the in 
vitro studies in hiPSC-CMs accurately reflect population central estimates, and thereby to 

reduce the uncertainty surrounding the use of an arbitrary number of donors. A gap in 

our knowledge exists on how hiPSC-CM-based in vitro model shall be designed to best 

fit the purpose of drug and/or chemical safety testing. Additional insights are needed into 

effectively utilizing in vitro population models to achieve different ends, whether that be 

a characterization of hazard or population variability, and further increase the scientific 

community’s confidence in using alternatives to animal or human tests (Chiu & Rusyn, 

2018). In this study, we addressed these gaps by conducting a computational downsampling 

analysis of both individual donors from a 43-donor cohort (Blanchette et al., 2020; Burnett 

et al., 2019) and replicates of the standard donor. Specifically, by subsampling 50 unique 

cohorts of n = 5, 10 or 20 individuals and 50 replicate combinations of 5 standard donor 

replicates, we were able to derive metrics of accuracy and precision of potency, population 

variability, and QT risk as compared to past estimates from a 43-donor cohort.

We found that potency estimates derived using a 5 standard donor replicates design 

were on average less accurate than those derived using cohorts of cells from 5 different 

individuals. This conclusion reinforces our observation made previously with a 27 donor 

cohort (Blanchette et al., 2019), which found that the standard donor was more sensitive to 
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QT prolongation effects as compared to the population median, and therefore would result 

in the over prediction of chemical-induced risk at the population level. While this study 

did not find that the standard donor uniformly overpredicted risk across all compounds, 

phenotypes, and replicate combinations, our statistical analysis indicated a loss of accuracy 

and precision in hazard and risk predictions when compared against other similarly sized 

or larger cohort designs with genetically diverse individuals. Similarly, studies of optimal 

experimental designs for hiPSC-based methods caution against utilizing multiple clones of 

a single donor in place of a single clone per donor. For instance, Germain and Testa (2017) 

found that utilizing multiple replicates of a single donor in a case-control study results in 

the increase of spurious differences of gene expression between groups in a transcriptomic 

analysis. Accordingly, Volpato and Webber (2020) in iPSC-disease model guidelines state 

that an increase in the number of cell lines used provides far greater experimental power to 

detect non-spurious effects than in models that increase the number of lines derived from a 

single donor.

Through our down sampling approach, we have additionally identified a cohort size of 5 

individual donors to be highly effective in estimating population median measurements of 

both hazard and risk, with relatively low bias and imprecision of less than half order of 

magnitude (half the dose-spacing in our experiments). Estimations of population median 

PODs across all 5 endpoints for cohorts of five individuals were sufficiently strong and 

did not vary significantly from those made in larger-size donor cohorts. Germain and 

Testa (2017) similarly found that utilizing iPSC lines from a minimum of 4 donors to 6 

donors total yielded sufficient precision and accuracy in identifying effects in a differential 

expression analysis. Our findings differed from Germain and Testa (2017) in that we found 

that precision increased as the number of individuals increased with the most significant 

increase coming from replacing the standard donor replicate-derived values and those 

derived from the 5 donor subsampled cohorts. However, this difference in findings may 

be a result of the divergence of the endpoints evaluated in both studies. The ability to 

accurately predict population median carried over to predictions of risk, as we similarly 

found that cohort sizes of nindiv = 5 performed nearly as well as larger cohorts in the 

clinical translation, only misclassifying one additional compound, lamotrigine (which is 

acknowledged to have some ambiguity as to its clinical classification), compared to the 

larger cohorts.

While the smaller cohorts were sufficient for hazard characterization; they were not 

sufficient for characterization of population toxicodynamic variability. Smaller cohort sizes 

of n = 5 and n = 10 tended to underpredict the extent of the toxicodynamic variability for 

functional phenotypes, with the smaller cohort sizes underestimating to a greater extent. 

Intermediate cohort sizes of n = 20, however, predicted the chemical-specific TDVF05 

accurately compared to that predicted by the full cohort (n = 43). Modest improvements 

in precision as cohort size increased were similarly observed for population variability 

analysis; however, precision remained relatively low for the positive chronotropy phenotype, 

which was noted for its high degree of variability (Blanchette et al., 2020). Our finding 

that a cohort size of n = 20 was sufficient in deriving TDVF05 that closely resembled those 

derived from a cohort over double its size, indicated that population median toxicodynamic 

variability predictions stabilize and are not significantly affected by additional donors. These 
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results are consistent with previous computational down sampling experiments performed 

with lymphoblastoid cells, which found that a cohort of 20 individuals is required to achieve 

a high level of sensitivity and specificity that is not significantly improved by larger sample 

sizes (Chiu et al., 2017). This finding is especially important in that it alleviates some burden 

of conducting large-scale in vitro population variability studies, many of which feature 

inherently large donor pools. While the source of the lymphoblastoid cell data, Abdo et al. 

(2015), was one of the largest of its kind, other lymphoblastoid studies have utilized 80 or 

more cell lines (Choy et al., 2008; Lock et al., 2012; O’Shea et al., 2011). Other studies 

utilizing different cell types include similarly large donor pools. For instance, 51 individual 

donors were used to collect primary B cells for use in a study on low dose responses of 

TCDD (Dornbos et al., 2016), and 45 were used in a QTL mapping study in hiPSC-CM 

(Knowles et al., 2018). Establishing a 20-donor population model as sufficient to accurately 

and precisely quantify population variability increases the feasibility of conducting efficient 

and high-throughput toxicodynamic variability studies in vitro.

Another important consideration for selecting sample size for future studies is the choice 

of the metric for deciding when the data may indicate human health hazard concern, such 

as changes in QTc. Specifically, human clinical data on TQT show substantial variability 

in both Cmax and the change in QTc [see the database by Wiśniowska et al. (2020) and 

Supplemental Figure S3 for moxifloxacin and lamotrigine data]. We found that in vitro 
data from different individuals is equally variable and a distinction shall be made between 

detecting a significant change in QTc as opposed to exceeding the regulatory thresholds 

for the QTc elongation of concern. For example, the more variable in vitro model results 

for both moxifloxacin and lamotrigine appear to reflect the fact that the effects on QTc at 

the clinical Cmax appear to be close to the regulatory threshold, so small changes in Cmax 

can change the regulatory classification from “positive” to “negative” (data not shown). For 

instance, across over 100 clinical studies of moxifloxacin reviewed by (Wiśniowska et al., 

2020), changes in QTc range from a decrease of 6.6 msec to increase of 22.3 msec, with an 

inter-quartile range of 10–13 msec increase. Similarly, with respect to lamotrigine, although 

it appears negative in healthy adult volunteers at typical therapeutic doses, QTc prolongation 

has been reported as a result of overdoses (Chavez et al., 2015; Dixon et al., 2008; Moore et 

al., 2013).

This study, while addressing a former limitation of population-based in vitro models, itself is 

not free from its own limitations. The full cohort used as a benchmark, while being among 

the largest of its kind for hiPSC-CM, is still relatively small at 43 individuals. Additionally, 

while similar conclusions were previously reached for a few other cell types (Chiu et al., 

2017; Germain & Testa, 2017), the generalizability of our analyses could be improved 

with data from additional iPSC-derived cells, such as hepatocytes, which are particularly 

of interest in toxicology. Furthermore, the data in this study consisted solely of “normal” 

individuals who do not have a personal or familial history of cardiovascular, so may 

not apply to study design considerations for population models incorporating pre-existing 

disease.

In addition, a natural future direction is the application of this hiPSC-CM population-based 

model in high-throughput testing of additional chemicals. The hazard characterization of a 
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large set of compounds using 5 donors would be considerably more tractable to accomplish 

than using the full cohort of 43 donors that is currently commercially available. Data from 5 

different donors will be substantially more accurate than using only the single standard 

donor, making confident evaluation of a much larger and diverse chemical set highly 

feasible. Additionally, given that only 13 compounds were available for testing positive 

and negative performance (Blanchette et al., 2019; Burnett et al., 2019), further validation 

of the predictive performance of the model would be beneficial (Vargas, 2019); to this end, 

the recent database developed by (Wiśniowska et al., 2020) of clinical TQT studies would be 

highly informative as a benchmark for evaluation.

In conclusion, we have advanced our in vitro – in silico population-based hiPSC-CM model 

by better defining the study design parameters required to derive accurate and precise 

measurements of hazard, risk, and population variability. Overall, our results suggest that 

a sensible high-throughput screening approach for characterizing hazard and potency of 

drugs and chemicals should consist of a population-based model utilizing 5 or more unique 

donors, while donor populations of around 20 are required to draw conclusions about the 

degree of inter-individual variability. These design parameters will therefore support the 

development of tiered testing approaches for risk assessments of both pharmaceuticals and 

environmental chemicals using population-based in vitro models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Subsampling and Data Analysis workflow.
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Figure 2. 
Chemical space coverage and overlap of the first three principles components 

and interpretable toxicologically-relevant physical-chemical properties between the 136-

compound screen and the CERAPP prediction set.
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Figure 3. Dose Response Comparison across study designs.
Curve fits shown are for the predicted population median for each study design, using 

a single random subsample, for representative compounds for each phenotype (positive 

chronotrope: pyrene, negative chronotrope: mexiletine hydrochloride, QT prolongation: 

citalopram hydrobromide, asystole: quinidine sulfate, cytotoxicity: propafenone). The 

confidence interval band shows the corresponding 95% CI based on the full cohort (n=43).
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Figure 4. Hazard characterization subsampling analysis.
Hazard characterization subsample analysis. A) Cumulative distribution of PODs for each 

study design and phenotype. Black solid line and outer dotted lines correspond to the median 

individual POD for each compound across all 50 iterations, and its 90% CI. The green line 

indicates the cumulative distribution of the PODs for all compounds as derived from the full 

43 individual cohort. B) Boxplots visualizing the distribution of the ΔPOD for each study 

design and phenotype.
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Figure 5. Population variability subsampling analysis.
Population variability subsample analysis. A) Cumulative distribution of TDVF05s for each 

study design and phenotype. The black solid line and outer dotted lines correspond to 

the estimated TDVF05 for each compound across all 50 iterations, and its 90% CI. The 

green line indicates the cumulative distribution of the TDVF05 values for all compounds as 

derived from the full 43 individual cohort. B) Boxplots visualizing the distribution of the 

ΔTDVF05 for each study design and phenotype.
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Figure 6. Comparison of in vivo PODs to in vitro-derived PODs.
For each study design, scatterplot shows the in vivo EC01 (X-axis) versus the model-

predicted EC01 values (median and 90% CI, y-axis) for the 10 positive controls for QT 

prolongation. Line displayed is the unit line (y = x). EC01 values are log10-transformed for 

correlation (r=Pearson, p=Spearman) and mean standard error (MSE) calculations; p-values 

for correlations were all significant (p < 0.01).
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Table 1.
Accuracy and precision in potency estimates across study designs.

Accuracy is represented by the median ΔPOD (Med), and precision is represented by the median absolute 

deviation ΔPOD (Zou et al.), where ΔPOD is the log10-transformed deviation as compared to the full cohort.

Study design [+] Chronotrope [−] Chronotrope QT Prolongation Asystole Cytotoxicity

Med MAD Med MAD Med MAD Med MAD Med MAD

Std. Donor 0.69 0.71 −0.12 0.76 0.16 0.55 −0.03 0.35 −0.39 0.36

n = 5 −0.09 0.43 −0.12 0.38 −0.08 0.38 0.04 0.13 −0.10 0.16

n = 10 −0.05 0.30 −0.08 0.29 0.03 0.10 0.03 0.10 −0.05 0.09

n = 20 −0.03 0.18 −0.06 0.15 −0.01 0.18 0.01 0.06 −0.02 0.05

Std. Donor: 5 random replicates of the standard donor
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Table 2.
Accuracy and precision in population variability estimates across study designs.

Accuracy is represented by the median (Med) ΔTDVF05, and precision is represented by the median absolute 

deviation ΔTDVF05 (Zou et al.), where ΔTDVF05 is the log-transformed deviation as compared to the full 

cohort.

Study design [+] Chronotrope [−] Chronotrope QT Prolongation Asystole Cytotoxicity

Med MAD Med MAD Med MAD Med MAD Med MAD

n = 5 −0.41 0.44 −0.20 0.15 −0.32 0.31 −0.19 0.21 −0.18 0.13

n = 10 −0.23 0.45 −0.09 0.12 −0.14 0.26 −0.07 0.13 −0.08 0.11

n = 20 −0.06 0.31 −0.04 0.09 −0.04 0.18 −0.02 0.08 −0.03 0.07
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Table 3.

Performance of different study designs in identifying regulatory QT prolongation risk at Cmax. Shown for each 

chemical and study design is the percentage of subsampling iterations that resulted in a positive classification 

of QT prolongation risk at Cmax of 10 msec prolongation at 95% confidence. For comparison, the reference 

clinical classification based on in vivo human data and the classification based on the full cohort (n = 43) are 

also shown. Parenthesis around a clinical classification indicates that the classification is ambiguous (some 

studies above and some below the regulatory threshold).

Percent subsamples “+”

Chemical: clinical classification Std. Donor n = 5 n = 10 n = 20 n = 43

Cisapride: + 100 100 100 100 +

Citalopram: + 100 100 100 100 +

N-acetylprocainamide: + 100 100 100 100 +

Quinidine: + 100 100 100 100 +

Sematilide: + 100 100 100 100 +

Vernacalant: + 100 100 100 100 +

Sotalol: + 98 100 100 100 +

Disopyramide: + 84 100 100 100 +

Dofetilide: + 98 92 100 100 +

Moxifloxacin: (+) 100 94 91 96 +

Cabazitaxel: – 12 6 0 0 –

Mifepristone: – 2 16 3 0 –

Lamotrigine: (–) 100 76 31 8 –

+: Positive for QTc prolongation; –: Negative for QTc prolongation; (+) or (–): mixed or ambiguous clinical results in terms of 10 msec regulatory 
threshold at 95% confidence.
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